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Abstract

This paper deals with the application of non-convex, sublinear penalty

terms to the regularization of possibly non-linear inverse problems the

solutions of which are assumed to have a sparse expansion with respect

to some given basis or frame. It is shown that this type of regularization

is well-posed and yields sparse results. Moreover, linear convergence rates

are derived under the additional assumption of a certain range condition.

MSC: 65J20; 65J22, 49N45.

1 Introduction and Statement of the Results

In the recent years, the notion of sparsity has received much attention both for
compression and denoising, and the solution of inverse and ill-posed problems
(see for instance [1, 2, 3, 4]). In the inverse problems case, one is given an
equation F (u) = v to solve, where F : U → V is a possibly non-linear operator
between the Banach spaces U and V . The goal is to find an approximate
solution u that is sparse with respect to a sequence (φi)i∈N ⊂ U in the sense
that it can be written as a finite linear combination of some φi. This sparsity
can be enforced by minimizing the regularization functional

Sα,v(u) := ‖F (u) − v‖p + α inf
{

∑

i∈N

|ui|q :
∑

i∈N

uiφi = u
}

over U , where α > 0, p ≥ 1, and q < 2.
The functional Sα,v with p = 2 and 1 ≤ q < 2 has been proposed in [3],

where convergence and stability of an iterative thresholding algorithm for the
minimization of Sα,v have been derived. In [6], the functional Sα,v has been
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considered from an inverse problems point of view. Under the assumption that
only noisy data vδ satisfying ‖v − vδ‖ ≤ δ are available, the properties of mini-
mizers uδ

α of Sα,vδ in dependence of α and δ have been analysed. In particular,

convergence rates of order O(
√

δ) were shown to hold under a certain range
condition and parameter choice. These rates have been improved to O(δ1/q)
in [5].

In contrast to the superlinear case 1 ≤ q < 2, which by now is well-
understood, there exist hardly any results concerning the non-convex regular-
ization functional that arises for 0 < q < 1. Though in [6] already a special
case of this regularization method has been considered, no attempt for a sys-
tematic study has been made. This short note wants to draw the attention to
this case and prove the theoretical suitability of sublinear penalty terms for the
regularization of ill-posed problems with sparse solutions.

Using the results of [5], existence of a minimizer, stability of the set of mini-
mizers with respect to the input data, and convergence as the noise approaches
zero easily follow (see Thm. 2). In addition, it is shown that the choice of the
exponent 0 < q < 1 forces every (local) minimizer of Sα,v to be sparse, as long
as the operator F is locally Lipschitz (see Thm. 4). Finally, convergence rates
of order O(δ) are derived under the assumption that a certain range condition
is satisfied (see Thm. 5).

For proving the above mentioned properties, it is convenient to work directly
with the coefficients of u ∈ U with respect to (φi)i∈N. To that end one regards
the operator equation on the sequence space l1 via the embedding L : l1 → U
that maps a sequence u = (ui)i∈N to Lu :=

∑

i∈N
uiφi. Then one minimizes

Tα,v(u) := ‖G(u) − v‖p + αR(u) := ‖G(u) − v‖p + α
∑

i∈N

|ui|q

over l1 instead, where G := F ◦ L. Note that the embedding L is well-defined
and bounded, provided the sequence (φi)i∈N ⊂ U is bounded. Also, under this
assumption the functionals Sα,v and Tα,v are equivalent in the sense that û ∈ U
minimizes Sα,v if and only if there exists u ∈ l1 minimizing Tα,v such that
Lu = û .

Throughout this paper the following assumptions hold:

• The space V is a reflexive Banach space.

• The parameters α, p, and q satisfy α > 0, p ≥ 1, and 0 < q < 1.

• The operator G : l1 → V is sequentially closed in the following sense:

Whenever a bounded sequence (u(k))k∈N ⊂ l1 satisfies u
(k)
i → ui for every

i ∈ N and G(u(k)) ⇀ v ∈ V , then G(u) = v.

Remark 1. The notion of sequential convergence introduced above is in fact
defined by the weak∗ topology on l1. This topology is induced by the pre-dual
c0 of l1, which consists of all sequences (wi)i∈N satisfying wi → 0 and is endowed
with the norm ‖w‖∞ := maxi∈N|wi|. �
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Theorem 2 (Well-Posedness). The following hold:

1. The functional Tα,v has a minimizer for every α > 0 and v ∈ V .

2. Assume that (v(k))k∈N ⊂ V converges to v. Then every sequence u(k) ∈
arg min

{

Tα,v(k)(u) : u ∈ l1
}

has a subsequence converging to a minimizer
of Tα,v.

3. Assume that the equation G(u) = v has a solution in lq. Let (v(k))k∈N ⊂ V
converge to v and let α(k) > 0 satisfy α(k) → 0 and ‖v(k) − v‖p/α(k) → 0
as k → ∞. Then every sequence u(k) ∈ argmin

{

Tα(k),v(k)(u) : u ∈ l1
}

has
a subsequence converging to an R-minimizing solution of G(u) = v.

Proof. The proof is along the lines of [5, Propositions 5–7]. �

Remark 3. Note that, in fact, the results in [5] imply that the stability and
convergence assertions hold with respect to the functional R. That is, the
subsequence (u(kl))l∈N in Item 2 satisfies R(u(kl) − uα) → 0 for some minimizer
uα of Tα,v, and the subsequence (u(kl))l∈N in Item 3 satisfies R(u(kl) − u†) → 0
for some R-minimizing solution u† of G(u) = v. �

Theorem 4 (Sparsity). Assume that G : l1 → V is locally Lipschitz. Then,
every local minimizer of Tα,v is sparse.

Proof. See Section 2. �

Theorem 5 (Convergence Rates). Let u† be an R-minimizing solution of
G(u) = v that is sparse. Assume that G : U → V is Gâteaux differentiable in u†

and that
ei ∈ Range

(

G′(u†)#
)

for every i ∈ N ,

where ei ∈ l∞ denotes the i-th unit vector. Moreover, assume that there exist
γ1, γ2 > 0, σ > 0, and ρ > R(u†) such that

R(u) −R(u†) ≥ γ1

∥

∥G′(u†)(u − u†)
∥

∥ − γ2

∥

∥G(u) − G(u†)
∥

∥ (1)

for every u ∈ l1 satisfying R(u) < ρ and ‖G(u) − G(u†)‖ < σ.
For vδ ∈ U satisfying ‖vδ − v‖ ≤ δ and α > 0 let uδ

α ∈ arg min{Tα,vδ (u) :
u ∈ l1}. Assume that α = α(δ) satisfies C1α(δ) ≤ δp−1 ≤ C2α(δ) for some
C2 ≥ C1 > 0 (or C1 ≤ α(δ) ≤ C2 for C2 small enough in the case p = 1). Then

∥

∥uδ
α − u†

∥

∥

1
= O(δ) as δ → 0 .

Proof. See Section 2. �
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2 Proofs

Sparsity

We now prove Theorem 4, which asserts that local Lipschitz continuity of G
implies that every local minimizer of Tα,v is sparse.

Proof (of Theorem 4). Let u be a local minimizer of Tα,v. Denote by I :=
{

i ∈
N : ui 6= 0

}

the set of non-zero components of u. We have to show that I is a
finite set.

The local minimality of u implies the existence of some ε > 0 such that
Tα,v(u) ≤ Tα,v(w) whenever ‖u − w‖1 < ε. Since G is locally Lipschitz, there
exists C > 0 such that

∣

∣‖G(u + tei) − v‖p − ‖G(u) − v‖p
∣

∣ ≤ C|t|

whenever i ∈ N and |t| < ε.
Now let i ∈ I, let |t| < ε, and w = u + tei. Then ‖u − w‖1 = t < ε and

therefore
‖G(u) − v‖p + αR(u) ≤ ‖G(w) − v‖q + αR(w) .

Since R(u) −R(w) = |ui|q − |ui + t|q, we obtain that

α
(

|ui|q − |ui + t|q
)

≤ ‖G(w) − v‖p + ‖G(u) − v‖p ≤ C|t| . (2)

Now by assumption ui 6= 0, which implies that the function t 7→ |ui + t|q is
differentiable at t = 0 with derivative q sgn(ui)|ui|q−1. Thus (2) shows that

q|ui|q−1 ≤ C

whenever i ∈ I. Since 0 < q < 1, this in turn implies that the absolute value
of the non-zero coefficients ui is bounded from below. On the other hand,
R(u) =

∑

i∈I |ui|q < ∞. This shows that the set I is finite, and therefore u is
sparse. �

Convergence Rates

Now we derive the convergence rates asserted in Theorem 5.

Proof (of Theorem 5). Define the set I := {i ∈ N : u†
i 6= 0}. Since by assump-

tion ei ∈ Range
(

G′(u†)#
)

for every i ∈ I and I is finite, there exists C1 > 0
such that

|wi| = |〈ei, u〉| ≤ C1

∥

∥G′(u†)w
∥

∥

for every w ∈ l1 and i ∈ I. Moreover, there exists C2 > 0 such that

|u†
i |q − |t|q ≤ C2|u†

i − t|

for every t ∈ R. Finally, there exists C3 > 0 such that

|t| ≤ C3|t|q
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for every t ∈ R satisfying |t|q ≤ ρ.
Consequently,

‖u − u†‖1 =
∑

i6∈I

|ui| +
∑

i∈I

|ui − u†
i |

≤ C3

∑

i6∈I

|ui|q +
∑

i∈I

|ui − u†
i |

= C3

(

R(u) −R(u†)
)

+
∑

i∈I

(

|ui − u†
i | − C3|ui|q + C3|u†

i |q
)

≤ C3

(

R(u) −R(u†)
)

+ (1 + C2C3)
∑

i∈I

|ui − u†
i |

≤ C3

(

R(u) −R(u†)
)

+ (1 + C2C3)C1|I|‖G′(u†)(u − u†)‖

for every u ∈ lq satisfying R(u) ≤ ρ. Here, |I| denotes the number of elements
contained in I. Defining C4 := (1 + C2C3)C1|I|/γ1, we obtain from (1) that

‖u − u†‖1 ≤ (C3 + C4)
(

R(u) −R(u†)
)

+ C4γ2‖G(u) − G(u†)‖

for every u ∈ lq satisfying R(u) ≤ ρ and ‖G(u)−G(u†)‖ < σ. Now the assertion
follows from [5, Prop. 8]. �

3 Summary

This paper shows that regularization with non-convex, sublinear regularization
terms is well-posed and yields sparse results. Additionally, linear convergence
rates have been derived for operators F satisfying a range condition that basi-
cally postulates that F acts ’nicely’ on the subset (φi)i∈N ⊂ U with respect to
which sparsity is required. In particular, the derived results imply that several
properties of convex regularization methods carry over to certain non-convex
ones, which therefore may also be applied to the regularization of inverse and
ill-posed problems.
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