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Abstract. Many geophysical imaging problems are ill-posed in the sense that
the solution does not depend continuously on the measured data. Therefore
their solutions cannot be computed directly, but instead require the appli-
cation of regularization. Standard regularization methods find approximate
solutions with small L2 norm. In contrast, sparsity regularization yields ap-
proximate solutions that have only a small number of non-vanishing coef-
ficients with respect to a prescribed set of basis elements. Recent results
demonstrate that these sparse solutions often much better represent real ob-
jects than solutions with small L2 norm.

In this survey we review recent mathematical results for sparsity regular-
ization. As an application of our theoretical results we consider synthetic
focusing in Ground Penetrating Radar, which is a paradigm in inverse geo-
physical problems.
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1 Introduction

In a plethora of industrial problems one aims at estimating the properties of
a physical object from observed data. Often the relation between the physical
object and the data can be modeled sufficiently well by a linear equation

Au = v , (1)

where u is a representation of the object in some Hilbert space U , and v a
representation of the measurement data, again in a Hilbert space V . Because
the operator A : U → V in general is continuous, the relationship (1) allows
one to easily compute data v from the properties of the object u, provided
they are known. This is the so called forward problem. In many practical
applications, however, one is interested in the inverse problem of estimating
the quantity u from measured data v. A typical feature of inverse problems
is that the solution of (1) is very sensitive to perturbations in v. Because in
practical applications only an approximation vδ of the true data v is given, the
direct solution of equation (1) by applying the inverse operator is therefore
not advisable (see [17, 43]).

By incorporating a–priori information about the exact solution, regular-
ization methods allow to calculate a reliable approximation of u from the
observed data vδ. In this paper we are especially interested in sparsity regu-
larization, where the a–priori information is that the true solution u is sparse
in the sense that only few coefficients 〈u,φλ〉 with respect to some prescribed
basis (φλ)λ∈Λ are non-vanishing. In the discrete setting of compressed sensing
it has recently been shown that sparse solutions can be found by minimizing
the "1-norm of the coefficients 〈u,φλ〉, see [8, 15]. Minimization of the "1 norm
for finding a sparse solutions has however been proposed and studied much
earlier for certain geophysical inverse problems (see [9, 33, 38, 42]).
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Figure 1: Collecting GPR data from a flying helicopter. At each posi-
tion on the flight path Γ, the antenna emits a short radar pulse. The
radar waves get reflected, and the scattered signals are collected in
radargrams.

Case Example: Ground Penetrating Radar

As a case example of a geophysical inverse problem we consider Ground Pen-
etrating Radar (GPR), which aims at finding buried objects by measuring
reflected radar signals [12]. The reflected signals are detected in zero offset
mode (emitting and detecting antenna are at the same position) and used to
estimate the reflecting objects. Our interest in GPR has been raised by the
possibility of locating avalanche victims by means of a GPR system mounted
on a flying helicopter [20, 27]. The basic principle of collecting GPR data
from a helicopter is shown in Figure 1.

In Subsection 5.1 below we will show that the imaging problem in GPR
reduces to solving the equation (1), with A being the circular Radon trans-
form. The inversion of the circular Radon transform also arises in several
other up-to-date imaging modalities, such as in SONAR, seismic imaging,
ultrasound tomography, and photo-/thermo-acoustic tomography (see, e.g.,
[1, 2, 19, 31, 37, 39, 43, 45] and the reference therein).

2 Variational Regularization Methods

Let U and V be Hilbert spaces and let A : U → V be a bounded linear
operator with unbounded inverse. Then the problem of solving the operator
equation

Au = v
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2 Variational Regularization Methods

is ill-posed. In order to (approximately) solve this equation in a stable way, it
is therefore necessary to introduce some a–priori knowledge about the solution
u, which can be expressed via smallness of some regularization functional
R : U → [0, +∞]. In classical regularization theory one assumes that the
possible solutions have a small energy in some Hilbert space norm—typically
an L2 or H1-norm is used—and defines R as the square of this norm. In
contrast, we consider below the situation of sparsity constraints, where we
assume that the possible solutions have a sparse expansion with respect to a
given basis.

We denote by u† any R-minimizing solution of the equation Au = v,
provided that it exists, that is,

u† ∈ arg min
{

R(u) : Au = v
}

.

In applications, it is to be expected that the measurements v we obtain
are disturbed by noise. That is, we are not able to measure the true data
v, but only have some noisy measurements vδ available. In this case, solving
the constrained minimization problem R(u) → min subject to Au = vδ is
not suitable, because the ill-posedness of the equation will lead to unreliable
results. Even more, in the worst case it can happen that vδ is not contained
in the range of A, and thus the equation Au = vδ has no solution at all.
Thus it is necessary to restrict ourselves to solving the given equation only
approximately.

We consider three methods for the approximate solution, all of which re-
quire knowledge about, or at least some estimate of, the noise level δ :=
‖v − vδ‖.

Residual method: Fix τ ≥ 1 and solve the constrained minimization prob-
lem

R(u) → min subject to ‖Au − vδ‖ ≤ τδ . (2)

Tikhonov regularization with discrepancy principle: Fix τ ≥ 1 and minimize
the Tikhonov functional

Tα,vδ(u) := ‖Au − vδ‖2 + αR(u) , (3)

where α > 0 is chosen in such a way that Morozov’s discrepancy principle is
satisfied, that is, ‖Auδ

α − vδ‖ = τδ with uδ
α ∈ arg minu Tα,vδ(u).

Tikhonov regularization with a–priori parameter choice: Fix C > 0 and
minimize the Tikhonov functional (3) with a parameter choice

α = Cδ . (4)
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The residual method aims for the minimization of the penalty term R over
all elements u that generate approximations of the given noisy data vδ; the size
of the permitted defect is dictated by the assumed noise level δ. In particular,
the true solution u† is guaranteed to be among the feasible elements in the
minimization problem (2). The additional parameter τ ≥ 1 allows for some
incertitude concerning the precise noise level; if τ is strictly greater than 1,
an underestimation of the noise would still yield a reasonable result.

If the regularization functional R is convex, the residual method can be
shown to be equivalent to Tikhonov regularization with a parameter choice
according to Morozov’s discrepancy principle, provided the size of the sig-
nal is larger than the noise level, that is, the signal-to-noise ratio is larger
than τ . In this case, the regularization parameter α in (3) plays the role
of a Lagrange parameter for the solution of the constrained minimization
problem (2). This equivalence result is summarized in the following theorem
(see [30, Thms. 3.5.2, 3.5.5]):

Theorem 2.1. Assume that the operator A : U → V is linear and has dense
range and that the regularization term R is convex. In addition assume that
R(u) = 0 if and only if u = 0. Then the residual method and Tikhonov regu-
larization with an a–posteriori parameter choice by means of the discrepancy
principle are equivalent in the following sense:

Let vδ ∈ V and δ > 0 satisfy ‖vδ‖ > τδ. Then uδ solves the constrained
problem (2), if and only if ‖A uδ −vδ‖ = τδ and there exists some α > 0 such
that uδ minimizes the Tikhnonov functional (3).

In order to show that the methods introduced above are indeed regularizing,
three properties have to be necessarily satisfied, namely existence, stability,
and convergence. In addition, convergence rates can be used to quantify the
quality of the method:

• Existence: For each regularization parameter α > 0 and every vδ ∈ V
the regularization functional Tα,vδ attains its minimum. Similarly, the
minimization problem (2) has a solution.

• Stability is required to ensure that, for fixed noise level δ, the regularized
solutions depend continuously on the data vδ.

• Convergence ensures that the regularized solution converge to u† as the
noise level decreases to zero.

• Convergence rates provide an estimate of the difference between the
minimizers of the regularization functional and u†.

Typically, convergence rates are formulated in terms of the Bregman dis-
tance (see [6, 29, 41, 43]), which, for a convex and differentiable regularization
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3 Sparse Regularization

term R with subdifferential ∂R and ξ ∈ ∂R(u†), is defined as

D(u, u†) = R(u) −R(u†) − 〈ξ, u − u†〉 .

That is, D(u, u†) measures the distance between the tangent and the convex
function R. In general, convergence with respect to the Bregman distance
does not imply convergence with respect to the norm, strongly reducing the
significance of the derived rates. In the setting of sparse regularization to
be introduced below, however, it is possible to derive convergence rates with
respect to the norm on U .

3 Sparse Regularization

In the following we concentrate on sparsity promoting regularization methods.
To that end, we assume that (φλ)λ∈Λ is an orthonormal basis of the Hilbert
space U , for instance a wavelet or Fourier basis. For u ∈ U , we denote by

supp(u) := {λ ∈ Λ : 〈φλ, u〉 *= 0}

the support of u with respect to the basis
(

φλ

)

λ∈Λ
. If |supp(u)| ≤ s for some

s ∈ N, then the element u is called s-sparse. It is called sparse, if it is s-
sparse for some s ∈ N, that is, |supp(u)| < ∞. Given weights wλ, λ ∈ Λ,
bounded below by some constant wmin > 0, we define for 0 < q ≤ 2 the
"q-regularization functional
Rq : U → R ∪ {∞},

Rq(u) :=
∑

λ∈Λ

wλ|〈φλ, u〉|q .

If q = 2, then the regularization functional is simply the weighted squared
Hilbert space norm on U .

If q is smaller than 2, small coefficients 〈φλ, u〉 are penalized comparatively
stronger, while the penalization of large coefficients becomes less pronounced.
As a consequence, the reconstructions resulting by applying any of the above
introduced regularization methods will exhibit a small number of significant
coefficients, while most of the coefficients will be close to zero. These sparsity
enhancing properties of "q-regularization become more pronounced as the
parameter q decreases. If we choose q at most 1, then the reconstructions
are necessarily sparse in the above, strict sense, that is, the number of non-
zero coefficients is at most finite (see [21]):

Proposition 3.1. Let q ≤ 1, α > 0, vδ ∈ V . Then every minimizer of the
Tikhonov functional Tα,vδ with regularization term Rq is sparse.
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3.1 Convex Regularization

There are compelling reasons for using an exponent q ≥ 1 in applications,
as this choice entails the convexity of the ensuing regularization functionals.
In contrast, a choice q < 1 leads to non-convex minimization problems and, as
a consequence, to numerical difficulties in their minimization. In the convex
case q ≥ 1, there are several possible strategies for computing the minimizers
of regularization functional Tα,vδ . Below, in Section 4, we will consider two
different, iterative methods: an Iterative Thresholding Algorithm for regular-
ization with a–priori parameter choice and 1 ≤ q ≤ 2 [14], and a log-barrier
method for Tikhonov regularization with an a–posteriori parameter choice
by the discrepancy principle in the case q = 1 [7]. Iterative thresholding
algorithms have also been studied for non-convex situations, but there the
convergence to global minima has not yet been proven [5].

3.1 Convex Regularization

We now turn to the study of the theoretical properties of "q type regular-
ization methods with q ≥ 1 and study the questions of existence, stability,
convergence, and convergence rates. In order to be able to take advantage
of the equivalence result Theorem 2.1, we assume in the following that the
operator A : U → V has dense range.

The question of existence is easily answered [23, 25]:

Proposition 3.2 (Existence). For every α > 0 and vδ ∈ V the functional
Tα,vδ has a minimizer in U . Similarly, the problem of minimizing Rq(u)
subject to the constraint ‖Au − vδ‖ ≤ τδ admits a solution in U .

Though the previous lemma states the existence of minimizers for all q ≥ 1,
there is a difference between the cases q = 1 and q > 1. In the latter case,
the regularization functional Tα,vδ is strictly convex, which implies that the
minimizer must be unique. For q = 1, the regularization functional is still
convex, but the strict convexity holds only, if the operator A is injective.
Thus it can happen that we do not obtain a single approximate solution,
but a whole (convex and closed) set of minimizers. Because of this possible
non-uniqueness, the stability and convergence results have to be formulated
in terms of subsequential convergence.

Also, we have to differentiate between a–priori and a–posteriori parameter
selection methods. In the latter case, the stability and convergence results can
be formulated solely in terms of the noise level δ. In the case of an a–priori
parameter choice, it is in addition necessary to take into account the actual
choice of α in dependence of δ. For the following results we refer to [25, 34].

Proposition 3.3 (Stability). Let δ > 0 be fixed and let vk → vδ. Consider
one of the following settings:
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3 Sparse Regularization

Residual method: Let uk ∈ U be solutions of the residual method with data
vk and noise level δ.

Discrepancy principle: Let uk ∈ U be solutions of Tikhonov regularization
with data vk and an a–posteriori parameter choice according to the discrepancy
principle for noise level δ.

A–priori parameter choice: Let α > 0 be fixed, and let uk ∈ U be solutions
of Tikhonov regularization with data vk and regularization parameter α.

Then the sequence (uk)k∈N has a subsequence converging to a regularized
solution uδ obtained with data vδ and the same regularization method. If uδ

is unique, then the whole sequence (uk)k∈N converges to uδ.

Proposition 3.4 (Convergence). Let δk → 0 and let vk ∈ V satisfy

‖vk − v‖ ≤ δk .

Assume that there exists u ∈ U with Au = v and Rq(u) < +∞. Consider
one of the following settings:

Residual method: Let uk ∈ U be solutions of the residual method with data
vk and noise level δk.

Discrepancy principle: Let uk ∈ U be solutions of Tikhonov regularization
with data vk and an a–posteriori parameter choice according to the discrepancy
principle with noise level δk.

A–priori parameter choice: Let αk > 0 satisfy αk → 0 and δ2k/αk → 0,
and let uk ∈ U be solutions of Tikhonov regularization with data vk and
regularization parameter αk.

Then the sequence (uk)k∈N has a subsequence converging to an Rq-minimizing
solution u† of the equation Au = v. If u† is unique, then the whole sequence
(uk)k∈N converges to u†.

Note that the previous result in particular implies that an Rq-minimizing
solution u† of Au = v indeed exists. Also, the uniqueness of u† is trivial in
the case q > 1, as then the functional Rq is strictly convex. Thus we obtain
in this situation indeed convergence of the whole sequence (uk)k∈N.

Though we know now that approximative solutions indeed converge to true
solutions of the considered equation as the noise level decreases to zero, we
have obtained no estimate for the speed of the convergence. Indeed, in gen-
eral situations the convergence can be arbitrarily slow. If, however, the Rq-
minimizing solution u† satisfies a so-called source condition, then we can ob-
tain sufficiently good convergence rates in the strictly convex case q > 1. If,
in addition, the solution u† is sparse and the operator A is invertible on the
support of u†, then the convergence rates improve further.

Before stating the convergence rates results, we recall the definition of the
source condition and its relation to the well-known Karush–Kuhn–Tucker
condition used in convex optimization.
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3.1 Convex Regularization

Definition 3.5. The Rq-minimizing solution u† of the equation Au = v satis-
fies the source condition, if there exists ξ ∈ V such that A∗ ξ ∈ ∂Rq(u†). Here
∂Rq(u†) denotes the subdifferential of the function Rq at u†, and A∗ : V → U
is the adjoint of A.

In other words, if q > 1 we have

〈ξ,Aφλ〉 = q sign(〈u†,φλ〉)|〈u†,φλ〉|q−1 , λ ∈ Λ ,

and if q = 1 we have

〈ξ,Aφλ〉 = sign(〈u†,φλ〉) if λ ∈ supp(u†) ,

〈ξ,Aφλ〉 ∈ [−1, +1] if λ *∈ supp(u†) .

The conditions A∗ ξ ∈ ∂Rq(u†) for some ξ ∈ V and Au† = v are nothing
more than the Karush–Kuhn–Tucker conditions for the constrained minimiza-
tion problem

Rq(u) → min subject to Au = v .

In particular, it follows that ũ ∈ U is an Rq-minimizing solution of the
equation Au = v whenever ũ satisfies the equation A ũ = v and we have
ranA∗ ∩∂Rq(ũ) *= ∅ [16, Proposition 4.1].

The following convergence rates result can be found in [25, 34]. It is based
on results concerning convergence rates with respect to the Bregman distance
(see [6]) and the fact that, for "q-regularization, the norm can be bounded
from above, locally, by the Bregman distance.

Proposition 3.6. Let 1 < q ≤ 2 and assume that u† satisfies the source
condition. Denote, for vδ ∈ V satisfying ‖vδ − v‖ ≤ δ, by uδ := u(vδ) the
solution with data vδ of either the residual method, or Tikhonov regularization
with Morozov’s discrepancy principle, or Tikhonov regularization with an a–
priori parameter choice α = Cδ for some fixed C > 0. Then

‖uδ − u†‖ = O(
√
δ) .

In the case of an a–priori parameter choice, we additionally have that

‖Auδ − v‖ = O(δ) .

The convergence rates provide (asymptotic) estimates of the accuracy of
the approximative solution in dependence of the noise level δ. Therefore the
optimization of the order of convergence is an important question in the field
of inverse problems.

In the case of Tikhonov regularization with a–priori parameter choice, the
rates can indeed be improved, if the stronger source condition A∗ A η ∈
∂Rq(u†) for some η ∈ U holds. Then one obtains with a parameter choice
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3 Sparse Regularization

α = Cδ2/3 a rate of order O(δ2/3) (see [26, 41]). For quadratic Tikhonov reg-
ularization it has been shown that this rate is the best possible one. That is,
except in the trivial case u† = 0, there exists no parameter selection method,
neither a–priori nor a–posteriori, that can yield a better rate than O(δ2/3)
(see [36]). This saturation result poses a restriction on the quality of recon-
structions obtainable with quadratic regularization.

In the non-quadratic case q < 2 the situation looks different. If the solution
u† is sparse, then the convergence rates results can be improved beyond the
quadratic bound of O(δ2/3). Moreover, they also can be extended to the
case q = 1. For the improvement of the convergence rates, an additional
injectivity condition is needed, which requires the operator A to be injective
on the (finite dimensional) subspace of U spanned by the basis elements φλ,
λ ∈ supp(u†). This last condition is trivially satisfied, if the operator A

itself is injective. There exist, however, also interesting situations, where the
linear equation A u = v is vastly under-determined, but the restriction of A

to all sufficiently low-dimensional subspaces spanned by the basis elements
φλ is injective. These cases have recently been well studied in the context of
compressed sensing [8, 15]. The first improved convergence rates have been
derived in [23, 25].

Proposition 3.7. Let q ≥ 1 and assume that u† satisfies the source condition.
In addition, assume that u† is sparse and that the restriction of the operator
A to span{φλ : λ ∈ supp(u†)} is injective.

Then, with the notation of Proposition 3.6, we have

‖uδ − u†‖ = O(δ1/q) .

The most interesting situation is the case q = 1. Here, one obtains a linear
convergence of the regularized solutions to u†. That is, the approximative
inversion of A is not only continuous, but in fact Lipschitz continuous; the
error in the reconstruction is of the same order as the data error. In addition,
the source condition A∗ ξ ∈ ∂Rq(u†) in some sense becomes weakest for q = 1,
because then the subdifferential is set-valued and therefore larger than in
the strictly convex case. Moreover, the source condition for q > 1 requires
that the support of A∗ ξ equals the support of u†, which strongly limits the
applicability of the convergence rates result.

While Proposition 3.7 concerning convergence rates in the presence of a
sparsity assumption and restricted injectivity holds for all 1 ≤ q ≤ 2, the
rates result without these assumptions, Proposition 3.6, requires that the pa-
rameter q is strictly greater than one. The following converse result shows
that, at least for Tikhonov regularization with an a–priori parameter choice,
a similar relaxation of the assumptions by dropping the requirement of re-
stricted injectivity is not possible for q = 1; the assumptions of sparsity and
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3.2 Non-convex Regularization

injectivity of A on supp(u†) are not only sufficient but also necessary for
obtaining any sensible convergence rates (see [24]).

Proposition 3.8. Let q = 1 and assume that u† is the unique R1-minimizing
solution of the equation Au = v. Denote, for vδ ∈ V satisfying ‖vδ − v‖ ≤ δ,
by uδ := u(vδ) the solution with data vδ of Tikhonov regularization with an
a–priori parameter choice α = Cδ for some fixed C > 0. If the obtained data
error satisfies

‖Auδ − v‖ = O(δ) ,

then u† is sparse and the source condition holds. In particular, also

‖uδ − v‖ = O(δ) .

3.2 Non-convex Regularization

In the following, we will study the properties of "q regularization with a sub-
linear regularization term, that is, 0 < q < 1. In this situation, the regular-
ization functional is non-convex, leading to both theoretical and numerical
challenges. Still, non-convex regularization terms have been considered for
applications, because they yield solutions with even more pronounced spar-
sity patterns than "1 regularization.

From the theoretical point of view, the lack of convexity prohibits the ap-
plication of Theorem 2.1, which states that the residual method is equivalent
to Tikhonov regularization with Morozov’s discrepancy principle. Indeed,
it seems that an extension of said result to non-convex regularization func-
tionals has not been treated in the literature so far. Even more, though
corresponding results have recently been formulated for the residual method,
the question, whether the discrepancy principle yields stable reconstructions,
has not yet been answered. For these reasons, we limit the discussion of non-
convex regularization methods to the two cases of the residual method and
Tikhonov regularization with an a–priori parameter choice. Both methods
allow the derivation of basically the same, or at least similar, results as for
convex regularization, the main difference being the possible non-uniqueness
of the Rq-minimizing solutions of the equation Au = v (see [22, 25, 46]).

Proposition 3.9. Consider either the residual method or Tikhonov regu-
larization with an a–priori parameter choice. Then Propositions 3.2–3.4 con-
cerning existence, stability, and convergence remain to hold true for 0 < q < 1.

Also the convergence rates result in the presence of sparsity, Proposition 3.7,
can be generalized to non-convex regularization. The interesting point is that
the source condition needed in the convex case apparently is not required any
more. Instead, the other conditions of Proposition 3.7, uniqueness and spar-
sity of u† and restricted injectivity of A, are already sufficient for obtaining
linear convergence (see [21, 25]).
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4 Numerical Minimization

Proposition 3.10. Let 0 < q < 1 and assume that u† is the unique Rq-
minimizing solution of the equation Au = v. Assume moreover that u† is
sparse and that the restriction of the operator A to span{φλ : λ ∈ supp(u†)}
is injective. Denote, for vδ ∈ V satisfying ‖vδ − v‖ ≤ δ, by uδ := u(vδ) the
solution with data vδ of either the residual method or Tikhonov regularization
with an a–priori parameter choice α = Cδ for some fixed C > 0. Then

‖uδ − u†‖ = O(δ) .

In the case of Tikhonov regularization with an a–priori parameter choice, we
additionally have that

‖Auδ − v‖ = O(δ) .

4 Numerical Minimization

4.1 Iterative Thresholding Algorithms

In [14], an iterative algorithm has been analyzed that can be used for mini-
mizing the Tikhonov functional Tα,vδ for fixed α > 0, that is, for an a–priori
parameter choice. To that end, we define for b > 0 and 1 ≤ q ≤ 2 the function
Fb,q : R → R,

Fb,q(t) := t +
bq

2
sign(t)|t|q−1 .

If q > 1, the function Fb,q is a one-to-one mapping from R to R. Thus, it has
an inverse Sb,q := (Fb,q)−1 : R → R. In the case q = 1 we define

Sb,1(t) :=











t − b/2 if t ≥ b/2 ,

0 if |t| < b/2 ,

t + b/2 if t ≤ −b/2 .

(5)

Using the functions Sb,q, we define now, for b = (bλ)λ∈Λ ∈ RΛ
>0 and 1 ≤ q ≤ 2,

the Shrinkage Operator Sb,q : U → U ,

Sb,q(u) :=
∑

λ∈Λ

Sbλ,q

(

〈u,φλ〉
)

φλ . (6)

Proposition 4.1. Let vδ ∈ V , α > 0, and 1 ≤ q ≤ 2, and denote w :=
(wλ)λ∈Λ. Let µ > 0 be such that µ‖A∗ A‖ < 1. Choose any u0 ∈ U and
define inductively

un+1 := Sµαw,q

(

un + µA∗(vδ −A un)
)

. (7)

Then the iterates un, defined by the iterative thresholding iteration (7), con-
verge to a minimizer of the functional Tα,vδ as n → ∞.
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4.2 Second Order Cone Programs

The method defined by the iteration (7) can be seen as a forward–backward
splitting algorithm for the minimization of Tα,vδ , the inner update u /→ u +
µA∗(vδ−Au) being a gradient descent step for the functional ‖Au−A vδ‖2,
and the shrinkage operator a gradient descent step for αRq. More details on
the application of forward–backward splitting methods to similar problems
can, for instance, be found in [10].

4.2 Second Order Cone Programs

In the case of an a–posteriori parameter choice (or the equivalent residual
method), the iterative thresholding algorithm (7) cannot be applied directly,
as the regularization parameter α > 0 is not known in advance. One can show,
however, that the required parameter α depends continuously on δ (see [3]).
Thus it is possible to find the correct parameter iteratively, starting with some
initial guess α > 0 and computing some û ∈ arg minu Tα,vδ(u). Depending
on the size of the residual A û − vδ, one subsequently either increases or
decreases α and computes the minimizer of Tα,vδ using the new regularization
parameter. This procedure of updating α and minimizing Tα,vδ is stopped, as
soon as the residual satisfies ‖A û − vδ‖ ≈ τδ.

In the important case q = 1, a different solution algorithm has been estab-
lished, which takes advantage on the fact that the constrained minimization
problem R1(u) → min subject to ‖Au − vδ‖2 ≤ δ can be rewritten as a
second-order cone program (SOCP). To that end we introduce an additional
variable a = (aλ)λ∈Λ ∈ "2(Λ) and minimize

∑

λ∈Λ wλaλ subject to the con-
straints aλ ≥ |〈u,φλ〉| for all λ ∈ Λ and ‖Au−vδ‖2 ≤ τδ2. The former bound
consisting of the two linear constraints aλ ≥ ±〈u,φλ〉, we arrive at the SOCP

S(u, a) :=
∑

λ∈Λ

wλaλ → min subject to

aλ + 〈u,φλ〉 ≥ 0 ,

aλ − 〈u,φλ〉 ≥ 0 ,

τδ2 − ‖Au − vδ‖2 ≤ 0 .

(8)

If the pair (u, a) solves (8), then u is a solution of the residual method.
The solutions of the program (8) can be computed using a log-barrier

method, defining for η > 0 the functional

Sη(u, a) := η
∑

λ∈Λ

wλaλ −
∑

λ∈Λ

log
(

aλ + 〈u,φλ〉
)

−
∑

λ∈Λ

log
(

aλ − 〈u,φλ〉
)

− log
(

‖Au − vδ‖2 − τδ2
)

.

As η → ∞, the minimizers of Sη(u, a) converge to a solution of (8). Moreover,
one can show that the solution (uδ, aδ) of (8) and the minimizer (uδ

η, a
δ
η) of Sη

satisfy the relation

S(uδ
η, a

δ
η) < S(uδ, aδ) + (|Λ| + 1)/η , (9)
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5 Application: Synthetic Focusing in Ground Penetrating Radar

that is, the value of the minimizer of the relaxed problem Sη lies within
(|Λ| + 1)/η of the optimal value of the original minimization problem [40].

In order to solve (8), one alternatingly minimizes Sη and increases the
parameter η. That is, one chooses some parameter µ > 1 defining the increase
of η and starts with k = 1 and some initial parameter η(1) > 0. Then one
iteratively computes (uk, ak) ∈ arg minSη(k) , set η(k+1) := µη(k) and increases
k until the value (|Λ| + 1)/η(k) is smaller than some predefined tolerance—
according to (9), this implies that also the value S(uk, ak) is within the same
tolerance of the actual minimum. For the minimization of Sη(k) , which has
to take place in each iteration step, one can use a Newton method combined
with a line search that ensures that one does not leave the domain of Sη(k) and
that the value of Sη(k) actually decreases. More details on the minimization
algorithm can be found in [7].

5 Application: Synthetic Focusing in Ground

Penetrating Radar

In this section we apply sparsity regularization to data obtained with Ground
Penetrating Radar (GPR) mounted on a flying helicopter (see Figure 1). As
stated in the introduction, we first write the imaging problem as the inversion
of the circular Radon transform.

5.1 Mathematical Model

For simplicity of presentation we ignore polarization effects of the electromag-
netic field and assume a small isotropic antenna. In this case, each component
of the electromagnetic field E(xant;x, t) induced by an antenna that is located
at xant ∈ R3 is described by the scalar wave equation

(

1

c(x)2
∂2

t −∆

)

E(xant;x, t) = δ3D(x− xant)wb(t) , (x, t) ∈ R
3 ×R . (10)

Here δ3D denotes the three dimensional delta distribution, wb represents the
temporal shape of the emitted radar signal (impulse response function of the
antenna) with bandwidth b, and c(x) denotes the wave speed.

GPR systems are designed to generate ultrawideband radar signals, where
the bandwidth b is approximately equal to the central frequency, and the
pulse duration is given by τ = 1/b. Usually, wb is well approximated by the
second derivative of a small Gaussian (Ricker wavelet), see [12]. Figure 2
shows a typical radar signal emitted by a radar antenna at 500 MHz and its
Fourier transform.
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-2 -1 0 1 2 [ns]

wb(t)

-1500 -500 500 1500 [M�z]

ŵb(2πν)

Figure 2: Ricker Wavelet (second derivative of a small Gaussian) with a cen-
tral frequency of b = 500MHz in the time domain (left) and in the
frequency domain (right).

Born Approximation

Scattering of the radar signals occurs at discontinuities of the function c. In
the sequel, we assume that

1

c(x)2
=

1

c2
0

(

1 + u3D(x)
)

,

where c0 is assumed to be constant (the light speed) and u3D is a possibly
non-smooth function. Moreover, we make the decomposition

E(xant;x, t) = E0(x
ant;x, t) + Escat(x

ant;x, t) , (x, t) ∈ R
3 × R ,

where E0 denotes the incident field (the solution of the wave equation (10)
with c replaced by c0), and Escat is the scattered field.

From (10) it follows that the scattered field satisfies
(

1

c2
0

∂2
t −∆

)

Escat(x
ant;x, t) = −u3D(x)

c2
0

∂2E(xant;x, t)

∂t2
.

The Born approximation consist in replacing the total field E in the above
equation by the incident field E0. This results in the approximation Escat 2
EBorn, where EBorn solves the equation
(

1

c2
0

∂2
t −∆

)

EBorn(x
ant;x, t) = −u3D(x)

c2
0

∂2E0(xant;x, t)

∂t2
, (x, t) ∈ R

3×R .

(11)
Together with the initial condition Escat(xant;x, t) = 0 for t < t0, Equation
(11) can be solved explicitly via Kirchhoff’s formula, see [11, page 692],

EBorn(x
ant;x, t) = − 1

4πc2
0

∂2

∂t2

∫

R3

u3D(y)
E0

(

xant;y, t− |x−y|
c0

)

|x − y| dy .

15
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The identity

E0(x
ant;y, t) = −

wb

(

t − |y − xant|/c0

)

4π|y − xant| = −
(wb ∗t δ1D)

(

t − |y − xant|/c0

)

4π|y − xant| ,

with δ1D denoting the one dimensional delta distribution, leads to

EBorn(x
ant;x, t) =

w′′
b (t)

16π2c2
0

∗t

∫

R3

u3D(y)
δ1D

(

t − |y−xant|
c0

− |x−y|
c0

)

|x − y| |y − xant| dy . (12)

In GPR, the data are measured in zero offset mode, which means that
the scattered field is only recorded at location x = xant. In this situation,
equation (12) simplifies to

EBorn(x
ant;xant, t) =

w′′
b (t)

32π2c0
∗t

∫

R3

u3D(y)
δ1D

(

c0t
2 − |y − xant|

)

|y − xant|2
dy ,

where we made use of the formula
∫

ϕ(x)δ1D(ax)dx = ϕ(0)
|a| . By partitioning

the above integral over y ∈ R3 into integrals over spheres centered at xant,
and using the definition of the one dimensional delta distribution, one obtains
that

EBorn(x
ant;xant, t) = w′′

b ∗t
(R3D u3D)(xant, c0t/2)

32π2c3
0(t/2)2

(13)

with

(R3D u3D)(xant, r) :=

∫

|xant−y|=r

u3D(y) dS(y) (14)

denoting the (three dimensional) spherical Radon transform. This is the basic
equation of GPR, that relates the unknown function u3D with the scattered
data measured in zero offset mode.

The Radiating Reflectors Model

In our application (see Figure 1) the distances between the antenna position
xant and the positions y of the reflectors are relatively large. In this case,
multiplication by t and convolution with w′′

b in (13) can be (approximately)
interchanged, that is, we have the approximation

(8πc2
0t)EBorn(x

ant;xant, 2t) 2 Φ(xant, t) =: w′′
b ∗t

(R3D u3D)(xant, c0t)

4πc0t
. (15)

One notes that Φ is the solution at position xant of the wave equation
(

1

c2
0

∂2
t −∆

)

Φ(x, t) = w′′
b (t)u

3D(x) , (x, t) ∈ R
3 × R . (16)

Equation (16) is named the radiating (or exploding) reflectors model, as the
inhomogeneity u3D now appears as active source in the wave equation.
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Formulation of the Inverse Problem

Equation (15) relates the unknown function u3D(x) with the data Φ(xant, t).
Due to the convolution with the function w′′

b , which does not contain high
frequency components (see Figure 2), the exact reconstruction of u3D is hardly
possible. It is therefore common to apply migration, which is designed to
invert the spherical Radon transform.

When applying migration to the data defined in (15), one reconstructs a
band-limited approximation of u3D. Indeed, from [28, Proposition 2.2], it
follows that

Φ(xant, t) =
(R3D u3D

b )(xant, c0t)

t
, (17)

where

u3D
b (x) := − π

8πc0

∫

R3

w′′′
b (|y|)
|y|

u3D(x − y)dy , x ∈ R
3 . (18)

Therefore, the data tΦ(xant, t) can be viewed a the spherical Radon transform
of the band-limited reflectivity function u3D

b (x), and application of migration
to the data tΦ(xant, t) will reconstruct the function u3D

b (x).

A characteristic of our application (see Figure 1) is that the radar antenna
is moved along a one dimensional path, that is, only the two dimensional data
set

v(xant, t) := tΦ
(

(xant, 0, 0), t
)

, with (xant, t) ∈ R × (0,∞) ,

is available from which one can recover at most a function with two degrees of
freedom. Therefore, we make the assumption that the support of the function
u2D

b is approximately located in the plane {(x1, x2, x3) : x3 = 0}, that is, we
assume

u3D
b (x1, x2, x3) = u2D

b (x1, x2) δ1D(x3) , with x = (x1, x2, x3) ∈ R
2 × R .

Together with (17) this leads to the equation

v(xant, t) =
(

R2D u2D
b

)

(xant, c0t) , (xant, t) ∈ R × (0,∞) , (19)

where

(R2D u)(xant, r) :=

∫

|(xant,0)−y|=r

u
(

y
)

dS(y) , (xant, r) ∈ R × (0,∞) ,

(20)
denotes the circular Radon transform (the spherical Radon in two dimen-
sions). Equation (19) is the final equation that will be used to reconstruct
the bandlimited reflectivity function u2D

b (x1, x2) from data v(xant, r).
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5 Application: Synthetic Focusing in Ground Penetrating Radar

5.2 Migration versus Nonlinear Focusing

If the values (R2D u2D
b )(xant, r) in (19) were known for all xant ∈ R and all

r > 0, then u2D
b could be reconstructed by means of explicit reconstruction

formulas. At least two types of theoretically exact formulas for recovering u2D
b

have been derived: Temporal back-projection and Fourier domain formulas
[1, 18, 37, 44]. These formulas and their variations are known as migration,
backprojection, or synthetic focusing techniques.

The Limited Data Problem

In practise it is not appropriate to assume (R2D u2D
b )(xant, t) is known for

all xant ∈ R, and the antenna positions and acquisition times have to be
restricted to domains (−X, X) and (0, R/c0), respectively. We model the
available partial data by

vcut(x
ant, r) := wcut(x

ant, r) (R2D u2D
b )(xant, r) ,

with (xant, r) ∈ (−X, X) × (0, R) , (21)

where wcut is a smooth cutoff function that vanishes outside the domain
(−X, X) × (0, R). Without a–priori knowledge, the reflectivity function u2D

b

cannot be exactly reconstructed from the incomplete data (21) in a stable
way (see [35]). It is therefore common to apply migration techniques just to
the partial data and to consider the resulting image as approximate recon-
struction.

Applying Kirchhoff migration to the partial data (21) leads to

uKm(x1, x2) := (R∗
2D vcut)(x1, x2) :=

∫ X

−X

vcut

(

xant,
√

(xant − x1)2 + x2
2

)

dxant .

With Kirchhoff migration, the horizontal resolution at location (0, d) is given
by c0d/(2Xb) (see [4, Appendix A.1] for a derivation).

Incorporating a–priori knowledge via non-linear inversion, however, may be
able to increase the resolution. Below we will demonstrate that this is indeed
the case for sparsity regularization using a Haar wavelet basis. A heuristic
reason is that sparse objects (reconstructed with sparse regularization) tend
to be less blurred than images reconstructed by linear methods.

Application of Sparsity Regularization

For the sake of simplicity we will only consider Tikhonov regularization with
R1 penalty term and uniform weights, leading to the regularization functional

Tα,vδ(u) := ‖R2D u − vδ‖2 + α
∑

λ∈Λ

|〈φλ, u〉| , (22)
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−X X

x1-axis

x2-axis

{x1 = 0}

{x2 = 7}

Figure 3: Geometry in the numerical experiment. Data v(xant, r),
caused by a small scatterer positioned at location (0, 7m), are sim-
ulated for (xant, r) ∈ (−X, X)× (0, R) with X = 2m and R = 12m.

where (φλ)λ∈Λ is a Haar wavelet basis and α is the regularization parameter.
Here u and vδ are elements of the Hilbert spaces

U := {u ∈ L2
(

R
2
)

: supp(u) ⊂ (−X, X) × (0, R)} ,

V := L2
(

(−X, X) × (0, R)
)

.

The circular Radon transform R2D, considered as operator between U and V ,
is easily shown to be bounded linear (see, e.g., [43, Lemma 3.79].)

For the minimization of (22), we apply the iterative thresholding algo-
rithm (7), which in our context reads as

un+1 := Sµα,1

(

un + µR∗
2D(vδ − R2D un)

)

. (23)

Here Sµα,1 is the shrinkage operator defined by (6) and (5), and µ is a positive
parameter such that µ‖R∗

2D R2D‖ < 1.

5.3 Numerical Examples

In our numerical examples we choose X = 2m and R = 12m. The scatterer
u is the characteristic function of a small disc located at position (0, d) with
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Figure 4: Exact data experiment. Top left: Data. Top middle: Recon-
struction by Kirchhoff migration. Top right: Reconstruction with
sparsity regularization. Bottom: Vertical and horizontal profiles of
the reconstructions.
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Figure 5: Noisy data experiment. Top left: Data. Top middle: Recon-
struction by Kirchhoff migration. Top right: Reconstruction with
sparsity regularization. Bottom: Vertical and horizontal profiles of
the reconstructions.
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d = 7, see Figure 3. We assume that the emitted Radar signal is a Ricker
wavelet wb with a central frequency of 250MHz (compare with Figure 2). The
data v(xant, r) are generated by numerically convolving R2D u with the second
derivative of the Ricker wavelet.

The reconstructions obtained with Kirchhoff migration and with sparsity
regularization are depicted in Figure 4. Both methods show good resolution
in the vertical direction (often called axial or range resolution). The hori-
zontal resolution (lateral or cross-range resolution) of the scatterer, however,
is significantly improved by sparsity regularization. This shows that spar-
sity regularization is indeed able to surpass the resolution limit c0d/(2Xb) of
linear reconstruction techniques.

In order to demonstrate the stability with respect to data perturbations, we
also perform reconstructions after adding Gaussian noise and clutter. Clutter
occurs from multiple reflections on fixed structures and reflections resulting
from the inhomogeneous background [12]. A characteristic property of clutter
is that is has similar spectral characteristics as the emitted radar signal

The reconstruction results from data with clutter and noise added are de-
picted in Figure 5. Again, sparsity regularization shows better horizontal
resolution than Kirchhoff migration. Moreover, the image reconstructed with
sparsity regularization is less noisy.

5.4 Application to Real Data

Radar measurements were performed with a 400MHz antenna (RIS One GPR
instrument). The investigated area was a complex avalanche deposit near
Salzburg, Austria. The recorded data are shown in Figure 6. In the numer-
ical reconstruction we choose an aperture of X = 3.3m and a time window
of R/c0 = 50ns. The extracted data are depicted in the left image in Fig-
ure 7. One clearly sees a diffraction hyperbola stemming from a scatterer in
the subsurface. Moreover, the data agree very well with the simulated data
depicted in the left image in Figure 5.

The reconstruction results with Kirchhoff migration and with sparsity reg-
ularization are depicted in Figure 7. The regularization parameter α is chosen
as 0.02, and the scaling parameter µ is chosen in such a way, that µ‖R∗

2D R2D‖
is only slightly smaller than 1.
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