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Abstract

The coarea formula is an important tool in the analysis of total varia-
tion based regularisation methods. It states that the total variation of a
function can be computed by integrating the lengths of its level lines. In
this note we show that the same formula can be extended to anisotropic
total variation, the anisotropy also being dependent on the location in
space. As one application, we prove the equivalence of two seemingly dif-
ferent regularisation methods that have been proposed for the removal of
multiplicative noise in gray value images.

1 Introduction

Let Ω ⊂ Rn, n ∈ N, be some open and bounded domain, and let u ∈ L1(Ω).
The total variation of u is defined as

|Du|(Ω) = sup
{∫

Ω

u(x) div φ(x) dx : φ ∈ C1(Ω; Rn), |φ(x)| ≤ 1 in Ω
}
.

In this expression, |φ(x)| stands for the Euclidean norm of the vector φ(x) ∈
Rn. In case |Du|(Ω) < ∞, there exists a vector valued Radon measure Du ∈
M(Ω; Rn) satisfying

∫
Ω
u(x) div φ(x) dx = −

∫
Ω
φ(x) dDu for every function

φ ∈ C1
c (Ω; Rn). We denote by BV(Ω) the space of all functions u of bounded

variation, that is, u ∈ BV(Ω) if and only if u ∈ L1(Ω) and |Du|(Ω) <∞.
The total variation of u can be computed by summing the perimeters of all

level sets of u. More precisely, we define the perimeter in Ω of a measurable set
U ⊂ Ω as

Per(U ; Ω) := |DχU |(Ω) ,

where χU denotes the characteristic function of U , that is, χU (x) = 1 for x ∈ U
and χU (x) = 0 for x 6∈ U . Then the coarea formula

|Du|(Ω) =
∫ ∞
−∞

Per
(
{u ≥ t}; Ω) dt
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holds. The significance of the coarea formula lies in the fact that it permits to
identify a function u ∈ BV(Ω) with the family of all level sets {u ≥ t}, t ∈ R,
while still retaining access to its total variation. This identification leads to
various interesting theoretical but also numerical results.

One important application of functions of bounded variation is the field of
image processing: Because a function u ∈ BV(Ω) may contain discontinuities
of dimension n− 1, it has been argued that the space BV(Ω) is well suited for
modelling natural images, which basically consist of rather uniform (textured)
regions well separated by significant edges. For instance, one of the most widely
used techniques in image restoration is total variation regularisation, introduced
in [15] for the problem of image denoising and generalised in [1] to the stable
solution of inverse problems. Given a noisy image, modelled as function f ∈
L2(Ω), one minimises, for some regularisation parameter α > 0, the functional

T (u) = ‖u− f‖2L2 + α|Du|(Ω) . (1)

Then the minimiser uα of T contains the most important features of the data
f while noise, consisting of small oscillations in u, is removed.

The coarea formula can be used to derive regularity properties of the solution
of total variation regularisation. For instance, it has been used in [2] (see also [6])
to derive regularity results for the level lines of uα. Similarly, a consequence
of the coarea formula has been used in [7] for showing that total variation
regularisation creates no new discontinuities, that is, the jump set of uα is
contained in the jump set of f . Finally, the (discrete) coarea formula is the
basis of graph cut algorithms (see [8, 9]), a class of interesting methods for the
numerical minimisation of T .

Recently, there have been extensions of the standard functional (1), where
the isotropic total variation term |Du|(Ω) is replaced by an anisotropic, space
dependent term (see for instance [4, 13, 18]). In this note we will show that
the coarea formula can naturally be extended to this situation. As a particular
application, we prove the equivalence of two total variation based regularisation
methods that have been proposed for the restoration of images corrupted by
Poisson noise. This equivalence result is based on the invariance of the sub-
differential of the total variation under contrast changes, which in turn is a
consequence of the (anisotropic) coarea formula.

2 An Anisotropic Coarea Formula

Let Ω ⊂ Rn, n ≥ 2, be an open and bounded set with Lipschitz boundary. Let
α : Ω× Rn → R>0 satisfy the following conditions:

(A1) The function α is continuous.

(A2) For every x ∈ Ω the function A 7→ f(x,A) is convex and positively homo-
geneous.

(A3) There exists C > 1 such that

C−1|A| ≤ α(x,A) ≤ C|A|

for every (x,A) ∈ Ω× Rn.
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For u ∈ L1(Ω) define

∫
Ω

α(Du) :=


∫

Ω

α
(
x,

dDu

d|Du|
(x)
)
d|Du| , if u ∈ BV(Ω) ,

+∞ , if u 6∈ BV(Ω) .

For U ⊂ Ω define

Per(U ;α; Ω) :=


∫

Ω

α(DχU ) , if χU ∈ BV(Ω) ,

+∞ , if χU 6∈ BV(Ω) .

Here χU denotes the characteristic function of U , that is, χU (x) = 1 if x ∈ U
and χU (x) = 0 if x 6∈ U . For every set U of finite perimeter we have

Per(U ;α; Ω) =
∫
∂∗U∩Ω

α
(
x, νU (x)

)
dHn−1 ,

where νU (x) denotes the inner normal to U at x ∈ ∂∗U . Here ∂∗U denotes the
reduced boundary of U (cf. [3, Def. 3.54]).

Lemma 1. Let u ∈ BV(Ω). Then∫
Ω

α(Du)

= sup
{
−
∫

Ω

u div φdx : φ ∈ C1
c (Ω; Rn), α0

(
x, φ(x)

)
≤ 1 for all x ∈ Ω

}
. (2)

Here, α0 denotes the polar of the integrand α, which is defined as

α0(x, ξ) := max
{
θ · ξ : θ ∈ Rn, α(x, θ) ≤ 1

}
.

Proof. For every φ ∈ C1
c (Ω; Rn) we have

−
∫

Ω

u(x) div φ(x) dx =
∫

Ω

φ(x) dDu =
∫

Ω

φ(x) · dDu
d|Du|

(x) d|Du| .

Moreover,
α(x, θ) = max

{
θ · ξ : ξ ∈ Rn, α0(x, ξ) ≤ 1

}
for every x ∈ Ω and θ ∈ Rn. This shows that

∫
Ω
α(Du) is larger or equal than

the right hand side of (2).
In order to show the converse inequality let ε > 0. There exists a compact

set K ⊂ Ω such that |Du|(Ω \ K) ≤ ε and dDu/d|Du| is continuous on K.
Consequently, the function

x 7→ α0
(
x,

dDu

d|Du|
(x)
)

is continuous on K. Thus, there exists a function φ ∈ C1
c (Ω; Rn) satisfying

α0
(
x, φ(x)

)
≤ 1 for every x ∈ Ω and

φ(x) · ∇u(x) ≥ α
(
x,

dDu

d|Du|
(x)
)
− ε
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for every x ∈ K. Consequently,∫
Ω

α(Du) ≤
∫
K

α(Du) + Cε ≤
∫
K

φ(x) · dDu
d|Du|

(x) d|Du|+ ε(C + Ln(Ω))

≤
∫

Ω

φ(x) · dDu
d|Du|

(x) d|Du|+ ε(2C + Ln(Ω))

= −
∫

Ω

u(x) div φ(x) dx+ (2C + Ln(Ω))ε .

Since ε was arbitrary, this proves the assertion. �

Lemma 2. Let u ∈ BV(Ω). Then there exists a sequence (uk)k∈N ⊂ C∞(Ω) ∩
BV(Ω) such that ‖uk − u‖1 → 0 and

∫
Ω
α(Duk)→

∫
Ω
α(Du).

Proof. Let (uk)k∈N ⊂ C∞(Ω)∩BV(Ω) strictly converge to u, that is, ‖uk−u‖1 →
0 and |Duk|(Ω) → |Du|(Ω). Such a sequence exists by [3, Thm. 3.9]. Then
the Reshetnyak Continuity Theorem [3, Thm. 2.39] implies that

∫
Ω
α(Duk) →∫

Ω
α(Du), which proves the assertion. �

Theorem 3. Let u ∈ BV(Ω). Then∫
Ω

α(Du) =
∫ +∞

−∞
Per
(
{u ≥ t};α; Ω

)
dt . (3)

Proof. We follow the presentation of the isotropic case in [3, Thm. 3.40].

Recall the coarea formula∫
Ω

g(x)|∇u(x)| dx =
∫

R

∫
u−1(t)

g(x) dHn−1 dt ,

for u : Ω → R Lipschitz and g : Ω → R̄ integrable (see [11, Thm. 3.2.12]). Ap-
plying this result with g(x) = α

(
x,∇u(x)

)
/|∇u(x)|, one obtains the assertion

for every Lipschitz function u : Ω→ R.
Now let u ∈ BV(Ω) be arbitrary. Let φ ∈ C1

c (Ω; Rn) satisfying α0
(
x, φ(x)

)
≤

1 for every x ∈ Ω. Then we obtain, by using Lemma 1, that

−
∫

Ω

u(x) div φ(x) dx = −
∫

Ω

∫ +∞

−∞
χ{u≥t}(x) div φ(x) dt dx

= −
∫ +∞

−∞
χ{u≥t}(x) div φ(x) dx dt ≤

∫ +∞

−∞
Per
(
{u ≥ t};α; Ω

)
dt .

Again from Lemma 1 it follows that
∫

Ω
α(Du) is smaller or equal than the right

hand side of (3).
Now let (uk)k∈N ⊂ C∞(Ω) ∩BV(Ω) be a sequence satisfying ‖uk − u‖1 → 0

and
∫

Ω
α(Duk) →

∫
Ω
α(Du). Such a sequence exists by Lemma 2. Possibly

passing to a subsequence, it follows that χ{uk≥t} converges to χ{u≥t} with re-
spect to the L1-norm for almost every t ∈ R. Therefore∫ +∞

−∞
Per
(
{u ≥ t};α; Ω

)
dt ≤

∫ +∞

−∞
lim inf
k→∞

Per
(
{uk ≥ t};α; Ω

)
dt

≤ lim inf
k→∞

∫ +∞

−∞
Per
(
{uk ≥ t};α; Ω

)
dt = lim

k→∞

∫
Ω

α(Duk) =
∫

Ω

α(Du) .

This proves the assertion. �
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3 Characterisation of the Subdifferential

In the following we denote by Rα : Lp(Ω)→ [0,+∞] the functional

Rα(u) =
∫

Ω

α(Du) .

Lemma 4. Let u ∈ Lp(Ω) ∩ BV(Ω) and ξ ∈ Lp∗(Ω). Then ξ ∈ ∂Rα(u) if and
only if ∫

U

ξ(x) dx ≤ Per(U ;α; Ω) (4)

for all Borel sets U ⊂ Ω, and∫
{u≥t}

ξ(x) dx = Per
(
{u ≥ t};α; Ω

)
(5)

for almost every t ∈ R.

Proof. The proof is along the lines of [16, Thm. 4.41], where the analogous result
is shown for the isotropic total variation. We still provide the proof for the sake
of completeness.

The inclusion ξ ∈ ∂Rα(u) is equivalent to∫
Ω

ξ(x)
(
v(x)− u(x)

)
dx ≤ Rα(v)−Rα(u) (6)

for every v ∈ Lp(Ω) ∩ BV(Ω).
We first show that ξ ∈ ∂Rα(u) implies (4) and (5). Assume therefore that (6)

holds. Let U ⊂ Ω be such that Per(U ;α; Ω) = Rα(χU ) <∞ and |Du|(∂∗U) = 0.
Define for ε > 0 the function vε := u+ εχU . Then (6) implies that

ε

∫
U

ξ(x) dx ≤ εPer(U ;α; Ω)

Dividing by ε and letting ε→ 0+, the inequality (4) follows. For general U ⊂ Ω
with Per(U ;α; Ω) < +∞, the claim follows by approximation with sets Uk
satisfying |Du|(∂∗Uk) = 0 and Per(Uk;α; Ω)→ Per(U ;α; Ω).

Now define for t ∈ R and ε > 0 the function

vε,t(x) :=


u(x) , if u(x) ≤ t ,
t , if t ≤ u(x) ≤ t+ ε ,

u(x)− ε , if u(x) ≥ t+ ε .

For almost every t ∈ R and ε > 0 we have∫
Ω

ξ(x)
(
vε,t(x)− u(x)

)
dx ≥ −ε

∫
{u≥t+ε}

ξ(x) dx− ε
∫
{t<u<t+ε}

|ξ(x)| dx .

It follows from Theorem 3 and the definition of vε,t that for almost every t ∈ R

Rα(vε,t) =
∫ ∞
−∞

Per
(
{vε,t ≥ s};α; Ω

)
ds

=
∫ t

−∞
Per
(
{u ≥ s};α; Ω

)
ds+

∫ ∞
t+ε

Per
(
{u ≥ s};α; Ω

)
ds

= Rα(u)−
∫ t+ε

t

Per
(
{u ≥ s};α; Ω

)
ds .
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Thus, (6) implies that

−
∫
{u≥t+ε}

ξ(x) dx ≤
∫
{t<u<t+ε}

|ξ(x)| dx− 1
ε

∫ t+ε

t

Per
(
{u ≥ s};α; Ω

)
ds .

The passage to the limit ε→ 0 therefore implies (5) for almost every t ∈ R.

Now assume that (4) and (5) hold. Passing to the limit t→ −∞, equation (5)
implies that

∫
Ω
ξ(x) dx = 0. Now let v ∈ BV(Ω) ∩ Lp∗(Ω). In order to show

that ξ ∈ ∂Rα(u) we have to verify (6).
Since

∫
Ω
ξ(x) dx = 0, it follows from Fubini’s Theorem that∫

Ω

ξ(x)
(
v(x)− u(x)

)
dx =

∫ ∞
−∞

(∫
{v≥t}

ξ(x) dx−
∫
{u≥t}

ξ(x) dx
)
dt .

This equation together with (4) applied to the sets {v ≥ t}, (5) applied to
{u ≥ t}, and Theorem 3 implies that∫

Ω

ξ(x)
(
v(x)− u(x)

)
dx

≤
∫ ∞
−∞

(
Per
(
{v ≥ t};α; Ω

)
− Per

(
{u ≥ t};α; Ω

))
dt = Rα(v)−Rα(u) ,

which proves the inequality (6). �

As a particular consequence of the last theorem, we obtain that the subdif-
ferential of Rα is invariant under contrast changes.

Lemma 5. Let g : R → R be a non-decreasing locally absolutely continuous
function. If u ∈ BV(Ω) is such that g(u) ∈ BV(Ω), then ∂Rα(u) ⊂ ∂Rα

(
g(u)

)
.

Proof. Let ξ ∈ ∂Rα(u). Lemma 4 implies that
∫
U
ξ ≤ Per(U ;α; Ω) for every

measurable U ⊂ Ω. Thus it remains to show that the set

E :=
{
t ∈ R :

∫
{g(u)≥t}

ξ 6= Per({g(u) ≥ t};α; Ω)
}

satisfies L1(E) = 0.
Define now the function h : R → R ∪ {−∞} by h(t) := inf

{
s : g(s) ≥ t

}
.

Then h is a strictly increasing function and{
x : g ◦ u(x) ≥ t

}
=
{
x : u(x) ≥ h(t)

}
(7)

for every t ∈ R. Moreover, g ◦ h(t) = t for every t ∈ g(R), that is, h is a right
inverse of g. Because ξ ∈ ∂Rα(u), it follows from Lemma 4 that the set

F :=
{
t ∈ R :

∫
{u≥t}

ξ 6= Per({u ≥ t};α; Ω)
}

satisfies L1(F ) = 0. Because of (7) we have that h(E) ⊂ F . Consequently, the
fact that h is a right inverse of g and E ⊂ g(R) implies that E = g ◦ h(E) ⊂
g(F ). Since g is locally absolutely continuous and L1(F ) = 0, it follows that
L1(E) ≤ L1

(
g(F )

)
= 0, which proves the assertion. �
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4 Rescaling of Minimisation Problems

In [19], the removal of multiplicative noise in images using a total variation
regularisation term has been studied. In particular, the authors compare two
seemingly different methods that both can be motivated from a maximum a–
posteriori (MAP) estimation approach for the removal of Poisson noise. Given
noisy data f : Ω → R>0, the application of MAP estimation suggests the simi-
larity term

I(1)(u) :=
∫

Ω

f log
(
f/u

)
− f + u dx ,

which is the Bregman distance of the Boltzmann–Shannon entropy. Using an
isotropic total variation regularisation term, one then obtains, for any regulari-
sation parameter α > 0, the function

uα := arg min
u

[
I(1)(u) + α|Du|(u)

]
(8)

as a guess of the clean underlying image.
The approach in [17] uses the rescaling w := log u and arrives, discounting

constant terms, at the similarity term

I(2)(w) :=
∫

Ω

f e−w + w dx .

Again applying isotropic total variation regularisation, one can then define the
clean image as

uα := ewα with wα ∈ arg min
w

[
I(2)(w) + α|Du|(w)

]
. (9)

Because the regularisation is applied to uα in the first functional and to
log uα in the second one, one might expect, at first glance, that the two methods
could give different results. Lemma 5, however, states that the subdifferential
of the total variation is invariant under rescalings. Using this invariance, it is
then easy to see that, indeed, the equation uα = e−wα holds, provided one can
write the subdifferentials of the functionals appearing in (8) and (9) as sum of
the subdifferentials of the total variation and the respective similarity term (a
detailed argument is given below in Lemma 7). Standard prerequisites for this
splitting of the subdifferential, however, are not satisfied in this setting, as the
domains of both similarity and regularisation term have empty interior. The
result below shows that it is nevertheless possible to prove the equivalence of the
two regularisation methods. This is achieved by approximating the similarity
terms from below by more regular functions for which the addition theorem for
the subdifferential applies. A shortened version of the result, only applicable
for data f satisfying 0 < ess inf f ≤ ess sup f < +∞, has appeared in [19].

Assume for the following that the set Ω is connected. Let φ, ψ : Ω × R →
R ∪ {+∞}, and assume that there exist possibly unbounded, non-empty, open
intervals Iφ, Iψ such that domφ = Ω× Iφ and domψ = Ω× Iψ.

Assume, in addition to assumptions (A1)–(A3), that the following hold:

(B1) The functions φ and ψ are convex Carathéodory integrands.
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(B2) There exists γ ∈ L1(Ω) with γ ≥ 0 almost everywhere, such that

φ(x, s) ≥ −γ(x) and ψ(x, s) ≥ −γ(x)

for almost every x ∈ Ω and every s ∈ R.

(B3) There exist a set E ⊂ Ω and a constant D > 0 such that Ln(E) > 0 and

φ(x, s) ≥ D|s| − γ(x)

for every x ∈ E and s ∈ R.

(B4) There exists a locally Lipschitz, non-decreasing mapping g : Iφ → Iψ such
that

∂φ(x, s) ⊂ ∂ψ
(
x, g(s)

)
(10)

for almost every x ∈ Ω and s ∈ Iφ.

We define the functionals Tφ, Tψ : L1(Ω)→ R ∪ {+∞} by

Tφ(u) := Sφ(u) +Rα(u) :=
∫

Ω

φ
(
x, u(x)

)
dx+

∫
Ω

α(Du) ,

Tψ(u) := Sψ(u) +Rα(u) :=
∫

Ω

ψ
(
x, u(x)

)
dx+

∫
Ω

α(Du) .

Lemma 6. Let Assumptions (B1), (B2), and (B4) hold. Then

∂Sφ(u) ⊂ ∂Sψ(g ◦ u)

for every u ∈ L1(Ω).

Proof. This follows from (10) and the characterisation of the subdifferential of
an integral functional (see [14, Cor. 3E]). �

Lemma 7. Let Assumptions (B1)–(B4) hold. Assume in addition that Iφ = R,
g is Lipschitz, and there exist D′ > 0 and γ′ ∈ L1(Ω) with γ′ ≥ 0 almost
everywhere such that

φ(x, s) ≤ D′|s|+ γ(x) (11)

for almost every x ∈ Ω and every s ∈ R. Let uφ be a minimiser of Tφ. Then
g ◦ uφ minimises Tψ.

Proof. Because of (11), the functional Sφ : L1(Ω) → [0,+∞] is continuous [12,
Cor. 6.51]. Since uφ minimises Tφ, we therefore have

0 ∈ ∂Tφ(uφ) = ∂Sφ(uφ) + ∂Rα(uφ) .

Lemma 6 implies that ∂Sφ(uφ) ⊂ ∂Sψ(g ◦ uφ). Using Lemma 5, we obtain that
∂R(uφ) ⊂ ∂R

(
g ◦ uφ

)
. Thus

0 ∈ ∂Sφ(uφ) + ∂Rα(uφ) ⊂ ∂Sψ(g ◦ uφ) + ∂Rα(uφ) ⊂ ∂Tψ(g ◦ uφ) ,

showing that g ◦ uφ minimises Tψ. �

Theorem 8. Let Assumptions (B1)–(B4) hold. Then there exists a minimiser
uφ of Tφ such that g ◦ uφ minimises Tψ.
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Proof. Because φ is a Carathéodory integrand, there exists an increasing se-
quence of compact sets Ek ⊂ Ω with Ln(Ω\Ek) < 1/k such that the restriction
of φ to Ek × R is continuous (see [12, Thm. 6.35]). Moreover, there exists an
increasing sequence [ak, bk] ⊂ Iφ of compact intervals such that

⋃
k[ak, bk] = Iφ.

For x ∈ Ek define

ζk(x) := min{inf ∂φ(x, ak), 0} and ξk(x) := max{sup ∂φ(x, ak), 0} .

Define the functions

φ(k)(x, s) :=


−γ(x) , if x 6∈ Ek ,
φ(x, ak) + (s− ak)ζk(x) , if x ∈ Ek and s < ak ,

φ(x, s) , if x ∈ Ek and ak ≤ s ≤ bk ,
φ(x, bk) + (s− bk)ξk(x) , if x ∈ Ek and bk < s ,

ψ(k)(x, s) :=


−γ(x) , if x 6∈ Ek ,
ψ
(
x, g(ak)

)
+
(
s− g(ak)

)
ζk(x) , if x ∈ Ek and s < g(ak) ,

ψ(x, s) , if (x, s) ∈ Ek × [g(ak), g(bk)] ,
ψ
(
x, g(bk)

)
+
(
s− g(bk)

)
ξk(x) , if x ∈ Ek and g(bk) < s ,

g(k)(s) :=


g(ak) + (s− ak) , if s < ak ,

g(s) , if ak ≤ s ≤ bk ,
g(bk) + (s− bk) , if bk < s .

Then the functions φ(k) and ψ(k) satisfy the assumptions (B1) and (B2) and
g(k) is a Lipschitz function for every k. Moreover, we have

∂φ(k)(x, s) ⊂ ∂ψ(k)
(
x, g(k)(s)

)
for almost every x ∈ Ω and every s ∈ R. Finally, the compactness of the set
Ek × [ak, bk] implies that

Dk := sup
{

max{|ζk(x)|, |ξk(x)|} : x ∈ Ek
}
< +∞ .

Consequently, there exists a non-negative function γk ∈ L1(Ω) such that

φ(k)(x, s) ≤ Dk|s|+ γk(x)

for almost every x ∈ Ω and s ∈ R.

Now let k′ ∈ N be such that Ln(E) > 1/k′ and define E′ := E ∩ Ek′ . Then
Ln(E′) > 0. Since by assumption φ(x, s) ≥ D|s| − γ(x) on E′ × R, there exists
k′′ ∈ N such that ζk′′(x) ≤ −D/2 and ξk′′(x) ≥ D/2 for every x ∈ E′. Thus
the construction of the functions φ(k) implies the existence of a non-negative
function γ′ ∈ L1(Ω) such that

φ(k)(x, s) ≥ D|s|/2− γ′(x) (12)

for every x ∈ E′, s ∈ R, and k ≥ k′′. Now recall that the Poincaré inequality
(see [21, Thm. 5.12.7]) implies the existence of a constant C ′ > 0 such that

‖u− µE′(u)‖n/(n−1) ≤ C ′|Du|(Ω)

9



for every u ∈ L1(Ω), where

µE′(u) := −
∫
E′
u(x) dx :=

1
Ln(E′)

∫
E′
u(x) dx .

Moreover, we have by assumption 2 that

|Du|(Ω) ≤ CRα(u) .

Thus,

‖u‖1 ≤ ‖u− µE′(u)‖1 + Ln(Ω)|µE′(u)|

≤ Ln(Ω)1/n + ‖u− µE′(u)‖n/(n−1) + Ln(Ω)−
∫
E′
|u(x)| dx

≤ Ln(Ω)1/n + C ′|Du|(Ω) + Ln(Ω)−
∫
E′
|u(x)| dx

≤ Ln(Ω)1/n + C ′CRα(u) + Ln(Ω)−
∫
E′
|u(x)| dx

for every u ∈ L1(Ω).
Define now

T (k)
φ (u) := S(k)

φ (u) +Rα(u) :=
∫

Ω

φ(k)
(
x, u(x)

)
dx+

∫
Ω

α(Du) ,

T (k)
ψ (u) := S(k)

ψ (u) +Rα(u) :=
∫

Ω

ψ(k)
(
x, u(x)

)
dx+

∫
Ω

α(Du) .

Now (12) and Assumption (B2) imply that

S(k)
φ (u) ≥ D

2

∫
E′
|u(x)| dx− ‖γ′ + γ‖1 =

CLn(E′)
2

−
∫
E′
|u(x)| dx− ‖γ′ + γ‖1

for every u ∈ L1(Ω) and every k ≥ k′′. Consequently we obtain that

‖u‖1 ≤ Ln(Ω)1/n + C ′CT (k)
φ (u) +

2Ln(Ω)
DLn(E′)

T (k)
φ (u) + ‖γ′ + γ‖1

for every u ∈ L1(Ω) and every k ≥ k′′, which proves that, for k ≥ k′′, the
functionals T (k)

φ are equi-coercive. A similar argumentation proves that the

functionals T (k)
ψ are equi-coercive.

Because the functions φ(k) are Carathéodory and φ(k)(x, s) ≥ −γ(x) almost
everywhere, the functionals S(k)

φ are lower semi-continuous. This proves the

existence of a minimiser u(k)
φ of T (k)

φ for every k ≥ k′′. Applying Lemma 7, we

obtain that g(k) ◦ u(k)
φ minimises T (k)

ψ .

By construction, the sequences φ(k) and ψ(k) are increasing, non-negative,
and converge to φ and ψ, respectively. Moreover, the functionals T (k)

φ and

T (k)
ψ are lower semi-continuous. Standard properties of the Γ-limit (see for

instance [5, Rem. 1.40]) and the Monotone Convergence Theorem imply that

Tφ = Γ-lim
k
T (k)
φ and Tψ = Γ-lim

k
T (k)
ψ .
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Because the functionals Tφ and Tψ are equicoercive, there exists a sequence
of minimisers u(k)

φ of T (k)
φ converging to a minimiser uφ of Tφ, such that the

sequence of functions g(k) ◦u(k)
φ , which minimise T (k)

ψ , converges to a minimiser

of uψ of Tψ (see [5, Thm. 1.21]). Since uψ = limk g
(k) ◦u(k)

φ = g ◦uφ, this proves
the assertion. �

Example 9. Let f : R→ R be a measurable function such that f(x) > 0 almost
everywhere and log f ∈ L1(Ω). Define

φ(x, s) := s+ f(x) exp(−s) and ψ(x, s) := s+ f(x) log
(f(x)

s

)
+ f(x) .

Then φ and ψ satisfy the conditions (B1)–(B4) with Iφ = R, Iψ = (0,+∞), and
g(s) := exp(s). Since the functions φ and ψ are strictly convex, and therefore
their minimisers unique, Theorem 8 implies that uφ minimises Tφ, if and only
if exp(uφ) minimises Tψ. In particular, the denoising methods defined in (8)
and (9) are equivalent provided log f ∈ L1(Ω). �

5 Conclusion

In this note it has been shown that the coarea formula for the total variation
can be extended in a natural way to anisotropic total variation like functionals,
where the anisotropy varies continuously in space. As a consequence, it follows
that the subdifferential of the (anisotropic) total variation functional is invariant
under smooth contrast changes. This result is of particular interest for image
processing, where similar invariances are sometimes postulated for geometric
evolution equations. As an application, we have shown the equivalence of two
methods for the removal of multiplicative noise in images. Also, the result
applies to more general pairs of functionals that are related by a condition
on the subdifferential. The main difficulty in the proof lies in the fact that
standard results from convex analysis seem not to be available because of the
lack of continuity of the involved functionals.
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