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Abstract

This paper deals with the application of non-convex, sublinear penalty
terms to the regularization of possibly non-linear inverse problems the
solutions of which are assumed to have a sparse expansion with respect
to some given basis or frame. It is shown that this type of regularization
is well-posed and yields sparse results. Moreover, linear convergence rates
are derived under the additional assumption of a certain range condition.

MSC: 65J20; 65J22, 49N45.

1 Introduction and Statement of the Results

In the recent years, the notion of sparsity has received much attention both for
compression and denoising, and the solution of inverse and ill-posed problems
(see for instance [1 & B, E]). In the inverse problems case, one is given an
equation F(u) = v to solve, where F': U — V is a possibly non-linear operator
between the Banach spaces U and V. The goal is to find an approximate
solution u that is sparse with respect to a sequence (¢;);eny C U in the sense
that it can be written as a finite linear combination of some ¢;. This sparsity
can be enforced by minimizing the regularization functional

Sav(u) == ||F(u) —v||P + ainf{Z|ui|q : Zui@ = u}

1€N €N

over U, where o« > 0, p > 1, and g < 2.

The functional S, with p = 2 and 1 < ¢ < 2 has been proposed in [B],
where convergence and stability of an iterative thresholding algorithm for the
minimization of S, , have been derived. In [6], the functional S, has been
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considered from an inverse problems point of view. Under the assumption that
only noisy data v’ satisfying ||v — v°|| < J are available, the properties of mini-
mizers ud, of 84 »¢ in dependence of o and ¢ have been analysed. In particular,
convergence rates of order O(v/§) were shown to hold under a certain range
condition and parameter choice. These rates have been improved to O(§'/9)
in [5].

In contrast to the superlinear case 1 < ¢ < 2, which by now is well-
understood, there exist hardly any results concerning the non-convex regular-
ization functional that arises for 0 < ¢ < 1. Though in [6] already a special
case of this regularization method has been considered, no attempt for a sys-
tematic study has been made. This short note wants to draw the attention to
this case and prove the theoretical suitability of sublinear penalty terms for the
regularization of ill-posed problems with sparse solutions.

Using the results of [B], existence of a minimizer, stability of the set of mini-
mizers with respect to the input data, and convergence as the noise approaches
zero easily follow (see Thm. B)). In addition, it is shown that the choice of the
exponent 0 < ¢ < 1 forces every (local) minimizer of S, , to be sparse, as long
as the operator F is locally Lipschitz (see Thm. H). Finally, convergence rates
of order O(6) are derived under the assumption that a certain range condition
is satisfied (see Thm. H).

For proving the above mentioned properties, it is convenient to work directly
with the coefficients of u € U with respect to (¢;);en. To that end one regards
the operator equation on the sequence space I! via the embedding L: {! — U
that maps a sequence u = (u;)ien to Lu := ), ui¢;. Then one minimizes

Tao(u) = | G(w) = o] + aR(u) = | G(u) = ol’ +a Y Jui|?
ieN

over [! instead, where G := F o L. Note that the embedding L is well-defined
and bounded, provided the sequence (¢;);eny C U is bounded. Also, under this
assumption the functionals S, ., and 7, , are equivalent in the sense that @ € U
minimizes S, if and only if there exists u € I' minimizing Ta,v such that
Lu=a.

Throughout this paper the following assumptions hold:
e The space V is a reflexive Banach space.
e The parameters «, p, and ¢ satisfy a >0, p>1,and 0 < g < 1.

e The operator G: I — V is sequentially closed in the following sense:
(k)

Whenever a bounded sequence (u(k))keN C I! satisfies u; ’ — u; for every

i € Nand G(u®) —=v €V, then G(u) = v.

Remark 1. The notion of sequential convergence introduced above is in fact
defined by the weak* topology on {!. This topology is induced by the pre-dual
co of I, which consists of all sequences (w;);en satisfying w; — 0 and is endowed
with the norm ||wl|co = max;en|w;|. n
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Theorem 2 (Well-Posedness). The following hold:
1. The functional Ty, has a minimizer for every a >0 and v € V.

2. Assume that (v(k))keN C V converges to v. Then every sequence u'*) €
arg min{’Z;)vm(u) Tu € ll} has a subsequence converging to a minimizer
of T p-

3. Assume that the equation G(u) = v has a solution in 19. Let (v®))yeny C V
converge to v and let a'®) > 0 satisfy a) — 0 and ||[v®) —v||P/aF) — 0
as k — oo. Then every sequence u'F) € argmin{’fam)vm (u):ue€ ll} has
a subsequence converging to an R-minimizing solution of G(u) = v.

Proof. The proof is along the lines of [Bl, Propositions 5-7]. O

Remark 3. Note that, in fact, the results in [B] imply that the stability and
convergence assertions hold with respect to the functional R. That is, the
subsequence (u"));cy in Ttem B satisfies R(u*) —u,) — 0 for some minimizer
Uq of 74 4, and the subsequence (u(kl))leN in Item Bl satisfies R(u(’”) —uf) =0
for some R-minimizing solution u! of G(u) = v. n

Theorem 4 (Sparsity). Assume that G: 1* — V is locally Lipschitz. Then,
every local minimizer of 1, is sparse.

Proof. See Section O

Theorem 5 (Convergence Rates). Let uf be an R-minimizing solution of
G(u) = v that is sparse. Assume that G: U — V is Gateauz differentiable in u'
and that

e € Range(G'(uT)#) for every i €N,

where e; € [°° denotes the i-th unit vector. Moreover, assume that there exist
Y, 72 >0, 0 >0, and p > R(u') such that

R(u) = R(u') > m |G (u)(w — ul)|| = ||G(u) = Gl (1)
for every u € I' satisfying R(u) < p and ||G(u) — G(ul)|| < 0.
For v° € U satisfying ||v° —v|| < 6 and a > 0 let u®, € argmin{7,, s (u) :
u € 1Y}, Assume that a = «(d) satisfies Cra(d) < P~1 < Coa(d) for some
Cy > C1 >0 (or C1 < a(d) < Cy for Cy small enough in the case p=1). Then
||u‘;—uTHl:O(5) as 0—0.

Proof. See Section O
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2 Proofs

Sparsity

We now prove Theorem Hl which asserts that local Lipschitz continuity of G
implies that every local minimizer of 7, , is sparse.

Proof (of Theorem[J)). Let u be a local minimizer of 7, . Denote by I := {i €
N:w; # 0} the set of non-zero components of u. We have to show that I is a
finite set.

The local minimality of u implies the existence of some € > 0 such that
Tav(u) < Ty p(w) whenever ||u — wl||; < e. Since G is locally Lipschitz, there
exists C' > 0 such that

G (u+ter) —vllP = [|G(w) —vl|P| < Clt]

whenever i € N and [t < e.
Now let i € I, let |t| < e, and w = u + te;. Then |ju —w|; =t < ¢ and
therefore
[G(u) = ol|” + aR(u) < [[G(w) = v[|? + aR(w) .

Since R(u) — R(w) = |u;]9 — |u; + t|9, we obtain that
aflul? = |ui +t7) < |G(w) = v]|” + [|G(u) = v[[” < Ct] . (2)

Now by assumption u; # 0, which implies that the function ¢ — |u; + ¢|? is
differentiable at t = 0 with derivative ¢sgn(u;)|u;|971. Thus (@) shows that

qlug|t < C

whenever ¢ € I. Since 0 < ¢ < 1, this in turn implies that the absolute value
of the non-zero coefficients u; is bounded from below. On the other hand,
R(u) = Y ;crlui|? < oo. This shows that the set I is finite, and therefore u is
sparse. (I

Convergence Rates

Now we derive the convergence rates asserted in Theorem [l

Proof (of Theorem[3). Define the set I := {i € N : uI # 0}. Since by assump-
tion e; € Range(G’(u)#) for every i € I and I is finite, there exists C1 > 0
such that

wil = [(es, u)| < C1[|G" (uh)w|

for every w € [* and i € I. Moreover, there exists C > 0 such that
Juf[ = [t? < Colul —¢|
for every t € R. Finally, there exists C5 > 0 such that

|t < Cst]?



for every t € R satisfying [t|? < p.

Consequently,
u—ullly = Jui + > Jus —ul
igl iel
<Oy fuil?+ > fu — ul
il iel

= C3(R(w) = R(u")) + Y (Jui — uf| = Csluil + Csuf])
iel

< C3(R(u) — R(uh)) + (1 + CCs) Y Jui — uf|

el
< Cy(R(u) — R(uh)) + (14 CoCs)Ch [T)[|G (u) (u — ul)]|

for every u € 17 satisfying R(u) < p. Here, |I| denotes the number of elements
contained in I. Defining Cy := (1 + C2C5)C1|I|/y1, we obtain from () that

lu—ullly < (Cs + Ci) (R(u) = R(u")) + Ciy2]| G(u) — G(u)]|

for every u € 19 satisfying R(u) < p and ||G(u) —G(u')|| < 0. Now the assertion
follows from [B, Prop. §]. O

3 Summary

This paper shows that regularization with non-convex, sublinear regularization
terms is well-posed and yields sparse results. Additionally, linear convergence
rates have been derived for operators F' satisfying a range condition that basi-
cally postulates that F' acts 'nicely’ on the subset (¢;);en C U with respect to
which sparsity is required. In particular, the derived results imply that several
properties of convex regularization methods carry over to certain non-convex
ones, which therefore may also be applied to the regularization of inverse and
ill-posed problems.
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