
Research Network FWF S105

Photoacoustic Imaging in

Medicine and Biology

http://pai.uibk.ac.at

The Residual Method for

Regularizing Ill-Posed Problems

Markus Grasmair, Markus Haltmeier

and Otmar Scherzer

May 2009

PAI Report No. 14





The Residual Method for Regularizing Ill-Posed

Problems

Markus Grasmair1 Markus Haltmeier1

Otmar Scherzer1,2

1Department of Mathematics 2Radon Institute of Computational
University of Innsbruck and Applied Mathematics

Technikerstr. 21a Altenberger Str. 69
6020 Innsbruck, Austria 4040 Linz, Austria

May 4, 2009

Abstract

Although the residual method, or constrained regularization, is fre-
quently used in applications, a detailed study of its properties is still
missing. In particular, the questions of stability and convergence rates
have hardly been treated in the literature. This sharply contrasts the
progress of the theory of Tikhonov regularization, where for instance the
notion of the Bregman distance has recently led to a series of new re-
sults for regularization in Banach spaces. The present paper intends to
bridge the gap between the existing theories as far as possible. We de-
velop a stability and convergence theory for the residual method in general
topological spaces. In addition, we prove convergence rates in terms of
(generalized) Bregman distances.

Exemplarily, we apply our theory to compressed sensing. Here, we
show the well-posedness of the method and derive convergence rates both
for convex and non-convex regularization under rather weak conditions. It
is for instance shown that in the non-convex setting the linear convergence
of the regularized solutions already follows from the sparsity of the true
solution and the injectivity of the (linear) operator in the equation to be
solved.

Key words. Ill-posed problems, Regularization, Residual Method, Spar-
sity, Stability, Convergence Rates.
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1 Introduction

We study the solution of ill-posed operator equations

F (x) = y , (1)
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where F : X → Y is an operator between the topological spaces X and Y , and
y ∈ Y are given, noisy data, which are assumed to be close to some unknown,
noise-free data y† = F (x†). If the operator F is not continuously invertible,
then (1) may not have a solution and, if a solution exists, arbitrarily small
perturbations of the data may lead to unacceptable results.

If it is known that the given data satisfy an estimate ‖y† − y‖ ≤ β, one
strategy for defining an approximate solution of (1) is to solve the constrained
minimization problem

R(x) → min subject to ‖F (x) − y‖ ≤ β . (2)

Here, the regularization term R : X → [0, +∞] is intended to enforce certain
regularity properties of the approximate solution and to stabilize the process of
solving (1). In [29, 45], this strategy is called the residual method. It is closely
related to Tikhonov regularization, which consists in minimizing the regulariza-
tion functional

T (x, y) := ‖F (x) − y‖2 + αR(x)

for some regularization parameter α > 0.
While the theory of Tikhonov regularization has received much attention in

the literature (see [1, 2, 12, 18, 19, 24, 27, 35, 41, 43, 46, 48]), the same cannot be
said about the residual method. Nevertheless, several results are available. The
existence theory of (2) and also the question of convergence, which asks whether
solutions of (2) converge to a solution of (1) as ‖y − y†‖ ≤ β → 0, have been
treated in a quite general setting in [28] (see also [44, 45]). Also, convergence
rates have for instance been derived in [4] in a Hilbert space setting for a linear
operator F and in [5, 7] for the reconstruction of sparse sequences. Still, no
attempts have been made to carry over these results to more general spaces and
functionals, as opposed to the recent developments in Tikhonov regularization
(see [26, 36, 38, 39, 42]).

Even more, it seems that the problem of stability, that is, continuous depen-
dence of the solution of (2) on the input data y and the presumed noise level β,
has hardly been considered at all. One reason is that, in contrast to Tikhonov
regularization, stability simply does not hold for general non-linear operator
equations. But even for the linear case, where we indeed prove stability, so far
results are non-existent in the literature.

The present paper intends to carry out the above indicated generalizations
of the existent theory as far as possible. We assume that X and Y are mere
topological spaces and consider the minimization of R(x) subject to the con-
straint S

(

F (x), y
)

≤ β. Here S is some distance like functional taking over the
role of the norm in (2). In addition, we discuss the case where the operator F
is not known exactly. This subsumes errors due to the modeling process as well
as discretizations of the problem necessary for its numerical solution.

We provide different criteria that ensure stability (Theorem 3.6 and Propo-
sitions 3.10, 4.3) and convergence (Propositions 3.9, 4.3) of the residual method.
In particular, our conditions also include certain non-linear operators (see Ex-
ample 4.6). Section 5 is concerned with the derivation of convergence rates. We
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define a generalized Bregman distance that allows us to state and prove rates
on arbitrary topological spaces (see Theorem 5.5). In Section 6 we apply our
general results to the case of sparse ℓp-regularization with p ∈ (0, 2). We prove
the well-posedness of the method and derive convergence rates with respect to
the norm in a fairly general setting. In the case of convex regularization, that
is, p ≥ 1, we derive a convergence rate of order O(δ1/p). In the non-convex case
0 < p < 1, we show that the rate O(δ) holds.

2 Definitions and Mathematical Preliminaries

Let X and Y be sets and F : X → Y . Assume moreover that R : X → [0, +∞]
and S : Y × Y → [0, +∞] is such that S(y, z) = 0 if and only if y = z. We
consider for given y ∈ Y and β ≥ 0 the constrained minimization problem

R(x) → min subject to S(F (x), y) ≤ β . (3)

For the study of the properties of the solutions of (3), it is convenient to
introduce the following notation. Let β ≥ 0, t ≥ 0, y ∈ Y , and F : X → Y . We
define the feasible set for the solution of (3) as

Φ(β, y, F ) :=
{

x ∈ X : S(F (x), y) ≤ β
}

.

In addition, we denote

ΦR(β, y, F, t) := Φ(β, y, F ) ∩
{

x ∈ X : R(x) ≤ t
}

.

The value of (3) is defined as

v(β, y, F ) := inf
{

R(x) : x ∈ Φ(β, y, F )
}

.

The set of solutions of (3) is denoted by

Σ(β, y, F ) :=
{

x ∈ Φ(β, y, F ) : R(x) = v(β, y, F )
}

.

Remark 2.1. An immediate consequence of the definition of Σ(β, y, F ) is the
identity

Σ(β, y, F ) = ΦR

(

β, y, F, v(β, y, F )
)

.

The elements of Σ(0, y, F ) satisfy F (x) = y and are referred to as R-minimizing
solutions of the equation F (x) = y. �

Lemma 2.2. The sets ΦR satisfy

ΦR(β, y, F, t) ⊂ ΦR(β + δ, y, F, t + ε) (4)

for every ε ≥ 0 and δ ≥ 0, and

ΦR(β, y, F, t) =
⋂

δ,ε>0

ΦR(β + δ, y, F, t + ε) . (5)

In particular,

Σ(β, y, F ) =
⋂

ε>0

ΦR

(

β, y, F, v(β, y, F ) + ε
)

. (6)
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Proof. The inclusion (4) is a trivial consequence of the definition of ΦR. For the
proof of (5) note that x ∈ ⋂

δ,ε>0 ΦR(β+δ, y, F, t+ε) if and only if S(F (x), y) ≤
β+δ for all δ > 0 and R(x) ≤ t+ε for all ε > 0. This, however, amounts to saying
that S(F (x), y) ≤ β and R(x) ≤ t, which means that x ∈ ΦR(β, y, F, t). This
proves one inclusion in (5), and the other inclusion is an obvious consequence
of (4). Finally, equation (6) follows from Remark 2.1 and (5). �

In the next section we study convergence and stability of the residual method,
that is, the behavior of the set of solutions Σ(βk, yk, F ) for βk → β and yk → y.
In [18, 26, 42], where convergence and stability of Tikhonov regularization have
been investigated, the results are of the form: every sequence (xk)k∈N with
xk ∈ argmin{‖F (x) − yk‖2 + αkR(x)} has a subsequence (xkj

)j∈N converging
to some element x ∈ arg min{‖F (x) − y‖2 + αR(x)}. We prove similar results
for the residual method but with a different notation involving a type of con-
vergence of sets (see [31, §29]). In addition, it is necessary to define a notion of
convergence of (yk)k∈N in a way compatible with the distance measure S on Y .

Definition 2.3. The sequence (yk)k∈N ⊂ Y converges S-uniformly to y ∈ Y , if

sup
{
∣

∣S(z, yk) − S(z, y)
∣

∣ : z ∈ Y
}

→ 0 .

The sequence of mappings Fk : X → Y converges locally S-uniformly to
F : X → Y , if

sup
{
∣

∣S(Fk(x), y) − S(F (x), y)
∣

∣ : y ∈ Y, x ∈ X, R(x) ≤ t
}

→ 0

for t ≥ 0. �

Remark 2.4. If the distance measure S = d equals a metric on Y , then the
S-uniform convergence of a sequence (yk)k∈N to y coincides with its convergence
with respect to the metric. This result easily follows from the triangle inequality,
as

∣

∣d(z, yk) − d(z, y)
∣

∣ ≤ d(yk, y)

for all z ∈ Y . �

Lemma 2.5. Assume that (yk)k∈N converges S-uniformly to y ∈ Y and the
mappings Fk : X → Y converge to F : X → Y locally S-uniformly. Then there
exists for every β > 0, t > 0, and ε > 0 some k0 ∈ N such that

ΦR(β − ε, y, F, t′) ⊂ ΦR(β, yk, Fk, t′)

⊂ ΦR(β + ε, y, F, t′) for every t′ ≤ t and k ≥ k0 . (7)

Proof. Since yk → y S-uniformly and Fk → F locally S-uniformly, there exists
k0 ∈ N such that

∣

∣S(Fk(x), yk) − S(Fk(x), y)
∣

∣ ≤ ε/2 ,
∣

∣S(Fk(x), y) − S(F (x), y)
∣

∣ ≤ ε/2 ,
(8)

for all x ∈ X with R(x) ≤ t and k ≥ k0.
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Now let x ∈ ΦR(β − ε, y, F, t). Then (8) implies that

∣

∣S(Fk(x), yk) − S(F (x), y)
∣

∣

≤
∣

∣S(Fk(x), yk) − S(Fk(x), y)
∣

∣ +
∣

∣S(Fk(x), y) − S(F (x), y)
∣

∣ ≤ ε ,

and thus
S(Fk(x), yk) ≤ S(F (x), y) + ε ≤ β ,

that is, x ∈ ΦR(β, yk, Fk, t), which proves the first inclusion in (7). The second
inclusion can be shown in a similar manner. �

Definition 2.6. Let τ be a topology on the set X , and let Uk ⊂ X , k ∈ N, be
a sequence of subsets of X . We define the upper limit of (Uk)k∈N as

τ -Lim supk Uk :=
⋂

k∈N

(

τ -cl
⋃

k′≥k

Uk′

)

.

Here τ -cl denotes the closure with respect to τ . �

Lemma 2.7. Let Uk ⊂ X, k ∈ N, be a sequence of subsets of X. Then x ∈
τ -Lim supk Uk, if and only if for every neighborhood N of x and every k ∈ N

there exists k′ ≥ k such that N ∩ Uk′ 6= ∅.

Proof. This is a direct consequence of the definition of τ -Lim supk Uk. �

Now assume that X satisfies the first axiom of countability, that is, every
point x ∈ X has a countable basis of neighborhoods, an assumption that is for
instance satisfied for the weak topology on separable Banach spaces. Then one
can characterize the upper limit of sets in terms of subsequences.

Lemma 2.8. Assume that X satisfies the first axiom of countability. Then x ∈
τ -Lim supk Uk if and only if there exists a subsequence (Ukj

)j∈N and elements
xj ∈ Ukj

such that xj →τ x.

Proof. See [31, §29.IV]. �

Definition 2.9. Let τ be a topology on the set X , and let Uk ⊂ X , k ∈ N, be
a sequence of subsets of X . An element x ∈ X is contained in the lower limit
of the sequence (Uk)k∈N, in short, x ∈ τ -Lim infk Uk, if for every neighborhood
N of x there exists k ∈ N such that N ∩ Uk′ 6= ∅ for every k ≥ k′.

If the lower limit and the upper limit of the sequence (Uk)k∈N coincide, we
define τ -Limk Uk := τ -Lim infk Uk = τ -Lim supk Uk. �

Lemma 2.10. We have the characterization U = τ -Limk Uk, if and only if
every subsequence (Ukj

)j∈N satisfies U = τ -Lim supj Ukj
.

Proof. See [31, §29.V]. �
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Lemma 2.11. Assume that the topology τ on X is defined by a metric d. Then
x ∈ τ -Lim supk Uk, if and only if

lim inf
k

dist(x, Uk) = lim inf
k

inf
{

d(x, u) : u ∈ Uk

}

= 0 .

Similarly, x ∈ τ -Lim infk Uk, if and only if

lim sup
k

dist(x, Uk) = lim sup
k

inf
{

d(x, u) : u ∈ Uk

}

= 0 .

Proof. See [31, §29.I,§29.III]. �

The following lemma clarifies the relation between the stability and conver-
gence results in [18, 26, 42] and the results in the present paper.

Lemma 2.12. Let Uk ⊂ X, k ∈ N, be non-empty and assume that there exists
a compact set K such that Uk ⊂ K for all K. Then τ -Lim supk Uk is non-empty.

If, in addition, X satisfies the first axiom of countability, then every sequence
xk ∈ Uk has a subsequence converging to some x ∈ τ -Lim supk Uk.

Proof. By assumption, the sets Sk := τ -cl
⋃

k′≥k Uk form a decreasing family of
non-empty, compact sets. Thus also their intersection

⋂

k∈N
Sk = τ -Lim supk Uk

is non-empty (see [30, Thm. 5.1]).
Now assume that X satisfies the first axiom of countability. Then in par-

ticular every compact set is sequentially compact (see [30, Thm. 5.5]). Let now
xk ∈ Uk, k ∈ N. Then the sequence (xk)k∈N has a subsequence (xkj

)j∈N con-
verging to some x ∈ K. From Lemma 2.8 we obtain that x ∈ τ -Lim supk Uk,
which shows the assertion. �

3 Well-posedness

In the following we investigate the existence of minimizers, and the stability
and the convergence of the residual method. Throughout the whole section, we
assume that (X, τ) is a topological space, Y a set, F : X → Y some operator,
y ∈ Y , and β ≥ 0.

Theorem 3.1 (Existence). Assume that ΦR(β, y, F, t) is τ-compact for every
t and non-empty for some t. Then Problem (3) has a solution.

Proof. Remark 2.1 and (6) show that

Σ(β, y, F ) =
⋂

ε>0

ΦR

(

β, y, F, v(β, y, F ) + ε
)

is the intersection of a decreasing family of non-empty τ -compact sets and thus
non-empty (see [30, Thm. 5.1]). �
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Remark 3.2. Recall that a mapping T : X → [0, +∞] is called lower semi-
continuous, if its lower level sets

{

x ∈ X : T (x) ≤ t
}

are closed for every t ≥ 0.
Moreover, it is coercive, if the lower level sets are pre-compact. Thus, T is lower
semi-continuous and coercive, if and only if its lower level sets are compact.
Since the intersection of a closed set and a compact set is itself compact, the
sets ΦR(β, y, F, t) are τ -compact, if both mappings R and x 7→ S

(

F (x), y
)

are
lower semi-continuous and at least one of them (or their sum) is coercive.

The lower semi-continuity of x 7→ S
(

F (x), y
)

certainly holds if F is contin-
uous and S lower semi-continuous with respect to the first component. It is,
however, also possible to obtain lower semi-continuity, if F is not continuous
but the functional S satisfies a stronger condition. Assume therefore that the
mapping z 7→ S(z, y) is lower semi-continuous and coercive, and F : X → Y has
a closed graph. Then the set

{

z ∈ Y : S(z, y) ≤ β
}

is compact for every β ≥ 0.
Because F has a closed graph, the pre-image under F of every compact set is
closed (see [28, Thm. 4]). This shows that

{

x ∈ X : S(F (x), y) ≤ β
}

is closed
for every β, that is, the composition x 7→ S(F (x), y) is lower semi-continuous.�

Stability is concerned with the continuous dependence of the solutions of (3)
of the input data, that is, the element y, the parameter β, and, possibly, the
operator F . Given sequences βk → β, yk → y, and Fk → F , we ask whether
the sequence of sets Σ(βk, yk, Fk) converges to Σ(β, y, F ). As already indicated
in Section 2, we will make use of the upper convergence of sets introduced in
Definition 2.6. The topology, however, with respect to which the results are
formulated, is finer than τ .

Definition 3.3. The topology τR on X is generated by all sets of the form
U ∩

{

x ∈ X : s < R(x) < t
}

with U ∈ τ and s < t ∈ R. A sequence
(xk)k∈N ⊂ X converges to x with respect to τR, if and only if xk →τ x and
R(xk) → R(x). �

Below we provide conditions that guarantee upper semi-continuity of the set
of solutions with respect to τR in the sense that ∅ 6= τR-Lim supk Σ(βk, yk, Fk) ⊂
Σ(β, y, F ). That is, the minimizing sets for βk, yk, and Fk converge to the
minimizing set for β, y, and F . If Σ(β, y, F ) consists of a single element x†,
then this already implies that every sequence of approximate solutions converges
to x†. Before proving these results, we require an additional lemma stating that
the value of the minimization problem (3) behaves well as the regularization
parameter β decreases.

Lemma 3.4. Assume that ΦR(γ, y, F, t) is τ-compact for every γ and every t.
Then the value v of (3) satisfies

v(β, y, F ) = sup
ε>0

v(β + ε, y, F ) . (9)

Proof. Since ΦR(β, y, F, t) ⊂ ΦR(β + ε, y, F, t), it follows that

v(β, y, F ) ≥ v(β + ε, y, F )
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for every ε > 0, and therefore v(β, y, F ) ≥ supε>0 v(β + ε, y, F ).
In order to show the converse inequality, let δ > 0. Then the definition of

v(β, y, F ) implies that ΦR

(

β, y, F, v(β, y, F ) − δ
)

= ∅. Since (cf. Lemma 2.2)

∅ = ΦR

(

β, y, F, v(β, y, F ) − δ
)

=
⋂

ε>0

ΦR

(

β + ε, y, F, v(β, y, F ) − δ
)

(10)

and the right hand side of (10) is a decreasing family of compact sets, it follows
that already ΦR

(

β + ε, y, F, v(β, y, F ) − δ
)

= ∅ for some ε > 0, and thus

v(β + ε, y, F ) ≥ v(β, y, F ) − δ .

Since δ was arbitrary, this shows the assertion. �

For the main stability results we make the following assumption:

Assumption 3.5. Let β ≥ 0, (βk)k∈N be a sequence of non-negative numbers,
y ∈ Y , (yk)k∈N ⊂ Y , and F , Fk : X → Y , k ∈ N. The sets ΦR(γ, w, Fk, t) and
ΦR(γ, w, F, t) are compact for all γ, w, t, and k and non-empty some t.

Theorem 3.6 (Stability). Let Assumption 3.5 hold. Assume that (yk)k∈N

converges S-uniformly to y ∈ Y , the mappings Fk : X → Y converge locally
S-uniformly to F : X → Y , and βk → β. If

lim sup
k

v(βk, yk, Fk) ≤ v(β, y, F ) < ∞ , (11)

then
∅ 6= τR-Lim supk Σ(βk, yk, Fk) ⊂ Σ(β, y, F ) . (12)

If the set Σ(β, y, F ) consists of a single element xβ, then

{xβ} = τR-Limk Σ(βk, yk, Fk) . (13)

Proof. Define the set T := τ -Lim supk Σ(βk, yk, Fk). Because the topology τR
is finer than τ , it follows that τR-Lim supk Σ(βk, yk, Fk) ⊂ T . We proceed by
showing that ∅ 6= T ⊂ Σ(β, y, F ) and T ⊂ τR-Lim supk Σ(βk, yk, Fk), which
then gives the assertion (12).

In order to simplify the notation, we define

Φk(t) := ΦR(βk, yk, Fk, t) , Φ(t) := ΦR(β, y, F, t) ,

vk := v(βk, yk, Fk) , v := v(β, y, F ) ,

Σk := Σ(βk, yk, Fk) , Σ := Σ(β, y, F ) .

The inequality (11) implies that for every ε > 0 there exists some k0 ∈ N

such that vk ≤ v + ε for all k ≥ k0. Since βk → β, we may additionally assume
that βk ≤ β + ε. Applying Lemma 2.5, we see that, after possibly enlarging k0,

Φk(vk) ⊂ ΦR(β + ε, yk, Fk, vk)

⊂ ΦR(β + 2ε, y, F, vk) ⊂ ΦR(β + 2ε, y, F, v + ε) (14)
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for all k ≥ k0. Thus,

T = τ -Lim supk Σk =
⋂

k∈N

(

τ -cl
⋃

k′≥k

Σk′

)

=
⋂

k≥k0

(

τ -cl
⋃

k′≥k

Φk′ (vk′)
)

⊂ ΦR(β + 2ε, y, F, v + ε) . (15)

The sets τ -cl
⋃

k′≥k Σk′ are closed and non-empty and, by assumption, the set
ΦR(β+2ε, y, F, v+ε) is compact. Thus T is the intersection of a decreasing fam-
ily of non-empty compact sets and therefore non-empty. Moreover, because (15)
holds for every ε > 0, we have

∅ 6= T ⊂
⋂

ε>0

ΦR(β + 2ε, y, F, v + ε) = Φ(v) = Σ . (16)

Next we show the inclusion T ⊂ τR-Lim supk Σk. To that end, we first prove
that

v = lim
k

vk . (17)

Recall that Theorem 3.1 implies that Φk(vk) = Σk is non-empty. Therefore,
(14) implies that also ΦR(β + 2ε, y, F, vk) is non-empty, which in turn shows
that vk ≥ v(β + 2ε, y, F ) for all k large enough. Consequently,

lim inf
k

vk ≥ v(β + 2ε, y, F ) (18)

for all ε > 0. From Lemma 3.4 we obtain that v = supε>0 v(β + 2ε, y, F ).
Together with (18) and (11) this shows (17).

Let now x ∈ N , let N be a neighborhood of x with respect to τ , let δ > 0
and k0 ∈ N. Since T ⊂ Σ (see (16)), it follows that R(x) = v. Thus it follows
from (17) that there exists k1 ≥ k0 such that

|vk −R(x)| < δ

for all k ≥ k1. In particular,

Σk ⊂
{

x̃ ∈ X : R(x) − δ < R(x̃) < R(x) + δ
}

(19)

for all k ≥ k1. Lemma 2.7 implies that there exists k2 ≥ k1 such that

N ∩ Σk2
6= ∅ . (20)

Now recall that the sets N ∩
{

x̃ ∈ X : R(x) − δ < R(x̃) < R(x) + δ
}

form
a basis of neighborhoods of x for the topology τR. Therefore (19), (20), and
the characterization of the upper limit of sets given in Lemma 2.7 imply that
x ∈ τR-Lim supk Σk. Thus the inclusion (12) follows.

If the set Σ(β, y, F ) consists of a single element xβ , then the first part of the
assertion implies that for every subsequence (kj)j∈N we have

τR-Lim supj Σ(βkj
, ykj

, Fkj
) = {xβ} .

Thus the assertion follows from Lemma 2.10. �
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The crucial assumption in Theorem 3.6 is the inequality (11). Indeed, one
can easily construct examples, where this condition fails and the solution of
Problem (3) is unstable (see Example 3.7 below). What happens in the example
is that τR-Lim supk Σ(βk, yk, F ) consists of local minima of R on Φ(β, y, F ) that
fail to be global minima of R restricted to Φ(β, y, F ).

y

y + β

y − β

10

Figure 1: The nonlinear function F from Example 3.7. The set Σ(β, y, F )
consists of an interval and the isolated point {0}.

Example 3.7. Consider the function F : R → R, F (x) = x3 − x2, and the
regularization functional R(x) = x2. Let y > 0 and choose β = y. Then

argmin
{

R(x) : |F (x) − y| ≤ β
}

= argmin
{

x2 : |x3 − x2 − y| ≤ y
}

= 0 . (21)

Now let yk > y. Then

argmin
{

R(x) : |F (x) − yk| ≤ β
}

= arg min
{

x2 : |x3 − x2 − yk| ≤ y
}

= xk ,

where xk is the unique solution of the equation F (x) = yk − y. Thus, if the
sequence (yk)k∈N converges to y from above, we have xk > 1 for all k and
limk xk = 1. According to (21), however, the solution of the limit problem
equals zero. �

In the above example the solution is unstable, because the feasible set
Φ(β, y, F ) for y contains elements that cannot be reached by the sets Φ(βk, yk, F ).
As a consequence, the limit of the sets Σ(βk, yk, F ) consists of local minima of
the limit problem instead of global ones. The next result shows that by only
slightly increasing the parameters βk, the feasible sets Φ(βk, yk, F ) becomes
sufficiently large as to contain the solution set Σ(β, y, F ).

Proposition 3.8 (Approximate Stability). Let Assumption 3.5 hold. As-
sume that (yk)k∈N converges S-uniformly to y ∈ Y , the mappings Fk : X → Y
converge locally S-uniformly to F : X → Y , and βk → β. Then there exists a
sequence εk → 0 such that

∅ 6= τR-Lim supk Σ(βk + εk, yk, Fk) ⊂ Σ(β, y, F ) .

10



Proof. Define

εk := inf
{

ε > 0 : ΦR

(

β, y, F, v(β, y, F )
)

⊂ ΦR

(

βk + ε, yk, Fk, v(β, y, F )
)}

.

Lemma 2.5 and the assumption that βk → β imply that εk → 0. Since by
assumption

∅ 6= Σ(β, y, F ) = ΦR

(

β, y, F, v(β, y, F )
)

⊂ ΦR

(

βk + εk, yk, Fk, v(β, y, F )
)

,

we obtain that v(βk + εk, yk, Fk) ≤ v(β, y, F ). Thus the assertion follows from
Theorem 3.6. �

Proposition 3.9 (Convergence). Let Assumption 3.5 hold. Assume that the
sequence (yk)k∈N converges S-uniformly to y ∈ Y and S(y, yk) ≤ βk → 0.
Assume moreover that there exists x ∈ X with R(x) < ∞ and F (x) = y. Then

lim sup
k

v(βk, yk, F ) ≤ v(0, y, F ) . (22)

In particular,
∅ 6= τR-Lim supk Σ(βk, yk, F ) ⊂ Σ(0, y, F ) . (23)

If the set Σ(0, y, F ) consists of a single element x†, then

{x†} = τR-Limk Σ(βk, yk, F ) . (24)

Proof. By assumption S(y, yk) ≤ βk, which implies that v(βk, yk, F ) ≤ R(x′)
for all x′ ∈ Φ(0, y, F ). This proves (22). Now (23) and (24) follow from Theo-
rem 3.6. �

Proposition 3.10 (Stability). Let Assumption 3.5 hold. Assume that the se-
quence (yk)k∈N converges S-uniformly to y ∈ Y , the mappings Fk : X → Y
converge locally S-uniformly to F : X → Y , and βk → β > 0. Assume moreover
that

ΦR(β, y, F, t) ⊂
⋂

δ>0

(

τ -cl
⋃

ε>0

ΦR(β − ε, y, F, t + δ)
)

(25)

for every t ≥ 0. Then

lim sup
k

v(βk, yk, Fk) ≤ v(β, y, F ) . (26)

In particular,

∅ 6= τR-Lim supk Σ(βk, yk, Fk) ⊂ Σ(β, y, F ) . (27)

If the set Σ(β, y, F ) consists of a single element xβ, then

{xβ} = τR-Limk Σ(βk, yk, Fk) .

11



Proof. The convergence of (βk)k∈N to β and Lemma 2.5 imply that for every
ε > 0 and t ∈ R there exists k0 ∈ N such that

ΦR(β − ε, y, F, t) ⊂ ΦR(βk, yk, Fk, t)

for all k ≥ k0. Consequently,

lim sup
k

v(βk, yk, Fk) = lim sup
k

inf
{

t : ΦR(βk, yk, Fk, t) 6= ∅
}

≤ inf
ε>0

inf
{

t : ΦR(β − ε, y, F, t) 6= ∅
}

.

From (25) we obtain that

inf
ε>0

inf
{

t : ΦR(β − ε, y, F, t) 6= ∅
}

≤ inf
{

t : ΦR(β, y, F, t) 6= ∅
}

= v(β, y, F ) .

This shows (26). Now (27) follows from Theorem 3.6. �

4 Linear Spaces

Now we assume that X and Y are topological vector spaces. Then their linear
structure allows us to introduce more tangible conditions implying stability of
the residual method.

Assumption 4.1. Assume that the following hold:

1. The sets X and Y are topological vector spaces.

2. For all x0, x1 ∈ X with S
(

F (x0), y
)

, S
(

F (x1), y
)

< ∞, and all 0 < λ < 1
we have

S
(

F (λx0 + (1 − λ)x1), y
)

≤ max
{

S
(

F (x0), y
)

,S
(

F (x1), y
)}

.

Moreover, the inequality is strict for all 0 < λ < 1 whenever S
(

F (x0), y
)

6=
S

(

F (x1), y
)

.

3. For every β > 0 there exists x ∈ X with S
(

F (x), y
)

≤ β and R(x) < ∞.

4. The domain domR =
{

x ∈ X : R(x) < +∞
}

of R is convex and for
every x0, x1 ∈ domR, the restriction of R to

L =
{

λx0 + (1 − λ)x1 : 0 ≤ λ ≤ 1
}

is continuous.

We now show that the Assumption 4.1 implies the main condition, the in-
clusion (25), of the stability result Proposition 3.10.

Lemma 4.2. Assume that Assumption 4.1 holds. Then (25) is satisfied.

12



Proof. Let x0 ∈ ΦR(β, y, F, t) for some β > 0. We have to show that for every
neighborhood N ⊂ X of x0 and every δ > 0 there exist ε > 0 and x′ ∈ N such
that x′ ∈ ΦR(β − ε, y, F, t + δ).

Item 3 in Assumption 4.1 implies the existence of some x1 ∈ X satisfying
S

(

F (x1), y
)

< β and R(x1) < ∞. Since S
(

F (x1), y
)

< β and S
(

F (x0), y
)

≤ β,

we obtain from Item 2 that S(F (x), y) < β for every x ∈ L :=
{

λx0 +(1−λ)x1 :

0 ≤ λ ≤ 1
}

. Since x0, x1 ∈ domR, it follows from Item 4 that R is continuous
on L. Consequently limλ→1 R(λx0+(1−λ)x1) = R(x0) ≤ t. In particular, there
exists λ0 < 1 such that R(λx0 + (1 − λ)x1) ≤ t + δ for all 1 > λ > λ0. Since X
is a topological vector space (Item 1), it follows that x′ := λx0 + (1− λ)x1 ∈ N
for some 1 > λ > λ0. This shows the assertion with ε := β −S

(

F (x′), y
)

> 0.�

Lemma 4.2 allows us to apply the stability result Proposition 3.10, which
shows that Assumption 4.1 implies the continuous dependence of the solutions
of (3) on the data y and the regularization parameter β.

Proposition 4.3 (Stability & Convergence). Let Assumption 4.1 hold and
assume that ΦR(γ, w, F, t) is compact for every γ ≥ 0, t ∈ R, and w ∈ Y .
Assume moreover that (yk)k∈N converges S-uniformly to y ∈ Y , and βk → β.
If β = 0, assume in addition that S(y, yk) ≤ βk. Then

∅ 6= τR-Lim supk Σ(βk, yk, F ) ⊂ Σ(β, y, F ) .

If the set Σ(β, y, F ) consists of a single element xβ, then

{xβ} = τR-Limk Σ(βk, yk, F ) .

Proof. If β = 0, the assertion follows from Proposition 3.9. In the case β > 0,
Lemma 4.2 implies that (25) holds. Thus, the assertion follows from Proposi-
tion 3.10. �

Proposition 4.4 (Stability). Let Assumption 4.1 hold. Assume that (yk)k∈N

converges S-uniformly to y ∈ Y , the mappings Fk : X → Y converge locally
S-uniformly to F : X → Y (see Definition 2.3), and βk → β > 0. Assume that
the sets

{

x ∈ X : R(x) ≤ t
}

, ΦR(γ, w, Fk, t) and ΦR(γ, w, F, t) are compact for
every γ ≥ 0, t ∈ R, and w ∈ Y . Then

∅ 6= τR-Lim supk Σ(βk, yk, Fk) ⊂ Σ(β, y, F ) .

If the set Σ(β, y, F ) consists of a single element xβ, then

{xβ} = τR-Limk Σ(βk, yk, Fk) .

Proof. Again, Lemma 4.2 shows that (25) holds. Thus the assertion follows
from Proposition 3.10. �

Item 2 in Assumption 4.1 is concerned with the interplay of the functional
F and the distance measure S. The next two examples consider two situations,
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where this part of the assumption holds. Example 4.5 considers linear operators
F and convex distance measures S. Example 4.6 introduces a class of non-linear
operators on Hilbert spaces, where Item 2 is satisfied if the distance measure
equals the squared Hilbert space norm.

Example 4.5. Assume that F : X → Y is linear and S is convex in its first
component. Then Item 2 in Assumption 4.1 is satisfied. Indeed, in this case

S
(

F (λx0 + (1 − λ)x1), y
)

= S
(

λF (x0) + (1 − λ)F (x1), y
)

≤ λS
(

F (x0), y
)

+ (1 − λ)S
(

F (x1), y
)

≤ max
{

S
(

F (x0), y
)

,S
(

F (x1), y
)}

.

If moreover, S
(

F (x0), y
)

6= S
(

F (x1), y
)

and 0 < λ < 1, then the last inequality
is strict. �

Example 4.6. Assume that Y is a Hilbert space, S(y, z) = ‖y − z‖, and
F : X → Y is two times Gâteaux differentiable. Then Item 2 in Assumption 4.1
is equivalent to the assumption that for all x0, x1 ∈ X the mapping

t 7→ T (t; x0, x1) := ‖F (x0 + tx1) − y‖2

has no local maxima. This condition holds, if ∂2
t T (0; x0, x1) > 0 whenever

∂tT (0; x0, x1) = 0. The computation of the derivatives of T ( · ; x0, x1) at zero
yields that

∂tT (0; x0, x1) = 2
〈

F ′(x0)(x1), F (x0)
〉

and
∂2

t T (0; x0, x1) = 2
〈

F ′′(x0)(x1; x1), F (x0)
〉

+ 2
∥

∥F ′(x0)x1

∥

∥

2
.

Consequently, Item 2 in Assumption 4.1 is satisfied if, for every x0, x1 ∈ X
with x1 6= 0, the equality

〈

F ′(x0)(x1), F (x0)
〉

= 0 implies that

〈

F ′′(x0)(x1; x1), F (x0)
〉

+
∥

∥F ′(x0)(x1)
∥

∥

2
> 0 .

�

Example 4.7. Let p > 1 and X = Lp(Ω, µ) for some σ-finite measure space
(Ω, µ). Assume that Y is a Banach space and F : X → Y is a bounded linear
operator with dense range. Let R(x) = ‖x‖p

p and S(w, y) = ‖w − y‖. We thus
consider the minimization problem

‖x‖p
p → min subject to ‖Fx − y‖ ≤ β .

We now show that in this situation the assumptions of Proposition 4.3 are
satisfied. To that end, let τ be the weak topology on Lp(Ω, µ). As Lp(Ω, µ) is
reflexive, the level sets

{

x ∈ X : R(x) ≤ t
}

are weakly compact. Moreover,
the mapping x 7→ ‖Fx − y‖ is weakly lower semi-continuous. Thus all the
sets ΦR(γ, w, F, t) are weakly compact. Example 4.5 shows that Item 2 in
Assumption 4.1 holds. Item 3 follows from the density of the range of F . Finally,
Item 4 holds, because R is norm continuous and convex.
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Now assume that yk → y and βk → β. If β = 0 assume in addition that
‖yk − y‖ ≤ βk. The strict convexity of R and convexity of the mappings x 7→
‖Fx − yk‖ imply that each set Σ(βk, yk, F ) consists of a single element xk.
Similarly, Σ(β, y, F ) consists of a single element x†. From Proposition 4.3 we
now obtain that (xk)k∈N weakly converges to x† and ‖xk‖p

p → ‖x†‖p
p. Thus, in

fact, the sequence (xk)k∈N strongly converges to x† (see [34, Cor. 5.2.19]).

Let β > 0 and assume that Fk : X → Y is a sequence of bounded linear
operators converging to F with respect to the strong topology on L(X, Y ), that
is, sup

{

‖Fkx−Fx‖ : ‖x‖ ≤ 1
}

→ 0. Let again βk → β and yk → y, and denote
by xk the single element in Σ(βk, yk, Fk). Applying Proposition 4.4, we again
obtain that xk → x†. �

Remark 4.8. Example 4.7 relies heavily on the assumption that p > 1, which
implies that the space Lp(Ω, µ) is reflexive. In the case X = L1(Ω, µ), the level
sets

{

x ∈ X : ‖x‖1 ≤ t
}

fail to be weakly compact, and thus even the existence
of a solution of Problem (3) need not hold. �

Remark 4.9. The assertions of Example 4.7 concerning stability and conver-
gence with respect to the norm topology remain valid, if X is any uniformly
convex Banach space and R the norm on X to some power p > 1. Also in
this case, weak convergence and convergence of norms imply the strong conver-
gence of a sequence [34, Thm. 5.2.18]. More generally, this property is called
the Radon–Riesz property [34, p. 453]. Spaces satisfying this property are also
called Efimov–Stechkin spaces in [45]. �

5 Convergence Rates

In this section we derive quantitative estimates (convergence rates) for the dif-
ference between regularized solutions xβ ∈ Σ(β, y, F ) and the exact solution of
the equation F (x†) = y†.

For Tikhonov regularization, convergence rates have been derived in [4, 26,
39] in terms of the Bregman distance. However, its classical definition,

Dξ(x, x†) = R(x) −
(

R(x†) + 〈ξ, x − x†〉X∗,X

)

,

where ξ ∈ ∂R(x†), requires the space X to be linear and the functional R to be
convex, as the subdifferential ∂R(x†) is only defined for convex functionals. In
the sequel we will extend the notion of Bregman distances to work for arbitrary
functionals R on arbitrary sets X .

Definition 5.1 (Generalized Bregman Distance). Let R : X → R∪{+∞}
and let

x† ∈ dom(R) :=
{

x ∈ X : R(x) < ∞
}

be an element in its domain.
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A functional T : X → R ∪ {+∞} is called a Bregman tangent for R at x† if
T (x†) = 0, dom(R) ⊂ dom(T ), and the mapping

x 7→ DT (x, x†) :=

{

R(x) −
(

R(x†) + T (x)
)

, if x ∈ dom(R) ,

+∞, if x ∈ X \ dom(R) ,
(28)

is non-negative. The mapping DT ( · , x†) is called the Bregman distance corre-
sponding to T . �

Remark 5.2. Let X be a Banach space, let R be convex, and let ξ : X → R

be a bounded linear functional. Then the mapping

Tξ(x) := 〈ξ, x − x†〉 (29)

a is a Bregman tangent for R at x†, if and only if ξ ∈ ∂R(x†). Thus, the standard
Bregman distance Dξ = DTξ

is indeed a special case of our generalized notion.�

Convergence rates in terms of the Bregman distance D
T

will be obtained
under the following assumption:

Assumption 5.3.

1. There exists a monotonically increasing function θ : [0,∞) → [0,∞) such
that

S(w1, w2) ≤ θ
(

S(w1, w3) + S(w2, w3)
)

(30)

for all w1, w2, w3 ∈ Y .

2. There exists an element x† ∈ dom(R), a Bregman tangent T for R at x†,
and constants γ1 ∈ [0, 1) and γ2 ≥ 0 such that

−T (x) ≤ γ1DT (x, x†) + γ2S
(

F (x), F (x†)
)

(31)

for every x ∈ ΦR

(

θ(2β), F (x†), F,R(x†)
)

.

Remark 5.4. In a Banach space setting (see Subsection 5.1 below), the source
inequality (31) has already been used in [26, 42] to derive convergence rates for
Tikhonov regularization with convex functionals. �

Theorem 5.5 (Convergence Rates). Let Assumption 5.3 hold. Then

sup
{

DT (xβ , x†) : xβ ∈ Σ(β, y, F )
}

≤ γ2

1 − γ1
θ
(

β + S
(

F (x†), y
))

. (32)

for all y ∈ Y with S
(

F (x†), y
)

≤ β.

Proof. Let xβ ∈ Σ(β, y, F ). This, together with (30) and the assumption that
S

(

F (x†), y
)

≤ β, implies that

S
(

F (xβ), F (x†)
)

≤ θ
(

S
(

F (xβ), y
)

+ S
(

F (x†), y
))

≤ θ(2β) .
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Thus we can apply (31) and the definition of the Bregman distance, to deduce
that

− T (xβ) ≤ γ1DT (xβ , x†) + γ2S
(

F (xβ), F (x†)
)

= γ1

(

R(xβ) −R(x†) − T (xβ)
)

+ γ2S
(

F (xβ), F (x†)
)

.

Together with the assumption γ1 ∈ [0, 1) this shows the inequality

−T (xβ) ≤ γ1

1 − γ1

(

R(xβ) −R(x†)
)

+
γ2

1 − γ1
S

(

F (xβ), F (x†)
)

. (33)

Since S
(

F (x†), y
)

≤ β, it follows that R(xβ) − R(x†) ≤ 0. Therefore (33)
implies that

DT (xβ , x†) ≤ γ2

1 − γ1
S

(

F (xβ), F (x†)
)

. (34)

Consequently we obtain from (30) and the estimate S
(

F (xβ), y
)

≤ β the re-
quired inequality

DT (xβ , x†) ≤ γ2

1 − γ1
θ
(

β + S
(

F (x†), y
))

. �

Remark 5.6. Typically, convergence rates are formulated in a setting which
slightly differs from the one of Theorem 5.5 (see [4, 18, 26, 42]). There one
assumes the existence of an R-minimizing solution x† ∈ X of the equation
F (x†) = y†, for some exact data y† ∈ Y . Instead of y†, only noisy data y ∈ Y
and the error bound S(y†, y) ≤ β are given. For this setting, (32) implies the
rate

DT (xβ , x†) ≤ γ2

1 − γ1
θ(2β) = O

(

θ(2β)
)

as β → 0 ,

where xβ ∈ Σ(β, y, F ) denotes any regularized solution. �

5.1 Convergence rates in Banach spaces

In the following, assume that X and Y are Banach spaces with norms ‖·‖X

and ‖·‖Y , and set S(y, z) := ‖y − z‖Y . Let R be a convex and lower semi-
continuous functional on X , and let Dξ := DTξ

with ξ ∈ ∂R(x†) denote the
classical Bregman distance (see Remark 5.2).

Given data y satisfying ‖F (x†) − y‖ ≤ β, Theorem 5.5 implies the conver-
gence rate Dξ(xβ , x†) = O(β), where xβ ∈ Σ(β, y, F ) is a regularized solution
and x† satisfies the source inequality

−〈ξ, x − x†〉 ≤ γ1Dξ(x, x†) + γ2S
(

F (x), F (x†)
)

. (35)

Equation (35) has already been used in [26] to derive convergence rates for
Tikhonov regularization.

In the special case where X is a Hilbert space and R(x) = ‖x‖2
X/2 we have

Dξ(x, x†) = ‖x − x†‖2
X/2, which implies the rate O(

√
β) with respect to the

norm. In Proposition 5.8 below we show that this rate holds on any 2-convex
space. For r-convex Banach spaces with r > 2, we derive the rate O(δ1/r).
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Remark 5.7. The book [42, pp. 70ff] clarifies the relation between (35) and
the source conditions used to derive convergence rates for convex functionals
on Banach spaces (see [4, 39]). In particular, it is shown that, if F and R
are Gâteaux differentiable at x† and there exist γ > 0 and ω ∈ Y ∗ such that
γ‖ω‖Y ∗ < 1 and

ξ = F ′(x†)∗ ω ∈ ∂R(x†) , (36)
∥

∥F (x) − F (x†) − F ′(x†)(x − x†)
∥

∥

Y
≤ γDξ(x, x†) (37)

for every x ∈ X , then (35) holds on X . Here F ′(x†)∗ : Y ∗ → X∗ is the adjoint
of F ′(x†). Conversely, if ξ ∈ ∂R(x†) satisfies (35), then (36) holds for every
x ∈ X .

In the particular case that F : X → Y is linear and bounded, the inequal-
ity (37) is trivially satisfied with γ = 0. Thus, (35) is equivalent to the source-
wise representability of the subgradient,

ξ ∈ ∂R(x†) ∩ ran(F ∗) . (38)

Here ran(F ∗) =
{

F ′(x†)∗ω : ω ∈ X∗
}

denotes the range of F ′(x†)∗. �

Recall that the Banach space X is called r-convex (or is said to have modulus
of convexity of power type r), if there exists a constant C > 0 such that

inf
{

1 − ‖(x + y)/2‖ : ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ǫ
}

≥ Cεr

for all ε ∈ [0, 2]. Notice that all Hilbert spaces are 2-convex and that there is
no Banach space (of dimension ≥ 2) that is r-convex for some r < 2 (see [32,
pp. 63ff]).

Proposition 5.8 (Convergence rates in the norm). Let X be an r-convex
Banach space with r ≥ 2 and let R(x) := ‖x‖r

X/r. Assume that there exists
x† ∈ X, a subgradient ξ ∈ ∂R(x†), and constants γ1 ∈ [0, 1), γ2 ≥ 0 such that
(35) holds for every x ∈ ΦR

(

2β, F (x†), F,R(x†)
)

.
Then there exists a constant c > 0 such that

sup
{

‖xβ − x†‖ : xβ ∈ Σ(β, y, F )
}

≤ c
(

β + ‖F (x†) − y‖
)1/r

(39)

for all β > 0 and y ∈ Y with ‖F (x†) − y‖ ≤ β.

Proof. Let Jr : X → 2X∗

denote the duality mapping with respect to the
weight function s 7→ sr−1. In [49, Equation (2.17)′] it is shown that there exists
a constant K > 0 such that

‖x† + z‖r
X ≥ ‖x†‖r

X + r〈jr(x
†), z〉X,X∗ + K‖z‖r

X (40)

for all x†, z ∈ X and jr(x
†) ∈ Jr(x

†). By Asplund’s theorem [11, Chap. 1,
Thm. 4.4], the subgradient of R(x) = ‖x‖r/r equals the duality mapping Jr.
Therefore, by taking z = x − x† and jr(x

†) = ξ, inequality (40) implies

Dξ(x, x†) ≥ K/r ‖x − x†‖r
X for all x†, x ∈ X and ξ ∈ ∂R(x†) . (41)

Consequently, (39) follows from Theorem 5.5. �
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Exact values for the constant K in (41) (and thus for the constant c in (39))
can be derived from [49]. Bregman distances satisfying (41) are called r-coercive
in [25]. This r-coercivity has already been applied in [3] for the minimization of
Tikhonov functionals in Banach spaces.

Example 5.9. The spaces X = Lp(Ω, µ) for p ∈ (1, 2) and some σ-finite mea-
sure space (Ω, µ) are examples of 2-convex Banach spaces (see [32, p. 81, Re-
marks following Theorem 1.f.1.]). Consequently we obtain for these spaces the
convergence rate O

(√
β
)

. The spaces X = Lp(Ω, µ) for p ≥ 2 are only p-convex,

leading to the rate O
(

β1/p
)

in those spaces. �

6 An Application: Sparse Regularization

Let Λ be an at most countable index set, define

ℓ2(Λ) :=
{

x = (xλ)λ∈Λ ⊂ R :
∑

λ

|xλ|2 < ∞
}

,

and assume that F : X := ℓ2(Λ) → Y is a bounded linear operator with dense
range in the Hilbert space Y . We consider for p ∈ (0, 2) the minimization
problem

Rp(x) := ‖x‖p
ℓp(Λ) :=

∑

λ∈Λ

|xλ|p → min subject to ‖Fx− y‖2
Y ≤ β . (42)

For p > 1, the subdifferential ∂Rp(x
†) is at most single valued and is identified

with its single element.

Remark 6.1 (Compressed Sensing). In a finite dimensional setting with
p = 1, the minimization problem (42) has received a lot of attention during the
last years under the name of compressed sensing (see [5, 6, 8, 14, 15, 16, 21, 47]).
Under some assumptions, the solution of (42) with y = Fx† and β = 0 has been

shown to recover x† exactly provided the set
{

λ ∈ Λ : x†
λ 6= 0

}

has sufficiently
small cardinality (that is named, it is sufficiently sparse). Results for p < 1 can
be found in [9, 13, 20, 40]. �

In this section we prove well-posedness of (42) and derive convergence rates
in a possibly infinite dimensional setting. This inverse problems point of view
has so far only been considered for Tikhonov regularization

Rp(x) + α‖Fx − y‖2
Y → min

(see [10, 12, 22, 23, 33, 37, 51]).

In the following τ denotes the weak topology on ℓ2(Λ), and τp := τRp
denotes

the topology as in Definition 3.3. Then a sequence (xk)k∈N ⊂ ℓ2(λ) converges
to x ∈ ℓ2(λ) with respect to τp if and only if xk → x and Rp(xk) → R(x). As
shown in [23, Lemma 2] this already implies Rp(xk − x) → 0. In particular, the
topology τp is stronger than the topology induced by ‖·‖ℓ2(Λ).
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6.1 Convex ℓ
p Regularization

We first assume that p ∈ [1, 2), in which case the functional Rp is convex.

Proposition 6.2 (Well-Posedness). Let 1 ≤ p < 2 and let F : ℓ2(Λ) → Y be
a bounded linear operator with dense range. Then the following hold:

1. Existence: For every β > 0 and y ∈ Y , the set of regularized solutions
Σ(β, y, F ) is non-empty.

2. Stability: Let (βk) and (yk) be sequences with βk → β > 0 and yk → y ∈
Y . Then ∅ 6= τp-Lim supk N(βk, yk, F ) ⊂ N(β, y, F ).

3. Convergence: Let ‖yk − y‖Y ≤ βk → 0 and assume that the equation
Fx = y has a solution in ℓp(Λ). Then ∅ 6= τp-Lim supk Σ(βk, yk, F ) ⊂
Σ(0, y, F ). If the equation Fx = y has a unique Rp-minimizing solution
x†, then τp-Limk Σ(βk, yk, F ) = {x†}.

Remark 6.3. In the case p > 1, the functional Rp is strictly convex, and
therefore the Rp-minimizing solution x† of Fx = y is unique. Consequently
the equality τp-Limk Σ(βk, yk, F ) = {x†} holds for every y in the range of the
operator F . �

Proof (of Proposition 6.2). In order to prove the existence of minimizers, we
apply Theorem 3.1 by showing that ΦR(β, y, F, t) is compact with respect to
the weak topology on ℓ2(Λ) for every t > 0 and is nonempty for some t. Because
F has dense range, the set

ΦR(β, y, F, t) =
{

x ∈ ℓ2(Λ) : Rp(x) ≤ t, ‖F (x) − y‖2
Y ≤ β

}

is non-empty for t large enough. It remains to show that the sets ΦR(β, y, F, t)
are weakly compact on ℓ2(λ) for every positive t.

The functional Rp(x) =
∑

λ∈Λ|xλ|p is weakly lower semi-continuous (on
ℓ2(λ)) as the sum of non-negative and weakly continuous functionals (see [17]).
Moreover, the mapping F is weakly continuous, and therefore x 7→ ‖Fx −
y‖2

Y is weakly lower semi-continuous, too. The estimate Rp(x) ≥ ‖x‖p
ℓ2(Λ)

(see [23, Equation (5)]) shows that Rp is weakly coercive. Therefore the sets
ΦR(β, y, F, t) are weakly compact for all t > 0 (cf. Remark 3.2). Thus, Theo-
rem 3.1 shows that Σ(β, y, F ) 6= ∅.

Taking into account Example 4.5, it follows that Rp, S, and F satisfy As-
sumption 4.1. Consequently, Items 2 and 3 follow from Proposition 4.3. �

In the following, we derive two types of convergence rates results with respect
the ℓ2-norm: the rate O(

√
δ) (for p ∈ (1, 2)) and the rate O(δ1/p) (for every

p ∈ [1, 2)) for sparse sequences—here and in the following, x† ∈ ℓ2(Λ) is called
sparse, if

supp(x†) :=
{

λ ∈ Λ : x†
λ 6= 0

}

is finite. The same type of results has also been obtained for sparse Tikhonov
regularization in [23, 42].
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Proposition 6.4. Let 1 < p < 2, x† = (x†
λ)λ∈Λ ∈ ℓ2(Λ), and let F : ℓ2(Λ) → Y

be a bounded linear operator. Moreover, assume that there exists ω ∈ Y with
∂Rp(x

†) = F ∗ω.
Then there exists a constant dp > 0 only depending on p such that

sup
{

‖xβ − x†‖2
ℓ2(Λ) : xβ ∈ Σ(β, y, F )

}

≤ dp‖ω‖Y

3 + 2Rp(x†)

(

β + ‖Fx† − y‖Y

)

(43)

for all β > 0 and y ∈ Y with ‖F (x†) − y‖Y ≤ β.

Proof. The assumption ∂Rp(x
†) = F ∗ω implies that

−〈∂Rp(x
†), x − x†〉 ≤

∣

∣〈∂Rp(x
†), x − x†〉

∣

∣ ≤ ‖ω‖Y ‖F (x − x†)‖Y . (44)

Thus (31) holds with γ1 = 0 and γ2 = ‖ω‖Y . Theorem 5.5 therefore implies the
inequality

sup
{

D∂Rp(x†)(xβ , x†) : xβ ∈ Σ(β, y, F )
}

≤ ‖ω‖Y

(

β + ‖Fx† − y‖Y

)

. (45)

From [23, Lemma 10] we obtain the inequality

‖x − x†‖2
ℓ2(Λ) ≤

dp

3 + 2Rp(x†) + Rp(x)
D∂Rp(x†)(x, x†) (46)

for all x ∈ dom(Rp). Now, (43) follows from (45) and (46). �

Remark 6.5. Since ℓp(Λ) is 2-convex (see [32]) and continuously embedded in
ℓ2(Λ), Proposition 5.8 provides an alternative estimate for xβ − x† in terms
of the stronger distance ‖·‖ℓp(Λ). The prefactor in (39), however, is constant,

whereas the prefactor in (43) tends to 0 as Rp(x
†) increases. Thus the two

estimates are somehow independent from each other. �

Proposition 6.6 (Sparse Case, p > 1). Let p ∈ (1, 2), let x† = (x†
λ)λ∈Λ ∈

ℓ2(Λ) be sparse, and let F : ℓ2(Λ) → Y be bounded linear. Moreover, assume
that there exists ω ∈ Y with ∂Rp(x

†) = F ∗ω and that F is injective on

V :=
{

x ∈ ℓ2(Λ) : supp(x) ⊂ supp(x†)
}

.

Then

sup
{

‖xβ − x†‖ℓ2(Λ) : xβ ∈ Σ(β, y, F ), ‖Fx† − y‖Y ≤ β
}

= O(β1/p) as β → 0 .
(47)

Proof. The injectivity of F on the finite dimensional space V implies the exis-
tence of a constant C > 0 such that

C‖F (x)‖Y ≥ ‖x‖ℓ2(Λ) , for all x ∈ V .
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Denote by π, π⊥ : X → X the projections

πx :=
∑

λ∈supp(x†)

xλ eλ , π⊥x :=
∑

λ6∈supp(x†)

xλ eλ .

By means of the inequality (a + b)p ≤ 2p−1(ap + bp) for a, b ≥ 0, it follows that
for every x ∈ ℓ2(Λ)

‖x − x†‖p
ℓ2(Λ) ≤ 2p−1

∥

∥π(x − x†)
∥

∥

p

ℓ2(Λ)
+ 2p−1

∥

∥π⊥x
∥

∥

p

ℓ2(Λ)

≤ 2p−1Cp‖F
(

π(x − x†)
)

‖p
Y + 2p−1

∥

∥π⊥x
∥

∥

p

ℓ2(Λ)
. (48)

Applying the inequality (a + b)p ≤ 2p−1(ap + bp) a second time shows that

‖F
(

π(x − x†)
)

‖p
Y ≤ 2p−1‖F (x − x†)‖p

Y + ‖Fπ⊥(x − x†)‖p
Y

≤ 2p−1‖F (x − x†)‖p
Y + ‖F‖p‖π⊥x‖p

ℓ2(Λ) . (49)

In [23] it is shown that

‖π⊥x‖p
ℓ2(Λ) ≤ Rp

(

π⊥x
)

≤ D∂R(x†)(x, x†) .

Together with inequalities (48) and (49), this implies

‖x − x†‖p
ℓ2(Λ)

≤ 22(p−1)Cp
∥

∥F (x − x†)
∥

∥

p

Y
+ 2p−1

(

1 + 2p−1Cp‖F‖p
)

‖π⊥x‖p
ℓ2(Λ)

≤ 22(p−1)Cp
∥

∥F (x − x†)
∥

∥

p

Y
+ 2p−1

(

1 + 2p−1Cp‖F‖p
)

D∂R(x†)(x, x†) .
(50)

As in the proof of Proposition 6.4 one verifies that the inequality (46) holds for
all y ∈ Y with ‖F (x†) − y‖ ≤ β. Therefore (47) follows (50). �

Next we derive the rate O(δ) for p = 1.

Proposition 6.7 (Sparse case, p = 1). Let x† = (x†
λ)λ∈Λ ∈ ℓ2(Λ) be sparse.

Assume that there exist ξ = (ξλ)λ∈Λ ∈ ∂R1 and ω ∈ Y with ξ = F ∗ω, and that
F is injective on

V =
{

x ∈ ℓ2(Λ) : supp(x) ⊂ {λ ∈ Λ : |ξλ| = 1}
}

.

Then

sup
{

‖xβ − x†‖ℓ2(Λ) : xβ ∈ Σ(β, y, F ), ‖Fx† − y‖Y ≤ β
}

= O(β) as β → 0 .
(51)

Proof. Analogously to the proof of (50) one shows that

‖x − x†‖ℓ2(Λ) ≤ C
∥

∥F (x − x†)
∥

∥

Y
+

(

1 + C‖F‖
)

‖π⊥x‖ℓ2(Λ) (52)
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holds for every x ∈ ℓ2(Λ). Further, in [23] it is shown that

‖π⊥x‖ℓ2(Λ) ≤
D∂Rp(x†)(x, x†)

1 − max
{

|ξλ| : λ ∈ Λ, |ξλ| < 1
} . (53)

Finally one verifies as in the proof of Proposition 6.4 that

D∂Rp(x†)(xβ , x†) ≤ ‖ω‖Y

(

β + ‖F (x†) − y‖Y

)

(54)

holds for every xβ ∈ Σ(β, y, F ). Combining the estimates (54), (52), and (53)
shows (51) and concludes the proof. �

Remark 6.8. Let p ∈ [1, 2). If V is any finite dimensional subspace of ℓ2(Λ)
and F is injective on V , then there exists a constant Cp > 0 such that

Cp‖F (x)‖Y ≥ ‖x‖ℓp(Λ) , for all x ∈ V .

Arguing as in the proofs of Propositions 6.6 and 6.7, one therefore derives the
convergence rate

sup
{

‖xβ − x†‖ℓp(λ) : xβ ∈ Σ(β, y, F ), ‖Fx† − y‖Y ≤ β
}

= O(β) as β → 0

for the reconstruction of sparse sequences x†. �

The convergence rates results for constrained ℓp regularization are summa-
rized in Table 1.

Rate Norm Premises (besides ran(F ∗) ∩ ∂Rp 6= ∅) Result

β1/2 ‖·‖ℓ2 p ∈ (1, 2) Prop. 6.4

β1/2 ‖·‖ℓp p ∈ (1, 2) Rem. 6.5

β1/p ‖·‖ℓ2 p ∈ [1, 2), sparsity, injectivity on V Props. 6.6, 6.7
β1/p ‖·‖ℓp p ∈ [1, 2), sparsity, injectivity on V Rem. 6.8

β ‖·‖ℓ2
p ∈ (0, 1), uniqueness of x†,
sparsity, injectivity on V

Prop. 6.11

Table 1: Convergence rates for constrained ℓp regularization.

6.2 Non-convex Regularization

We now drop the requirement that p ≥ 1 and instead choose 0 < p < 1. That is,
we consider the minimization problem (42) with 0 < p < 1. In the following we
show that most results of the superlinear case p ≥ 1 carry over to the sublinear
case. Note, however, that the functional Rp is non-convex for p < 1 and thus
its restriction to a set of the form

{

x ∈ ℓp : ‖Fx − y‖ ≤ β
}

may have local
minima. Also, the Rp-minimizing solution of Fx = y need not be unique.
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Proposition 6.9 (Well-Posedness). Let F : ℓ2(Λ) → Y be a bounded linear
operator with dense range. Then constrained ℓp regularization with 0 < p < 1 is
well-posed:

1. For every β > 0 and y ∈ Y the set of solutions Σ(β, y, F ) is non-empty.

2. Let βk → β > 0 and yk → y ∈ Y . Then ∅ 6= τp-Lim supk Σ(βk, yk, F ) ⊂
Σ(β, y, F ).

3. Let ‖yk − y‖ ≤ βk → 0 and assume that the equation Fx = y has
a solution in ℓp(Λ). Then ∅ 6= τp-Lim supk Σ(βk, yk, F ) ⊂ Σ(0, y, F ).
If the equation Fx = y has a unique Rp-minimizing solution x†, then
τp-Limk Σ(βk, yk, F ) = {x†}.

Proof. This is similar as Proposition 6.2. �

Remark 6.10. In case the Rp-minimizing solution x† of Fx = y is unique,
Item 3 in Proposition 6.9 implies that

sup
{

‖xβ − x†‖ℓp(Λ) : xβ ∈ Σ(β, yβ , F ), ‖y − yβ‖ ≤ β
}

→ 0 as β → 0 ;

otherwise there would exist a sequence βk → 0, yk ∈ Y with ‖yk − y‖ ≤ βk

and ε > 0 such that ‖xk − x†‖ℓp(Λ) > ε for some xk ∈ Σ(βk, yk, F ), k ∈
N. This, however, contradicts the assertion of Proposition 6.9 that {x†} =
τp-Limk Σ(βk, yk, F ). �

Now we prove convergence rates for non-convex ℓp regularization. Similar,
but weaker results have been derived in [22, 51] in the context of Tikhonov reg-
ularization. In [51], the conditions for the convergence rates result are basically
the same as in Proposition 6.11, but only a rate of order O(

√
δ) has been ob-

tained. In [22], a linear convergence rate O(δ) is proven, but with a considerably
stronger range condition: each standard basis vector eλ, λ ∈ Λ, has to satisfy
eλ ∈ ranF ∗.

Proposition 6.11. Let F : ℓ2(Λ) → Y be a bounded linear operator with dense

range and let x† = (x†
λ)λ∈Λ ∈ ℓ2(Λ) be sparse. Assume moreover that there

exists a unique Rp-minimizing solution x† of Fx = Fx†, and F is injective on

V :=
{

x ∈ ℓ2(Λ) : supp(x) ⊂ supp(x†)
}

.

Then

sup
{

‖xβ − x†‖ℓ2(Λ) : xβ ∈ Σ(β, y, F ), ‖Fx† − y‖Y ≤ β
}

= O(β) as β → 0 .

Proof. Denote Ω := supp(x†), which by assumption is a finite set, and let π,
π⊥ : ℓ2(Λ) → ℓ2(Λ) be the projections

πx =
∑

λ∈Ω

xλeλ , π⊥x =
∑

λ6∈Ω

xλeλ .
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As in the proof of Proposition 6.7 (see (52)), we obtain the existence of C1 > 0
such that

‖x − x†‖ℓ2(Λ) ≤ C1

∥

∥F (x − x†)
∥

∥

Y
+

(

1 + C1‖F‖
)

‖π⊥x‖ℓ2(Λ) (55)

for every x ∈ ℓ2(Λ).
We now derive a bound for ‖π⊥x‖ℓ2(Λ). For every σ ∈ {±1}Ω, we define

ζ(σ) ∈ ℓ2(Ω) by

ζ(σ)λ := σλ|x†
λ|p−1 , λ ∈ Ω .

Note that ζ(σ)λ is well-defined, because by assumption x†
λ 6= 0 for every λ ∈ Ω.

Now let x ∈ ℓ2(Λ) and let σλ = sgn(xλ − x†
λ) for every λ ∈ Ω with xλ 6= x†

λ and

σλ = 1 if xλ = x†
λ. Then

Rp(x
†) −Rp(πx) =

∑

λ∈Ω

(

|x†
λ|p − |xλ|p

)

≤
∑

|x†
λ
|≥|xλ|

(

|x†
λ|p − |xλ|p

)

≤
∑

|x†
λ
|≥|xλ|

|x†
λ|p−1|x†

λ − xλ| ≤
∑

λ∈Ω

|x†
λ|p−1|x†

λ − xλ| = 〈ζ(σ), π(x − x†)〉 .

Consequently,

max
σ∈{±1}Ω

∣

∣〈ζ(σ), π(x − x†)〉
∣

∣ ≥ Rp(x
†) −Rp(πx) for every x ∈ ℓ2(Λ) . (56)

Denote by i : ℓ2(Ω) → ℓ2(Λ) the embedding i(x) = x. Since F ◦ i is injective
and i∗ = π, it follows that (F ◦ i)∗ = π ◦F ∗ is surjective (see [50, Cor. VII.5.2]).
In particular, ζ(σ) ∈ ran(π ◦ F ∗) for every σ ∈ {±1}Ω. Thus, there exists for
every σ ∈ {±1}Ω some ω(σ) ∈ Y such that π ◦ F ∗ω(σ) = ζ(σ). With the
abbreviation

C2 := max
σ∈{±1}Ω

‖ω(σ)‖Y ,

we therefore obtain that
∣

∣〈ζ(σ), π(x − x†)〉
∣

∣ =
∣

∣〈π ◦ F ∗ω(σ), π(x − x†)〉
∣

∣

≤
∣

∣〈F ∗ω(σ), x − x†〉
∣

∣ +
∣

∣〈F ∗ω(σ), π⊥(x − x†)〉
∣

∣

≤
∣

∣〈ω(σ), F (x − x†)〉
∣

∣ + ‖F ∗ω(σ)‖ℓ2(Λ)‖π⊥(x − x†)‖ℓ2(Λ)

≤ C2‖F (x − x†)‖Y + C2‖F‖‖π⊥x‖ℓ2(Λ)

for every x ∈ ℓ2(Λ) and σ ∈ {±1}Ω. Together with (56), this implies that

C2‖F (x − x†)‖Y ≥ max
σ∈{±1}Ω

∣

∣〈ζ(σ), π(x − x†)〉
∣

∣ − C2‖F‖‖π⊥x‖ℓ2(Λ)

≥ Rp(x
†) −Rp(πx) − C2‖F‖‖π⊥x‖ℓ2(Λ) (57)

for every x ∈ ℓ2(Λ).
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Since p < 1, there exists ε > 0 such that

(C2‖F‖ + 1)|t| ≤ |t|p whenever t ∈ R with |t| < ε .

Thus, for every x ∈ ℓ2(Λ) with ‖π⊥x‖ℓ∞(Λ) < ε we have

(C2‖F‖ + 1)‖π⊥x‖ℓ2(Λ) ≤ (C2‖F‖ + 1)‖π⊥x‖ℓ1(Λ)

=
∑

λ6∈Ω

(C2‖F‖ + 1)|xλ| ≤
∑

λ6∈Ω

|xλ|p = Rp(π
⊥x) .

Thus (57) implies that, for every x ∈ ℓ2(Λ) with ‖π⊥x‖ℓ∞(Λ) < ε,

Rp(x
†) −Rp(x) + ‖π⊥x‖ℓ2(Λ) ≤ C2‖F (x − x†)‖Y (58)

Remark 6.10 and the assumption that x† is the unique Rp-minimizing solu-
tion of Fx = Fx† imply that

sup
{

‖xβ − x†‖ℓ2(Λ) : xβ ∈ Σ(β, y, F ), ‖Fx† − y‖Y ≤ β
}

→ 0 as β → 0 .

Since ‖xβ − x†‖ℓ∞(Λ) ≤ ‖xβ − x†‖ℓ2(Λ), it follows that there exists β0 such that

‖xβ − x†‖ℓ∞(Λ) ≤ ε for all xβ ∈ Σ(β, y, F ), ‖Fx† − y‖Y ≤ β, and β ≤ β0.
In these cases, (58) applies. The estimates (55) and (58), and the inequalities
Rp(xβ) ≤ Rp(x

†) and ‖F (xβ − x†)‖ ≤ 2β therefore imply that

‖xβ − x†‖ℓ2(Λ) ≤ C1‖F (xβ − x†)‖Y + (1 + C1‖F‖)‖π⊥xβ‖ℓ2(Λ)

≤ C1‖F (xβ − x†)‖Y

+ (1 + C1‖F‖)C2

(

‖F (xβ − x†)‖ + Rp(xβ) −Rp(x
†)

)

≤
(

C1 + C2 + C1C2‖F‖
)

‖F (xβ − x†)‖Y

≤ 2
(

C1 + C2 + C1C2‖F‖
)

β ,

which proves the assertion. �

7 Conclusion

Due to modeling, computing, and measurement errors, the solution of an ill-
posed equation F (x) = y, even if it exists, typically yields inacceptable re-
sults. The residual method replaces the exact solution by the set Σ(β, y, F ) =
argmin

{

R(x) : S(F (x), y) ≤ β
}

, where R is a stabilizing functional and S de-
notes a distance measure between F (x) and y. This paper shows that in a very
general setting Σ(β, y, F ) is stable with respect to perturbations of the data y
and the operator F (Theorem 3.6 and Proposition 3.10), and the regularized
solutions converge to R-minimizing solutions of F (x) = y as β → 0 (Proposi-
tion 3.9). In particular the stability issue has hardly been considered so far in
the literature.
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In the case where F acts between linear spaces X and Y , stability and con-
vergence have been shown under a list of reasonable properties (see Assump-
tion 4.1). These assumptions are satisfied for bounded linear operators, but
also for a certain class of nonlinear operators (Example 4.6). If Y is reflexive,
X satisfies the Radon–Riesz property, F is a linear closed operator, and R and
S are given by the norms on X and Y , the set Σ(β, y, F ) consists of a single
element xβ . This element is shown to converge strongly to the minimal norm
solution x† as β → 0. In this special situation, norm convergence has also been
shown in [29, Theorem 3.4.1].

In Section 5 we have derived quantitative estimates (convergence rates) for
the difference between x† and minimizers xβ ∈ Σ(β, y, F ) in terms of a (gener-
alized) Bregman distance. All these estimates hold provided S(F (x†), y) ≤ β
and a source inequality introduced in [26] is satisfied. For linear operators, the
required source inequality follows from a source wise representation of a subgra-
dient of R at x†. This carries on the result of [4] for constrained regularization.
In the case that X is an r-convex Banach space with r ≥ 2 and R is the r-
th power of the norm on X , we have obtained convergence rates O(β1/r) with
respect to the norm. The spaces X = Lp(Ω) for p ∈ (1, 2] are examples of
2-convex Banach spaces, leading to the rate O

(√
β
)

in those spaces.
As an application for our rather general results we have investigated sparse

ℓp regularization with p ∈ (0, 2). We have shown well-posedness in both the
convex (p ≥ 1) and the non-convex case (p < 1). In addition, we have studied
the reconstruction of sparse sequence. There we have derived the improved
convergence rates O(β1/p) for the convex and O(β) for the non-convex case.
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