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Abstract. We consider one-dimensional regularization methods with
convex fidelity term and non-uniform higher order total variation pe-
nalization term. A unique characterization of the solutions is provided
using a dual formulation of the problem. Particular emphasis is put on
the case of first order regularization. Here, we prove the equivalence of
the continuous solution of the discretized problem with a fully discrete
solution. Moreover, we indicate how the taut string algorithm, a highly
efficient algorithm for the solution of L2-total variation regularization,
can be generalized to non-quadratic regularization functionals.

1 Introduction

Let Ω := (a, b) ⊂ R, and let f ∈ L2(Ω) be some given data. There exist various
methods for smoothing the possibly noisy data f one of which is total variation
regularization defined by minimization of the functional

Φ(u) :=
1
2
‖u− f‖22 + α|Du|(Ω) =

1
2

∫ b

a

(
u(t)− f(t)

)2
dt+ α|Du|(Ω)

over the space BV(Ω) of functions of bounded variation (cf. [1, 2, 7, 11, 13]). Here,
α > 0 is a regularization parameter determining the amount of smoothing, and
|Du|(Ω) denotes the total variation of the function u on Ω. Minimization of
Φα yields a function u that is close to the data in the L2-norm while having a
reduced total variation.

Depending on the exact requirements on the solution it is often necessary to
consider variants of Φ for defining the regularization.

First, it makes sense not to use the L2-norm as fidelity term, but rather a
different Lp-norm with 1 ≤ p < ∞. In particular, the L1-norm has advantages,
since outliers in the data can efficiently be smoothed (see [9, 12]).



Second, depending on the desired regularity of the solution, it is possible to
use a higher order variation as regularization term. This leads to solutions that
are piecewise polynomials of degree k− 1, when the k-th order total variation of
u is used in the definition of Φ (cf. [8, 9]).

Finally, it may be necessary to locally adjust the regularization parameter,
that is, instead of a fixed parameter α > 0 to consider a regularization func-
tion α : Ω → R>0. In [2], for instance, the parameter α is iteratively locally
adapted under the heading of local squeezing, until the residual u− f resembles
Gaussian noise. Similarly, in [5] several possible applications for non-constant
regularization are discussed.

In this article we study more general convex regularization functionals of the
form

Φ(u) =
∫ b

a

φ
(
t, u(t)− f(t)

)
dt+

∫ b

a

α(t) d|Dlu| . (1)

We prove existence of a minimizer of Φ under reasonable conditions on the
functions φ and α, and provide a unique characterization of the solution set.

Special emphasis is put on the case of first order regularization l = 1. There
exists a highly efficient algorithm, the taut string algorithm, for the solution of
discrete L2-total variation regularization (see [2]). This algorithm is based on a
dual formulation of the problem of minimizing Φ (see [4, 7, 13]). In this article we
show that the basic ideas of the taut string algorithm can also be used for the
minimization of (1). Additionally, we show that the discrete and the continuous
formulation of the functional are equivalent provided the input data f and the
function α are piecewise constant. Put in other words, the continuous solution
of a discretized problem is equivalent to the fully discretized solution.

The structure of the article is as follows: After introducing the basic nota-
tion we prove the main result Thm. 1 characterizing the minimizers of Φ. This
is basically achieved by considering a dual functional and simultaneously char-
acterizing the solution u of Φ and the solution ρ of the dual problem. In Thm. 2
we show that, although neither u nor ρ have to unique, at every point t ∈ Ω at
least one of them is uniquely determined.

In Section 4 we treat first order regularization, that is, l = 1. In this case,
one can show that with any two solutions u1, u2 of the minimization prob-
lem Φ and corresponding dual functions ρ1, ρ2, also the functions max{u1, u2}
and min{u1, u2} are solutions of Φ with corresponding duals max{ρ1, ρ2} and
min{ρ1, ρ2}, respectively (see Thm. 3). This is the main result needed for the
definition of the taut string algorithm.

Finally, we show the equivalence of the discrete and the continuous formu-
lations (see Thm. 5), and show how the basic idea of the taut string algorithm
can be carried over to the case of arbitrary convex integrands φ (see Thm. 6 and
Alg. 1).
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2 Preliminaries

Let Ω = (a, b) ⊂ R and let l ∈ N. For u ∈ L1(Ω) and (c, d) ⊂ Ω we define the
l-th order variation of u on (c, d) as

|Dlu|(c, d) = sup
{∫ d

c

ψ(l)(t)u(t) dt : ψ ∈ Cl
c(c, d), ‖ψ‖∞ ≤ 1

}
.

Here, Cl
c(c, d) denotes the space of l-times continuously differentiable functions

with support compactly contained in (c, d). The space BVl(Ω) consists of all
functions u ∈ L1(Ω) satisfying |Dlu|(a, b) <∞.

It can be shown that for every function u ∈ BVl(Ω) there exists a signed
Radon measure Dlu such that

∫ b

a

ψ(l)(t)u(t) dt = (−1)l

∫ b

a

ψ(t) dDlu

for every ψ ∈ Cl
c(a, b). Moreover we have the equality |Dlu| = (Dlu)+ + (Dlu)−,

where Dlu = (Dlu)+− (Dlu)− denotes the Jordan-Hahn decomposition of Dlu.
If on the other hand µ is a Radon measure on Ω and p a polynomial of degree
at most l − 1, then the sum of p and the l-fold integral of µ is an element of
BVl(Ω).

Bounded sets in BVl(Ω) are sequentially compact in the sense that every
sequence {uk}k∈N ⊂ BVl(Ω) satisfying supk‖uk‖1 + |Dluk|(Ω) < ∞ has a sub-
sequence {ukj}j∈N converging in the L1-norm to a function u ∈ BVl(Ω).

In this article we consider minimization of a functional

Φ(u) = S(u) +R(u) , (2)

where

S(u) :=
∫ b

a

φ
(
t, u(t)− f(t)

)
dt , R(u) :=

∫ b

a

α(t) d|Dlu| . (3)

We assume that φ and α satisfy the following conditions:

1. φ : Ω×R→ [0,+∞] is a normal and convex non-negative integrand (cf. [10]).
2. There exist c1 ∈ R and c2 > 0 such that

φ(t, ξ) ≥ c1 + c2 |ξ| for all (t, ξ) ∈ Ω × R .

3. α : Ω → (0,+∞) is positive and lower semi-continuous.
4. There exists C ≥ 1 such that

C−1 ≤ α(t) ≤ C for all t ∈ Ω .
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Above assumptions in particular imply that the functional Φ is well-defined:
First, since φ is normal and non-negative, it follows that the function t 7→
φ
(
t, u(t)− f(t)

)
is integrable (with possibly infinite integral). Second, since α is

bounded and lower semi-continuous, it follows that it is integrable with respect
to any finite Radon measure on Ω, which in turn shows that R(u) makes sense.

Additionally, the lower bounds on φ and α imply coercivity of Φ, whereas
the normality of φ and lower-semicontinuity of α imply its lower semi-continuity
in the L1-norm. This proves the existence of a minimizer, provided Φ is proper,
that is, there exists at least one function u ∈ BVl(Ω) such that Φ(u) < ∞. In
the following we will always assume that Φ is proper.

3 Characterization of the Minimizers and Uniqueness

In this section we will provide a characterization of the minimizers of the func-
tional Φ.

By ∂φ(t, ξ) we denote the subgradient of φ with respect to ξ.

Definition 1. Let a ≤ x < y ≤ b and u ∈ BVl(x, y). We define Y(u;x, y) as
the set of all functions ρ ∈W l,1(x, y) such that

– (−1)l−1ρ(l)(t) ∈ ∂φ(
t, u(t)− f(t)

)
for almost every t ∈ (x, y),

– |ρ(t)| ≤ α(t) for every t ∈ (x, y),
– ρ(t) = +α(t) for (Dlu)+-almost every t ∈ (x, y) and ρ(t) = −α(t) for

(Dlu)−-almost every t ∈ (x, y).

Note that Y(u;x, y) in general may be empty.

Theorem 1. A function u ∈ BVl(a, b) is a minimizer of Φα if and only if
Y(u; a, b) ∩W l,1

0 (Ω) 6= ∅.

Proof. Every minimizer u of Φ is characterized by the condition 0 ∈ ∂Φ(u) or,
equivalently, −∂R(u) ∩ ∂S(u) 6= ∅.

Let therefore ψ ∈ −∂R(u)∩ ∂S(u). Using [10, Cor. 3E] it follows that ψ(t) ∈
∂φ

(
t, u(t)− f(t)

)
for almost every t ∈ Ω. Now define

ρ(x) := (−1)l−1

∫ x

a

∫ tl

a

· · ·
∫ t2

a

ψ(t1) dt1 . . . dtl−1 dtl ,

Since by assumption −ψ ∈ ∂R(u) we have

−
∫ b

a

(
v(t)− u(t)

)
ψ(t) dt ≤

∫ b

a

α(t) d
(|Dlv| − |Dlu|) (4)

for all v ∈ BVl(a, b).
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Let first v = u+ p, where p is polynomial of degree at most l− 1 on Ω. Then
Dlu = Dlv, which implies that

0 ≥ −
∫ b

a

(
v(t)− u(t)

)
ψ(t) dt

= (−1)l

∫ b

a

p(t)ρ(l)(t) dt =
l∑

j=1

(−1)l−jρ(l−j)(b) p(j−1)(b) .

Since this inequality holds for every polynomial p of degree at most l − 1, it
follows that ρ ∈W l,1

0 (Ω).
Using integration by parts it follows from inequality (4) that

∫ b

a

ρ(t) dDlv −
∫ b

a

α(t) d|Dlv| ≤
∫ b

a

ρ(t) dDlu−
∫ b

a

α(t) d|Dlu| (5)

for all v ∈ BVl(Ω). Since the right hand side of (5) is finite and R is positively
homogeneous, it follows that

∫ b

a

ρ(t) dDlv ≤
∫ b

a

α(t) d|Dlv|

for all v ∈ BVl(Ω). Since every Radon measure may occur as l-th order total
variation, this implies that |ρ(t)| ≤ α(t) for all t ∈ Ω.

As a consequence we obtain from (4) by choosing v = 0 that
∫ b

a

ρ(t) dDlu =
∫ b

a

α(t) d|Dlu| . (6)

Since |ρ(t)| ≤ α(t) for all t ∈ (Ω), this directly implies that the last item in
Definition 1 is satisfied.

Now assume that ρ ∈ Y(u; a, b) ∩W l,1
0 (Ω). Then ψ := (−1)l−1ρ(l) ∈ ∂S(u).

Thus it is sufficient to prove that −ψ ∈ ∂R(u). We therefore have to show
that (4) holds for every v ∈ BVl(Ω). Since by assumption ρ ∈ W l,1

0 (Ω), this is
equivalent to (5). Since ρ ∈ Y(u; a, b), it follows that the right hand side of (5)
is zero. Thus it is enough to show that

∫ b

a

ρ(t) dDlv ≤
∫ b

a

α(t) d|Dlv|

for all v ∈ BVl(Ω). This inequality, however, follows from the fact that |ρ(t)| ≤
α(t) for all t ∈ (Ω).

Remark 1. Since the function ρ is continuous, it follows that the last item
in the definition of Y(u;x, y) is satisfied if and only if the function u(l−1) is
monotoneously increasing in a neighbourhood of every point x ∈ (a, b) with
ρ(x) > −α(x), and monotoneously decreasing in a neighbourhood of every
x ∈ (a, b) with ρ(x) < +α(x).
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In general neither the minimizer u of Φ nor the corresponding function ρ ∈
Y(u; a, b) have to be unique. The next result, however, states that locally at least
one of them is unique regardless of differentiability or strict convexity of φ.

Theorem 2. Let u, v ∈ BVl(x, y), let ρu ∈ Y(u;x, y) and ρv ∈ Y(v;x, y).
Assume moreover that ρu − ρv ∈W l,1

0 (x, y). Then for almost every t ∈ (x, y) at
least one of the equations u(t) = v(t) or ρu(t) = ρv(t) holds. If φ is differentiable,
then ρu = ρv. If φ is strictly convex, then u = v.

Proof. Denote S+ :=
{
t : ρu(t) > ρv(t)} and S− :=

{
t : ρu(t) < ρv(t)

}
. Since

‖ρu‖∞ ≤ α and ‖ρv‖∞ ≤ α, it follows that

α(t) ≥ ρu(t) > ρv(t) ≥ −α(t) , t ∈ S+ ,

−α(t) ≤ ρu(t) < ρv(t) ≤ +α(t) , t ∈ S− .

Since ρu ∈ Y(u;x, y) and ρv ∈ Y(v;x, y), it follows that Dl(u − v) S+ and
−Dl(u− v) S− are positive Radon measures. In particular,

∫ y

x

(
ρu(t)− ρv(t)

)
dDl(u− v) ≥ 0 . (7)

With integration by parts it follows that
∫ y

x

(−1)l
(
ρ(l)

u (t)− ρ(l)
v (t)

)(
u(t)− v(t)

)
dt ≥ 0 . (8)

Now recall that ρ(l)
u (t) ∈ ∂φ(

t, u(t)−f(t)
)

and ρ(l)
v ∈ ∂φ(

t, v(t)−f(t)
)

for almost
every t. Since φ is a convex integrand and thus its subgradient increasing, this
in particular implies that (−1)l−1ρ

(l)
u (t) ≥ (−1)l−1ρ

(l)
v (t) whenever u(t) > v(t),

and (−1)l−1ρ
(l)
u (t) ≤ (−1)l−1ρ

(l)
v (t) whenever u(t) < v(t). Thus, the integral

in (8) is non-positive, and equals zero if and only if for almost every t ∈ (x, y)
either u(t) = v(t) or ρ(l)

u (t) = ρ
(l)
v (t). Additionally it follows that the integral

in (7) equals zero, which implies that ρu(t) = ρv(t) for |Dl(u− v)|-almost every
t ∈ (x, y).

Now let t ∈ (x, y) be such that ρu(t) 6= ρv(t). Then there exists an open
neighbourhood U of t such that |Dl(u − v)|(U) = 0, and therefore u − v is a
polynomial of degree at most l − 1 on U . In case u(s) 6= v(s) for some s ∈ U , it
follows that u(s) 6= v(s) for almost every s ∈ U , and thus ρ(l)

u − ρ
(l)
v = 0 on U ,

which implies that ρu − ρv is a polynomial on U , too.
Now assume that u(t) 6= v(t). Then there exists a maximal interval (c, d) ⊂

(x, y) such that ρu − ρv and u − v are polynomials of degree at most l − 1 on
(c, d). From the argumentation above and the maximality of (c, d) it follows that
ρu(c) = ρv(c) and ρu(d) = ρv(d).

Since ρu− ρv is a polynomial of degree at most l− 1 on (c, d), it follows that
ρu − ρv can have at most l − 1 zeros in [c, d]. Since ρu − ρv ∈ W l,1

0 (x, y), this
implies that x < c < d < y.
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Now assume that |ρu(c)| = α(c). Since ρu ∈ W l,1(x, y) and |ρu| ≤ α ev-
erywhere on (x, y), this implies that ρ(k)

u (c) = 0 for all 1 ≤ k ≤ l − 1. Since
additionally ρv(c) = ρu(c), we obtain that ρ(k)

u (c) = ρ
(k)
v (c) for all 0 ≤ k ≤ l− 1,

that is, c is an l-fold zero of ρu − ρv on [c, d], a contradiction to the fact that
ρu− ρv is a non-trivial polynomial of degree at most l− 1. Thus |ρu(c)| < α and
|ρv(c)| < α.

This shows that |Dlu|(c) = |Dlv|(c) = 0, which shows that u(l−1) and v(l−1)

are continuous at c. Since u − v is a non-trivial polynomial of degree at most
l−1 on (c, d), it follows that u(k)(c) 6= v(k)(c) for some 0 ≤ k ≤ l−1. Thus there
exists ε > 0 such that u(s) 6= v(s) for s ∈ (c − ε, c). This implies that ρu − ρv

is a polynomial of degree at most l − 1 on (c− ε, d). Consequently, there exists
δ > 0 such that ρu(s) 6= ρv(s) on (c− δ, c), which in turn shows that u− v is a
polynomial of degree at most l − 1 on (c − δ, c). Since Dlu(c) = Dlv(c) = 0, it
follows that in fact u − v is a polynomial of degree at most l − 1 on (c − δ, d),
which is a contradiction to the maximality of the interval (c, d).

This proves that u(t) = v(t) whenever ρu(t) 6= ρv(t).

Now assume that φ is differentiable. Then the l-th order derivatives of ρu and
ρv are ρ(l)

u = φ′(u − f) and ρ
(l)
v = φ′(v − f). Since u = v whenever ρ(l)

u 6= ρ
(l)
v ,

this implies that ρ(l)
u = ρ

(l)
v almost everywhere. Since ρu − ρv ∈ W l,1

0 (x, y), this
shows that ρu = ρv.

Consider now the case where φ is strictly convex. Then the subgradient of φ
is strictly increasing. Since ρ(l)

u ∈ ∂S(u) and ρ(l)
v ∈ ∂S(v), the equality ρ(l)

u = ρ
(l)
v

therefore implies that u = v.

Remark 2. Every function ρ ∈W l,1(x, y) has a unique continuous representative.
Similarly, every u ∈ BVl(x, y) has a unique representative that is continuous
from the left (continuous in the case l > 1). Using these representatives, the
almost everywhere in Thm. 2 can be replaced by everywhere, that is, for every
t ∈ (x, y) either u(t) = v(t) or ρu(t) = ρv(t).

4 First Order Regularization

In the following we consider the case l = 1, that is, R(u) =
∫ b

a
α(t) d|Du|. We

now adapt the definition of Y(u;x, y) to the first order regularization case. This
reformulation allows us to define Y(u;x, y) also when u is an arbitrary function
defined everywhere on (x, y) and taking values in R̄ := [−∞,+∞]. This extension
will be necessary for some results later on.

Definition 2. Let u : (x, y) → R̄. We define Y(u;x, y) as the set of all ρ ∈
W 1,1(x, y) such that

– ρ′(t) ∈ ∂φ(
t, u(t)− f(t)

)
for almost every t ∈ (x, y),

– |ρ(t)| ≤ α(t) for every t ∈ (x, y),
– u is increasing on every interval (c, d) ⊂ (x, y) where ρ > −α, and decreasing

on every interval (c, d) where ρ < +α.
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In this definition we set ∂φ(+∞) = φ∞(1), and ∂φ(−∞) = −φ∞(−1), where
φ∞ : R→ R̄ denotes the recession function of φ, that is,

φ∞(t) := lim
s→+∞

φ(st)
s

.

Theorem 3. Let ui ∈ BV(a, y), i ∈ I, for an arbitrary index set I, and assume
that ρi ∈ Y(ui; a, y) with ρi(a) = 0. Define

ρ+ := sup
i
ρi u+ := sup

i
ui ,

ρ− := inf
i
ρi u− := inf

i
ui .

If ρ± ∈W 1,1(a, y), then ρ+ ∈ Y(u+; a, y) and ρ− ∈ Y(u−; a, y).

Proof. It is sufficient to show that ρ+ ∈ Y(u+; a, y), the other inclusion then
follows by symmetry.

Assume first that I = {1, 2} consists of only two elements. Note that the
condition |ρ+(t)| ≤ α(t) is trivially satisfied.

Denote
x := max

{
t ∈ [a, y] : ρ1(t) = ρ2(t)

}
.

Without loss of generality assume that ρ1(t) > ρ2(t) for every t > x.
In case x < y it follows that for every ε > 0

L1
({t ∈ (x, x+ ε) : ρ′1(t) > ρ′1(t)}

)
> 0 .

Since ρ1(t) ∈ ∂φ
(
t, u1(t)− f(t)

)
and ρ2(t) ∈ ∂φ

(
t, u2(t)− f(t)

)
for almost every

t, and the subgradient of a convex function is increasing, this proves that for
every ε > 0

L1
({t ∈ (x, x+ ε) : u1(t) ≥ u2(t)}

)
> 0 .

Since by assumption α(t) ≥ ρ1(t) > ρ2(t) ≥ −α(t) for t ∈ (x, y), it follows
that u1 is increasing and u2 is decreasing on (x, y). Consequently u1 ≥ u2 on
(x, y).

Let t ∈ (a, y) be such that ρ+(t) > −α(t). We have to show that u+ is
increasing in a neighbourhood of t.

Assume first that ρ1(t) = ρ2(t) > −α(t). Then both u1 and u2 are increasing
near t, which implies that also u+ = max{u1, u2} is increasing near t.

Now assume that ρ1(t) 6= ρ2(t). In case t < x it follows from Thm. 2 that
u1 = u2 in a neighbourhood of t. Since at least one of the functions ρi is larger
than −α near t, this implies that u+ = u1 = u2 are both increasing near t. If,
on the other hand, t > x, then ρ+(t) = ρ1(t) and u+(t) = u1(t), which again
implies that u+ is increasing near t.

The proof that u+ is decreasing in a neighbourhood of every point with
ρ+ < α is analogous.
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It remains to show that ρ+′(t) ∈ ∂φ(
t, u+(t)−f(t)

)
for almost every t ∈ (x, y).

This, however, is a consequence of Thm. 2 and the fact that ρ+ = ρ1 and u+ = u1

on (x, y).

Now assume that I is an arbitrary index set. Then there exists a sequence
{ij}j∈N ⊂ I such that supj ρij (t) = ρ+(t) and supj uij (t) = u+(t) for almost
every t. Denote

ρ̂k := max{ρi1 , . . . , ρik
} , ûk := max{ui1 , . . . , uik

} .

Then {ρ̂k}k∈N and {ûk}k∈N are increasing sequences converging to ρ+ and u+,
respectively. Since limk→∞ ρ̂k = ρ+ ∈ W 1,1(a, y), we additionally have that ρ̂′k
converges to ρ+′ pointwise almost everywhere.

Note first that, since |ρ̂k(t)| ≤ α(t) for every t and k, it follows that |ρ+(t)| ≤
α(t) for every t.

Since ρ̂k+1 = max{ρ̂k, ρik+1} and ûk+1 = max{ûk, uik+1}, it follows by in-
duction that ρ̂k ∈ Y(uk; a, y) for every k ∈ N. In particular, ρ̂′k(t) ∈ ∂φ(

t, ûk(t)−
f(t)

)
for almost every t ∈ (a, y) and every k ∈ N. This shows that also ρ+′(t) ∈

∂φ
(
t, u+(t)− f(t)

)
for almost every t.

Now assume that (c, d) ⊂ (a, y) is such that ρ+ > −α on (c, d). Then also
ρ̂k > −α on (c, d) for large enough k, which implies that ûk is increasing on
(c, d) for k large enough. Thus u+ is on (c, d) the limit of increasing functions
and thus itself increasing. Similarly, u+ is decreasing on every interval (c, d) with
ρ+ < α, which proves that ρ+ ∈ Y(u+; a, y).

Theorem 4. Assume that for almost every t ∈ (a, b) zero is the unique mini-
mizer of φ(t, ·). Let u be any minimizer of Φ. Let x ∈ (a, b) be such that f and
α are constant in a neighbourhood of x. Then also u is constant near x.

Proof. Let ρ ∈ Y(u; a, b) ∩ W 1,1
0 (a, b). Assume without loss of generality that

ρ(x) > −α(x). Then it follows from Thm. 1 that u is increasing in a neighbour-
hood of x. Thus it remains to show that u is also decreasing near x.

In case ρ(x) < α(x), this follows from Thm. 1. We may therefore assume
without loss of generality that ρ(x) = α(x).

Let U be a neighbourhood of x such that u is increasing and f and α are
constant on U . Since by assumption ρ(x) = α(x), it follows that for every t ∈ U
we have ρ(t) ≤ ρ(x). Thus for all ε > 0 we have

L1
({t ∈ (x, x+ ε) : ρ′u(t) ≤ 0

})
> 0 .

Since 0 is the unique minimizer of φ and ρ′u(t) ∈ ∂φ
(
t, u(t) − f(t)

)
for almost

every t, it follows that ρ′u(t) > 0 whenever u(t) > f(t). Thus,

L1
({t ∈ (x, x+ ε) : u(t) ≤ f(t)

})
> 0 .

Since f is constant near x and u is increasing near x, this implies that u ≤ f on
some interval (x− ε1, x+ ε1). One can show in a similar manner that u ≥ f on
an interval (x− ε2, x+ ε2), which proves the assertion.
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Corollary 1. Let zero be the unique minimizer of φ(t, ·) for almost every t.
Assume that there exist a = x0 < . . . < xn = b such that f and α are constant
on each interval (xi−1, xi), 1 ≤ i ≤ n. Then also every minimizer u of Φ is
constant on each interval (xi−1, xi).

5 Nonlinear Taut String Algorithm

In the following we assume that zero is the unique minimizer of the function
φ(t, ·) for almost every t ∈ Ω. Additionally we assume that for almost every
t ∈ Ω the function φ(t, ·) is strictly convex and differentiable.

Let a = x0 < . . . < xn = b be a discretization of Ω. Let moreover f :=
(f1, . . . , fn) ∈ Rn and α := (α1, . . . , αn) ∈ Rn satisfy αi > 0 for all i. Define the
lower semi-continuous extension of α to Ω:

α(t) :=

{
αi, if t ∈ (xi−1, xi) ,
min{αi+1, αi}, if t = xi .

Define moreover α̃i := min{αi+1, αi} = α(xi) for 1 ≤ i ≤ n− 1.
We first consider the semidiscrete problem of minimizing the functional

Φ̂(u) =
n∑

i=1

∫ xi

xi−1

φ
(
t, u(t)− fi

)
dt+

∫

Ω

α(t) d|Du| .

Theorem 5. Minimizing Φ̂ is equivalent to minimizing the fully discrete func-
tional

Ψ(u) =
n∑

i=1

∫ xi

xi−1

φ
(
t, ui − fi) dt+

n−1∑

i=1

α̃i |ui+1 − ui|

over Rn, that is, u is a minimizer of Φ̂, if and only if u(t) = ui is constant on
each (xi−1, xi) and u = (u1, . . . , un) is a minimizer of Ψ .

Proof. This is a direct consequence of Cor. 1.

This last result allows us to apply the results of the previous sections to the
discrete functional Ψ .

For v = (v1, . . . , vk) ∈ R̄k, 1 ≤ k ≤ n, we define ρv = (ρv0 , . . . , ρ
v
k) ∈ Rk+1

setting

ρvi :=
i∑

j=1

∫ xj

xj−1

φ′(t, vi − fi) dt .

For 1 ≤ k ≤ n we define u(±,k) ∈ R̄k setting

u(+,k) = sup
{
v ∈ Rk : |ρvi | ≤ α̃i, vi+1 ≥ vi if ρvi ≤ α̃i, vi+1 ≤ vi if ρvi ≥ −α̃i

}
,

u(−,k) = inf
{
v ∈ Rk : |ρvi | ≤ α̃i, vi+1 ≥ vi if ρvi ≤ α̃i, vi+1 ≤ vi if ρvi ≥ −α̃i

}
.

Here we define α̃n := 0.
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Theorem 6. The vectors u(±,k) are well-defined and u := u(+,n) = u(−,n) is
the unique minimizer of Ψ .

For a fixed 1 ≤ i ≤ n the sequence {u(+,k)
i }k≥i is decreasing, {u(−,k)

i }k≥i is
increasing, and u(+,k)

i ≥ u
(−,k)
i for all k ≥ i. If in particular u(+,k)

i = u
(−,k)
i for

some k ≥ i, then also ui = u
(±,k)
i .

Proof. The first part is a consequence of Thms. 5, 3, and 1. The second part
then directly follows from the definitions of u(±,k).

From Thm. 2 it follows that whenever u(+,k)
i = u

(−,k)
i for some i ≤ k, then

also u(±,k)
j = uj for all j ≤ i. This shows that for every 1 ≤ k ≤ n there exists

Nk such that u(±,k)
i = ui for i ≤ Nk, and u(+,k)

i > u
(−,k)
i for i > Nk.

Now denote ρ(±,k) := ρu
(±,k)

. Since by assumption the function φ(t, ·) is
strictly convex, it follows that ρ(+,k)

i > ρ
(−,k)
i for i > Nk, which in turn implies

that u(+,k)
i+1 ≥ u

(+,k)
i and u(−,k)

i+1 ≤ u
(−,k)
i for every i > Nk.

These observations lead to the following algorithm.

Algorithm 1 (Nonlinear Taut String Algorithm)

1. Initialize N0 = 0, ρ0 = 0 and u is an empty vector.
2. For k = 1, . . . , n do:

(a) Let v± ∈ R̄k−Nk be the maximal (minimal) increasing (decreasing) vec-
tors satisfying

k∑

i=Nk−1+1

∫ xi

xi−1

φ′(t, v+
i−Nk−1

− fi) dt ≤ +α̃k − ρk ,

k∑

i=Nk−1+1

∫ xi

xi−1

φ′(t, v−i−Nk−1
− fi) dt ≥ −α̃k − ρk−1 .

(b) Let j be the maximal index such that v+
j = v−j . Set j = 0 if no such

index exists.
(c) Define Nk := Nk−1 + j and

ρk := ρk−1 +
Nk∑

i=Nk−1+1

∫ xi

xi−1

φ′(t, v+
i−Nk−1

− fi) dt .

(d) Append (v+
1 , . . . , v

+
j ) to the vector u.

3. The final vector u is the minimizer of Ψ .
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6 Conclusion

We have given a characterization of the minimizers of convex regularization
functionals with normal and convex integrands as fidelity term and non-constant
higher order total variation as penalty term. One direct consequence of this
characterization is that, in the case of a constant regularization parameter α > 0,
the solution is locally either a polynomial of order l − 1 or equals the data.

In the case of first order regularization the corresponding results are stronger.
Here we have shown that for piecewise constant data f and piecewise constant
regularization parameter α, also the solution u is piecewise constant with the
same jump locations. For higher order regularization this is not the case, as
examples in [9] show. In particular, this result implies the equivalence of discrete
and semi-discrete solution of the problem.

Finally, we have generalized the taut string algorithm for the solution of the
discretized first order regularization problem. Although this algorithm is not as
efficient as in the quadratic case (there it is of complexity O(n)), it still has some
advantages. In particular the fact that the solution u is computed incrementally
makes the algorithm suited for online smoothing of incoming data, and also eases
a possible parallelization for the handling of large data sets.

The main open questions deal with higher order regularization. Assuming
that f and α are splines of order l − 1, it is not clear that the minimizer u is
a spline as well (that is, u has only finitely many nodal points), and the nodal
points of u are not as easily determined as in the first order case. Moreover, the
definition of a taut string like algorithm for the solution of higher order problems
is completely open.
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