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IMPEDANCE-ACOUSTIC TOMOGRAPHY

BASTIAN GEBAUER! AND OTMAR SCHERZER!

Abstract. In this work we present a new hybrid imaging technique that combines electrical
impedance tomography with acoustic tomography. The novel technique makes use of the fact that
the absorbed electrical energy inside the body raises its temperature, thus leading to expansion
effects. The expansion then induces an acoustic wave which can be recorded outside the body and
consequently be used to calculate the absorbed energy inside the body from which the electrical
conductivity can be reconstructed. In other words we try to combine the high contrast of EIT with
the high resolution of ultrasound.

1. Introduction. In electrical impedance tomography (EIT) an electrical volt-
age f(x) is applied to the surface S of a body B, thus giving rise to an electrical
potential u(z) inside the body. One then measures the resulting surface current j
and tries to reconstruct the conductivity inside the body from one or several voltage-
current pair(s) (f(z),j(x)) on the boundary.

The problem is known to be severely ill-posed and though a number of commercial
EIT systems exists a stable reconstruction algorithm still seems to be out of reach.
As a starting point for the interested reader we refer to the survey articles of Cheney,
Isaacson and Newell [7], Borcea [4] [5], Lionheart [19] and Bayford [3]. A recent study
reporting on the high permittivity and conductivity contrast of different breast tissues
over the frequency range 40Hz—100MHz can be found in Stoneman, et al, [27]. It has
to be noted, however, that the conductivity value alone does not seem to be a sufficient
criterion to distinguish cancerous from healthy breast tissue, cf. also the studies of
Lazebnik, et al, [16], [I7] for the microwave frequency range from 0.5 to 20GHz.

A promising approach to overcome the intrinsic ill-posedness of the problem is to
combine electrical impedance tomography with another imaging system that provides
additional information. The most prominent example is magnetic resonance electrical
impedance tomography (MREIT), that combines EIT with measurements of the mag-
netic flux from which one obtains the current density inside the body, cf., the works
of Kwon, Woo, Yoon and Seo [14], S. Kim, Kwon, Seo and Yoon [12], Y. J. Kim,
Kwon, Seo and Woo [I1] and the recent work of Nachman, Tamasan and Timonov
[22]. Another approach is magnetoacoustic imaging where an exterior magnetic field
is used to generate displacements in the body via the Lorentz force. The resulting
pressure wave is measured by ultrasound transducers and provides information about
the interior current density, cf., e.g., Ma and He [20] and the preprint [2] of Ammari,
Capdeboscq, Kang and Kozhemyak for recent references. Independently of this work,
Ammari, Bonnetier, Capdeboscq, Tanter and Fink have recently proposed to use ul-
trasound to produce localized elastic perturbations to locally change the conductivity
inside a body, cf. [I]. From the resulting change in the EIT-measurements they obtain
the energy density inside the body and use this additional information to reconstruct
the conductivity.
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In this work we propose a new method to obtain additional interior information for
electrical impedance tomography by combining it with ultrasound tomography. Simi-
larly to magnetoacoustic imaging we obtain our additional information from creating a
pressure wave inside the body. However, we do not rely on an externally applied mag-
netic field and the Lorentz force but on thermal expansion. The resulting additional
interior information is the same that Ammari et al. obtain by elastic deformations,
i.e., the interior energy density.

To be more specific, we will make use of the fact that the absorbed energy inside the
body raises its temperature, thus leading to expansion effects. The expansion then
induces an acoustic wave which can be recorded outside the body and consequently
be used to calculate the absorbed energy inside the body. The advantage of using
acoustical rather than electromagnetic measurements for the reconstruction is that
we can then choose the excitation frequency small with respect to the speed of elec-
tromagnetic waves (so that the model of impedance tomography holds true) but large
with respect to the speed of sound (so that the we obtain a high resolution in the
reconstructions). In other words we try to combine the high contrast of EIT with
the high resolution of ultrasound. The ideas for this combination stem from thermoa-
coustic computerized tomography where a body is illuminated and thus heated up
with a short pulse of light and the resulting acoustic pressure wave is recorded. For
an introduction into the field of thermoacoustic tomography we refer to the recent
special section in the journal Inverse Problems [23]. A survey on experimental setups
for thermoacoustic imaging can be found in Xu and Wang [28].

The outline of this work is as follows. We start by developing the model of impedance-
acoustic tomography in SectionZTland study the well-posedness of the resulting direct
problem in In Section B we study the associated inverse problems and derive first
reconstruction algorithms. Finally we show a preliminary numerical examples for
the simulation of impedance-acoustic tomography as well as for the reconstruction
algorithms in Section @l

2. Impedance-acoustic computerized tomography.

2.1. Derivation of the modeling equations. If a stationary electrical voltage
f(x) is applied to the surface S of a body B C R™, n = 2 or n = 3, this gives rise to
an electrical potential u(z) inside the body. In the state of equilibrium the potential
is given by the solution u of

V- (o(z)Vu(z)) =0 in B, (2.1)
u(z)|ls = f(z) on S, (2.2)

where o(z) is the specific conductivity of the body. One can then measure the resulting
surface current

j(@) = o(z)d,u(z)|s

(v = v(z) is the outer normal vector at a surface point z € S) and try to reconstruct
o(z) from one or several voltage-current pair(s) (f(z), j(z)).

An electrical potential almost instantly reaches its state of equilibrium, so that if

we apply a time-dependent voltage F'(z,t) = f(x)/g(t) that varies slowly in time

(compared to the speed of electromagnetic waves) the induced electric potential is

given by its quasi-statical limit U(xz,t) = u(z)\/g(t), where u(z) solves ([2.1I),(22).
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(We choose the notation /g(t) in order to have g proportional to the amount of
applied electrical power in equation (2.3]) below.)

When electrical currents are flowing through a body three effects can be observed,
stimulation of nerves, electrolysis and thermal heating, cf. e.g. [9]. We concentrate
on the heating effect and suggest to use high frequency currents, which have less
stimulating effects on the nerves. Indeed, the effect of thermal heating with high
frequency currents is exploited in high frequency surgery, cf. e.g. [9].

We will make use of the usual convention that "V” and ”A” are taken only with
respect to spatial variables and that first, resp., second partial time-derivatives are
denoted by one, resp., two dots. Joule’s law describes the relation between the rate
of variation of energy @, i.e. the absorbed electrical power density Q(:C, t), and the
electric potential by

Qz,t) = 0(2)|VU (2,1)* = o(x)|Vu(2)[*g(t). (2.3)

If the voltage is only applied for a short time we can neglect thermal diffusion so that
the change of temperature T'(z,t) is given by

Ta,t) = mcz(m), (2.4)

where c(z) is the specific heat capacity (i.e., the amount of energy needed to heat
up a unit mass of the material by one unit of temperature) and p(x,t) is the mass
density.

Before we continue with our modeling equation, let us give a rough quantitative
estimate of practically realizable temperature changes. We use the standard SI-units
cm, m for centimeters and meters, us for microseconds, g for grams, 2 for ohm, A for
ampere, MHz for megahertz, J for joule, and mK, K, for millikelvin and kelvin. For
the specific heat capacity and density we take the values of breast fat from Robinson,
Richardson, Green and Preece [24, Table 5], ¢ = 2.43J/(gK) and p = 0.934g/cm?>.
The specific electrical conductivity of adipose tissue at a frequency of 1MHz is about
o =0.4/(Qm), cf., 27, Fig. 5]. Thus, a specimen cube of 1cm side length has a mass
of M = 0.934g and its electrical resistance is R = o188t — 9500 Applying a

area

pulse of At = 1us with ¢|Vu| = I = 3A will change the temperature of this cube by

KQA?pus
J

This temperature raise seems enough to produce ultrasound waves, which can be
measured with ultrasound transducers while still being unharmful to biological tissue.

11
AT = — = RI?At =~ 990 =0.99mK .
M c

We now proceed as in the derivation of the equations of thermoacoustic tomography
in the book of Scherzer et al. [26], cf. also the publication of Haltmeier, Schuster and
Scherzer [10], or the recent review article of Xu and Wang [28]. The change of the
material’s temperature can be related to the change of its density p and to the change
of its pressure p via the so-called (linearized) expansion equation

BT (1) = i 1) — (1) (2.5)

S
where vy is the speed of sound and ((x) is the thermal expansion coefficient that
specifies the increase of volume per increase of temperature. Under the assumption
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that the density p is only slightly varying from a constant value po and only small ve-
locities occur, the velocity v and the density p are coupled by the linearized continuity
equation

plx,t) = —poV - v(x, ). (2.6)

Furthermore assuming an inviscid, non-turbulent flow of material with just slightly
varying pressure, the velocity v is related to the pressure p by the linearized Euler
equation

pov(z,t) = —Vp(z,1). (2.7)

Combining ([23)—(27) and applying again our assumption that that the density p is
only slightly varying from pg, we obtain

(z,t) — Ap(x, 1) = o(2)|Vu(z)[*4(t).

—D
Vs

If the electric energy is only applied for a very short time (compared to the speed of
sound) we can replace g(t) by a é-peak and obtain that p is the solution of

U—2j)'(3:, t) — Ap(z,t) =0 in R",
= Alz) o(z)|Vu(x)? T in R"

p(.0) = 2o (@) Vu@)Psle) R,

p(z,0) =0 in R™,

where x p is the characteristic function of B. We furthermore assume that the specific
heat capacity and the thermal expansion coefficient are approximately constant and
known. By a standard change of units we can then eliminate vg, 3, po and ¢ from the
equations and obtain together with (2.1]) and ([2:2)) the equations of impedance-acoustic
tomography,

V-oVu(z) =0 in B, (2.8)
u(z)ls =1 on S, (2.9)

p(z,t) — Ap(z,t) =0 in R", (2.10)
p(z,0) = o(z)|Vu(z)*xp(z) in R, (2.11)

p(x,0) =0 in R™. (2.12)

The forward problem of impedance-acoustic tomography can now be stated as follows:
Given the conductivity o and the applied voltage f on S determine the resulting
currents 00, u|s and the resulting pressure wave p(z,t) that solves [2Z8)—(Z12). The
inverse problem of impedance-acoustic tomography consists of reconstructing the con-
ductivity o from knowledge of the applied voltage f and measurements of the resulting
currents 00, u|s and the resulting pressure wave p on some part of R3. In this work
we will restrict ourselves to the case where p is measured on the whole surface S for
some time interval [0, 7] and we will furthermore assume that o is known in a small
neighborhood of this surface S.



Finishing this subsection, let us recapitulate the crucial assumptions regarding the
time-scale in our model and give a rough estimate of feasible parameters. The applied
voltage must vary slowly in time compared to the speed of electromagnetic waves, so
that the (quasi-static) equations of impedance tomography are valid. The maximum
frequency of Rensselaer’s ACT 4 EIT system is 1MHz, cf. Saulnier, Liu, Tamma,
Xia, Kao, Newell, and Isaacson [25]. At the same time, the voltage must only be
applied for such a small time that thermal diffusion can be neglected and that the
applied energy takes the form of a delta-pulse in the time-scale of sound waves, i.e.,
that also stress propagation can be neglected during the application of the pulse. The
latter two conditions are commonly referred to as thermal and stress confinements in
thermoacoustic tomography, cf. Xu and Wang [28]. The stress confinement is the
more stringent condition and, for a pulse of 1us, limits the expected spatial resolution
to 1.5mm, cf. [28].

2.2. Well-posedness of the direct problem. Throughout this work we will
assume that B C R, n = 2 or n = 3, is a smoothly bounded domain, 7' > 0,
f e W/A4S) and o € W}F’OO(B), where the subscript + denotes the subspace of
functions with positive essential infima. Under this assumption we obtain

LEMMA 2.1. For every o € W}F’OO(B), there exists a unique solution u € W*4(B) of

(Z8) and (29). Setting
E(o) :=0o|Vul?,  where u solves (Z.8) and (Z3)

defines a mapping & : W}F’OO(B) — HY(B).

Proof. Note that the space W7/44(S) is the space of traces of functions from W2 (B).
From standard regularity results for elliptic equations, we obtain that for every o €
W}F’OO(B) there exists a unique solution u € W?24(B) of ZJ) and @3) (cf., e.g.,
Miranda [2I, Thm. 38,V1.]). Thus the result follows from the product rule for Sobolev
functions. O

Some caution has to be taken in the treatment of the acoustic equations (Z10)-(212]).
Though we have just seen that our regularity assumptions guarantees that the initial
condition is a H'-function in B, its continuation by zero to R™ will in general have
a jump across S. Roughly speaking, this jump persists in the pressure wave, so that
our measurements p|g are in general not well-defined (as a function). Of course, from
a practical point of view there cannot be an ambiguity in the measurement data,
thus this problem shows that the idealization of a pressure wave appearing instantly
in a sharply bounded body is not consistent with the idealization of a measurement
surface with zero thickness.

However, using our additional assumption that we know the conductivity o on S we
can circumvent this problem without giving up one of these two idealizations. The
quantity o(z)|Vu(x)|?|s can be calculated from o|g, the measured surface currents
o(x)d,u(r)|s and the applied voltage u(x)|s = f(x). Using a function po(z) € H(B)
with the same boundary values po(z)|s = o(z)|Vu(x)|?|s, we can define the solution
p of

p(z,t) — Ap(x,t) =0 in R", (2.13)
p(2,0) = po(x)xp(z) in R, (2.14)
p(z,0) =0 in R". (2.15)
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The difference ¢ := p — p then solves the wave equation with an initial condition in
W1(R™), and thus its trace on S is well-defined. Before we state this in a rigorous form
below, let us comment on the practical realization of this approach. One can easily
compute a smooth approximation to p and evaluate this on S. The difference of the
measurement of p on S and this quantity can then be regarded as an approximation
to the well-defined, idealized model measurements ¢|s.

We now restate the above arguments in a rigorous form.

LEMMA 2.2. Denote by
v: HY(B) — HY*(S), v g,

the trace operator on S and let v~ : H'/?(S) — H'(B) be a continuous right inverse
of v, i.e., vy~ = Id.

For every o € Wi’oo(B) there exists a unique solution p € C(0,T, L*(R™)) of (Z13)-
(213) with po = v vE(0) and a unique solution p € C(0,T, L*(R"™)) of (210)
and (212) with p(xz,0) = E(o)xp. Their difference ¢ == p — p is an element of
C(0, T, WY(R™)) and it is the unique solution of

G(z,t) — Agq(z,t) =0 in R™, (2.16)
Q(xv 0) = qO(I)XB (I) in R", (217)
§(z,0) = 0 in R™. (2.18)

with o = (I — vy~ v)E(c) € H}(B). Also, the mapping
F: HYB)— C(0,T,H/?(S)), qo — qls,  where q solves (216)-(218),

is continuous and linear.

Proof. This follows from classical results on the wave equation; cf., e.g., Lions and
Magenes [I8, Chp. 3, Thm. 9.3] for the unique existence of p, p € C(0,T, L?(R™)) and
[18, Chp. 3, Thm. 8.2] for the unique existence of a solution ¢ € C(0,T, W(R")) of

RIo-@I1y. O

3. Inverse problems of ImpACT. In the last section we have seen that using
the known boundary values of the conductivity o|g, the measured surface currents
o(x)d,u(r)|s and the applied voltage f(x) we can calculate v€(o) = o|Vu|?|s and
thus the modified pressure measurements q|s from the real measurement data. The
dependance of ¢|g from the unknown conductivity o is given by

qls = F(I =v77)E(0).

Hence, the inverse problems of determining the conductivity from the measurements
leads to the problems of inverting the two linear operators F, (I —~~+) and the non-
linear operator £. Since v&(o) is known, the inversion of (I — v~ 7y) consists simply
of adding v~ v&(o). It therefore remains to invert F, i.e., to determine the initial
value of a pressure wave from its trace on S, and to invert &£, i.e., to determine the
conductivity of a body from its electrical energy density.
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3.1. Determining the initial condition of the pressure wave. Recall that
F: HYB) — C(0,T, H/?(S)) maps the initial value gy € H{} to the boundary values
qls, where ¢ € C(0,T, H'(R™)) solves

G(z,t) — Ag(z,t) =0 in R",
q(z,0) = qo(z)xp(z) inR",
q(z,0) =0 in R".

The inverse problem of determining gy from ¢|s has been studied to some extent
in the context of thermoacoustical tomography. We will use a conceptionally simple
time-reversal algorithm that is also mentioned in the work of Finch, Patch and Rakesh
[8, Thm. 5] and for which Burgholzer, Haltmeier, Matt and Paltauf show numerical
results in the recent work [6]. Assume that T > diam(B), then in the case of three
spatial dimensions, the pressure wave ¢ will have completely left the body B, so that
q(z,T)|p = 0 and ¢(z,T)|p = 0. Thus the time-reversed pressure wave r(z,t) :=
q(z, T — t)| g solves the initial boundary value problem,

P(z,t) — Ar(z,t) =0 in B, (3.1)
r(z,t)ls =g onsS, (3.2)

r(z,0) =0 in B, (3.3)

7(2,0) =0 in B, (3.4)

where the boundary data g = q(z,T — t)|s are just the time-reversed measurements.

LEMMA 3.1. For every g € C(0,T, H'/2(S)), there exists a unique solution r €
C(0,T, L*(B)) to the equations (31)—(3-4).

Proof. Under the weaker assumption that g € L2(0,T,L?(S)) this was shown by
Lasiecka, Lions and Triggiani in [I5, Thm. 2.3]. O

Since g(z, T —t) solves B.I)—([B4), the initial condition ¢(z,0)|p = r(x, T) can thus be
reconstructed from g(z,t)|s by solving B.I)-B4) with g = q(z,T — t)|s. Physically
this can be interpreted as a combination of time-reversal of waves and the restriction
to a bounded domain.

In the case of two spatial dimensions the wave does not leave the body completely,
thus the solution of BI)-B.4]) will not completely agree with ¢(x,T — t). However,
if T is chosen large enough, then only a small part of the wave will still be in B, so
that one can expect that the above method will still yield a good approximation to

q(z,0).

3.2. Determining the conductivity from the electrical energy. We now
turn to the determination of the conductivity from the electrical energy, i.e, to the
inversion of the non-linear mapping

£: W®(B) = H\(B), o o(@)|Vu(@)P,
where u solves
V-oVu(z) =0 inB, and uls=f

(Note we keep the applied voltage f fixed throughout this work.)
7



In [I], Ammari et al. reformulate this problem using the 0-Laplacian and propose
an iterative reconstruction strategy that relies on the measurement of two different
current patterns. We derive here a similar iterative scheme that is based on a formal
Newton algorithm. Denote by u, the solution of

V-oVu =0, uls = f.

It is well known (and easily shown) that (for supp7 C B) the directional derivative

v, = lim o+hT Us
h—0 h
is the solution of
V- -oVv, = -V - -7Vu,, v|lg = 0. (3.5)

It follows immediately that

E' (o)1 = 7|Vus|* + 20Vu, - Vo,.

If £ = &(x)|Vus (2)|? is the reconstructed energy density and o, is an approximation
to the true conductivity &, then a Newton-step would consist of solving

E'(0)8 = E — 00|V, (2)]?

and the update 0,41 = 0, + 0.

To get around the computationally expensive inversion of £'(c), we can split it into
two parts

E'(o)r = (M, + P,)T,
with
Myt = 7'|Vug|2 and P,7:=20Vu, - Vo,.

Apart from the problem that |Vu| might be zero, the inversion of the multiplication
operator M is computationally easy. Instead of using the exact inverse (M, + P,) ™1,
one can use the approximate inverse (I—M_ 1 P,)M_ !, which is justified when M1 P,
is small. Notably, this approximation results in the same algorithm that Ammari et
al. propose in [I] and that is therein motivated by a 0-Laplacian formulation:

Given E, f and oy,
o Calculate Vu,,

e Set 7:= W — Onp-
e Calculate the solution v, of (B.1]).
E —20Vu, - Vo,

|Vu,|?

e Update 0,41 :=
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Fic. 4.1. Ezact conductivity and electrical energy distribution.

4. Numerical examples. We have tested our inversion algorithm on simulated
two-dimensional data. The left side of Figure 1] shows the exact conductivity dis-
tribution o that we chose as our test example. A background conductivity of 1 is
distorted by two discs centered at (—0.4, —0.15) and (0.4,0.15) in which the conduc-
tivity is given by

1+ Ajexp(R; ' — (RS — p3)™/?), j=1,2,

where R; = Ry = 0.3 are the radii of the two discs, p; is the respective distance to
the center of the j-th disc, and A; = 2, A3 = 0.5, so that the conductivity is smoothly
raised to 3, resp., lowered to 0.5 inside the discs.

Using the commercial finite element software Comsol we calculated the corresponding
electrical energy £(o) and evaluated it using linear interpolation on the part of an
equidistant 200 x 200 grid on [—1,1]? that belongs to the unit circle. £(o) is shown
on the right side of Figure .11

As the continuous right inverse v~ of the trace operator we take the solution op-
erator for the Dirichlet operator for the Laplace equation, which is implemented by
expanding v&(o) into the L?-orthonormal functions

{\/%, %sin(mg@), %cos(mgo) ‘ m= 1,...,100}

and using the analytical solutions for the corresponding Dirichlet problems

11 1 . ‘ }

——, —=sin(m)r™, — cos(mp)r"™ |m=1,...,100 p,
{2 = sintmpr, = costmg)
where (r,¢) denote the polar coordinates. Accordingly, the left side of Figure
shows the quantity (I —~v~v)E(o).
The operator F is simulated by solving the wave equation with a standard central
finite difference scheme on a sufficiently large domain. The values of g on the boundary
S are then evaluated using linear interpolation on a equidistant grid on S. Thus,
simulated (modified) measurements ¢|g are obtained.

We then tested our inversion algorithm on these simulated measurements. The Dirich-
let problem for the wave equation was solved using the commercial finite element

9



F1G. 4.2. Ezact and reconstructed (modified) energy distribution.

0.5 0.5

-0.5 -0.5

F1G. 4.3. Profiles of exact and reconstructed (modified) energy.

software Comsol. The reconstructed distribution r(z,T), T = 4, is then evaluated
using linear interpolation on the part of an equidistant 200 x 200 grid on [—1, 1]? that
belongs to the unit circle. Figure compares the exact (modified) energy distri-
bution ¢(z,0) = (I — v v)&(o) (on the left side) with the reconstructed distribution
r(z,T), T =4 (on the right side). Figure 3] shows profiles of the exact (solid black
line) and of the reconstructed energy (dashed red line) on the x-axis (left plot) and
on a line connecting the peaks of the true conductivity.

The known quantity v~ vE(o) is then added to r(x,T) and the Newton algorithm
described in Section is used on this data. As initial guess we used a constant
conductivity of 1. The equations appearing in the Newton algorithm were again
solved using the commercial finite element software Comsol. Note that thus the
same finite element grid is used for the simulation of £ as well as for its inversion.
However, the energy is not given, resp., evaluated on this grid but on the independent
equidistant grid described above, which minimizes the risk of an inverse crime. For
the convenience of the reader we show on the left side of Figure 4] again the true
conductivity to compare it with the best reconstruction that was obtained in the 24th
Newton step (shown on the right side). We observed that the reconstructions do not
improve afterwards which seems to be due to accumulated errors. Figure 5] which
is organized in the same way as Figure[4L.3] compares profiles of the true conductivity
with the reconstruction.
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Fic. 4.4. Ezxact and reconstructed conductivity distribution.
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0.5 0.5

Fic. 4.5. Profiles of exact and reconstructed conductivity.
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