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REGULARIZED RECONSTRUCTION OF SHAPES WITH

STATISTICAL A PRIORI KNOWLEDGE

MATTHIAS FUCHS AND OTMAR SCHERZER

Abstract. The reconstruction of geometry or, in particular, the shape
of objects is a common issue in image analysis. Starting from a varia-
tional formulation of such a problem on a shape manifold we introduce a
regularization technique incorporating statistical shape knowledge. The
key idea is to consider a Riemannian metric on the shape manifold which
reflects the statistics of a given training set. We investigate the proper-
ties of the regularization functional and illustrate our technique by ap-
plying it to region-based and edge-based segmentation of image data. In
contrast to previous works our framework can be considered on arbitrary
(finite-dimensional) shape manifolds and allows the use of Riemannian
metrics for regularization of a wide class of variational problems in image
processing.

1. Introduction

This work is concerned with the problem of detecting geometries in imag-
ing. In a very general setting this means the identification of N -dimensional
hypersurfaces in an (N +1)-dimensional space. We expect this surface to be
the minimizing argument of an energy functional, which depends on the spe-
cific application we have in mind. In case of image segmentation it might be
the Mumford-Shah functional [28, 29] or the “Snakes” energy [22]. In case of
more general inverse problems we can think of regularization functionals like
Tychonoff-regularization [11]. All these energies incorporate some kind of
regularization to ensure the well-posedness of the corresponding variational
problems. Common choices are the inclusion of the area of the hypersurface
or its distance to some fixed argument in the energy functional. This forces
these quantities to stay bounded and thus imposes regularity on them.

As an example consider the case of segmenting planar images. There the
notion of the area of the hypersurface corresponds to the length of the curve
defining the segmentation. If we additionally assume that the segmentation
is defined by a single continuous curve of finite length, then this curve can
be modeled as a differentiable map from a bounded interval into the image
domain. The norms of this map and its derivative are one possibility to
measure the distance between the argument of the segmentation functional
and a fixed curve known beforehand.

A second basic problem is the right representation of the hypersurface in
implementations. There exists no canonical approach to model such objects,
but the right choice depends on the expected topology and regularity of the
solution.
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We propose the use of intelligent shape models to represent the geometry
we want to detect and to regularize the underlying detection problem. These
shape models share the following two characteristics:

• A shape model is associated with a finite dimensional parameter
manifold. An element of this manifold corresponds to an instance
of the shape model. Furthermore, we assume a function which com-
putes the hypersurface corresponding to specific parameters. We
frequently call this hypersurface the visual appearance or represen-
tation of the shape.

• A shape model can be associated with statistical data which de-
scribes how frequently individual instances of the shape model occur.
In contrast to the parametrization which determines which shapes
are technically feasible, the statistical part of the shape model tells
which shapes are likely to actually appear in real-world applications.

We employ the two properties above to define a regularization technique
which takes into account a priori information on the expected solution. As
illustrated by two examples this enables us to detect geometries even if the
original data is perturbed (e.g. some parts of it are missing), or allows us to
significantly reduce the complexity of reconstruction methods.

Both, the statistical analysis of shapes and the use of a priori knowl-
edge for applications in segmentation have been investigated by numerous
researchers. Chen et al. [6, 5] and Gastaud et al. [18] evolve an active
contour and penalize its distance from a reference curve, which is obtained
as the mean shape of some training data. A similar approach in terms of
level set functions instead of explicit curves is used by Cremers et al. [9].
Because of the level set approach the level set function of the mean shape
and the evolving level set function have to be aligned. Further properties
of the training statistics, namely the principal directions of its distribution
and the variance within them, are not considered in these papers.

Leventon et al. [24] combine a maximum a posteriori (MAP) approach
with geodesic active contours. They perform a Principal Component Anal-
ysis (PCA) to obtain a low dimensional representation of the distance func-
tions of the training data and assume a Gaussian distribution of the shapes
in each principal component. After each iteration of the evolution of the
geodesic active contour they compute the MAP estimate of the current level
set function and evolve the level set function into this direction. Thus, this
approach takes into account the information about the variance of the train-
ing data. Fang and Chan [12] recently have adopted a similar approach but
adaptively adjust the influence of the shape prior.

A different idea to incorporate statistical a priori information was pro-
posed by Rousson and Paragios [31]. They assume the level set represen-
tation of the shapes to be normally distributed in each pixel. Considering
aligned distance functions of the training data, the authors compute maxi-
mum likelihood estimators of the mean values and the variances in each pixel
(under the condition of some regularity constraints). Then they combine the
geodesic active contour evolution with a force which pulls the evolving con-
tour towards its MAP estimator. Fritscher and Schubert [16] represent the
training set and the evolving shape as 3D deformations of a reference shape.
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These deformations consist of a rigid global transformation and non-rigid
local deformations.

In [10, 8] Cremers et al. perform a PCA of the control points of quadratic
B-spline representations of the training shapes. They give a variational for-
mulation of the segmentation problem (based on the Mumford-Shah func-
tional) and add the squared Mahalanobis distance obtained from the PCA
of the training data to the segmentation energy. This penalizes deviations
from the mean shape depending on the direction of the deviation. As for
the MAP approach the distance term forces the minimizer to be “probable”
in terms of the distribution of the training data. Compared to level sets, the
representation of the shapes as vectors of spline control points is relatively
sparse.

Tsai et al. [32] perform a PCA of the distance functions of the training
shapes and consider the segmentation problem on the significant principal
components only. This stabilizes the segmentation process and automati-
cally incorporates the a priori data but does not reflect the variance of the
training data within the principal components.

In all the stated level set approaches the pointwise difference between
aligned level set functions forms the basis of the respective statistical ap-
proach. The mathematical relation between the linear vector space struc-
ture of level set functions and geometric shape spaces is not known. If spline
curves are used, their control points always have to be labeled in the right
order to compute distances between two shape instances. Moreover, the geo-
metric interpretation of linear combinations of spline control point vectors
is again not clear in a purely geometric setting.

Fletcher et al. [15, 14] propose the use of parametric representations of
the medial axis transform of shapes (M-Reps). These representations are
elements in a parameter manifold rather than in a vector space and the
geodesic difference between two such objects corresponds much better to
the visual perception of the “difference” between shapes. In these works, the
authors generalize the concept of the PCA to the principal geodesic analysis
(PGA, cf. Section 5) on manifolds.

The general idea of statistics of shapes on tangent spaces of Riemannian
shape manifolds goes back Le and Kendall [23]. In the infinite setting the
idea of replacing shapes on a manifold by the corresponding tangent vectors
was investigated by Vaillant et al. and Miller et al. [33, 27].

In our work we combine the idea of adding a statistically motivated reg-
ularization term to a variational problem with the use of advanced shape
models on manifolds. From this point of view it generalizes the approaches
[12, 10, 8, 16] to arbitrary (finite-dimensional) shape manifolds and to a gen-
eral class of variational formulations of shape reconstruction problems. In
particular, it provides a framework to use M-Reps [15, 14] as a starting point
for a Mahalanobis regularization of variational segmentation problems. As
noted above the formulation of the regularization problem on a manifolds
seems to be more natural for the reconstruction of shapes than the vector
space settings. To our knowledge this is the first paper which combines the
idea of M-Reps with statistical segmentation functionals. An extension of
M-Reps to a shape space with a purely geometric metric as e.g. described
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in [26, 25] is discussed in the last section of this work and also fits into our
framework.

In this paper all the shapes we look at can be modeled as elements of a
finite-dimensional Riemannian manifold. All the results in Sections 3–7 hold
in the more general setting of such Riemannian manifolds. I.e. we do not
rely on the fact that these manifolds are related to actual shapes in some
sense. This fact is emphasized by the following introductory definition:

Definition 1.1. By M we denote a finite dimensional and complete Rie-
mannian C∞ manifold.

In our opinion the main contributions of this paper are the following:

• We extend the notion of the Mahalanobis distance to M .
• This distance is used to define a class of segmentation functionals

on M . We investigate the regularization properties of these func-
tionals.

• For the concluding applications we perform a tangent space PCA of
training data and incorporate the resulting statistics in the segmen-
tation functional. We show that in case of product manifolds, the
weighting of the factor manifolds does not influence the behavior of
the regularization functional.

In the following we give a short overview of the contents of the individ-
ual sections. In Section 2 we review some basic properties of Riemannian
manifolds and introduce some notation. The next section is devoted to reg-
ularization functionals on Riemannian manifolds. We define the notion of
functionals and regularization functionals on finite-dimensional Riemannian
manifolds. In Section 4 we generalize the idea of the Mahalanobis distance
on vector spaces to manifolds. The Mahalanobis distance on manifolds is
induced by the Mahalanobis metric which depends on given statistical data.
These data are represented by a mean element and an orthogonal frame in
the tangent space in the mean element. In the following section we show how
we can compute these data from a training set by performing a Principal
Geodesic Analysis (PGA) of the training data. We conclude this part by fo-
cusing on the Mahalanobis distance and the PGA on products of manifolds
in Section 6.

In Section 7 we combine the results of the preceding part to formulate
a regularization functional on shape spaces which meets the above require-
ments of an intelligent shape model and additionally defines a well-posed
regularization problem. The two final sections are devoted to concrete ex-
amples. We first introduce a very simple version of the parametric medial
axis shape model and show how it fits into our framework. Subsequently we
look at two examples based on this shape model. The first one is concerned
with region-based segmentation of planar images. The second one treats the
edge-based detection of multiple objects in a given 2-dimensional image.

2. Preliminaries and Notation

In the following we will state some properties of M , i.e. of a complete
C∞ Riemannian manifold of finite dimension. For further details we refer
to [19, 1]. The dimension of M is always denoted as N ≥ 1. For p ∈ M
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let TpM be the tangent space at p. The tangent bundle of M is denoted as

TM := ˙⋃
p∈MTpM .

The manifold M is a metric space (in the topological sense), in which the
distance dM (p, q), p, q ∈ M , is the infimum of the length of all piecewise
differentiable curves in M which connect p and q. The topology on M

induced by this metric is the same as its manifold topology. Further, if M
is complete, then each bounded and closed subset of M is compact.

Let p ∈M and and V ∈ TpM a tangent vector in the tangent space at p.
Then there exists a unique geodesic γ : [0, 1] → M , such that γ(0) = p and
γ̇(0) = V . The Exponential map Expp : TpM →M in p is defined by

Expp(V ) := γ(1) .

If for p, q ∈ M there exists a geodesic γ(0) = p and γ(1) = q such
that the length of γ equals dM (p, q), then we call γ a geodesic segment
connecting p and q. On a complete connected manifold any two points can
be connected by a geodesic segment. We further know that there exists an
open neighborhood Vp of 0 ∈ TpM such that

• Expp is a diffeomorphism on Vp, and
• there is a unique geodesic segment γ connecting any two points q, q′ ∈

Expp(Vp) =: Up and the image of γ is contained in Up [19, Chapter
I, Theorem 6.2], [1, Chapter VII, Theorem (7.2)].

We call Up a normal neighborhood of p and define the Logarithmic map as
Logp := Exp−1

p : Up → Vp. For q ∈ Up the logarithmic map Logq is defined

on Up and for q′ ∈ U the distance from q to q′ is given by d(q, q′) = |Logq(q
′)|.

To improve readability we tried to use as little indices as possible, but
due to the nature of this work some still remained. We always use lower-
case letters for running indices and uppercase letters as their upper bounds.
Moreover, we use Einstein sum convention for the indices i and j exclusively.
Whenever they (either one of them or both) appear, they denote the implicit
sum over 1 ≤ i, j ≤ N . Implicit summation only appears in combinations
of basis vectors such as V = viEi and transformations of coefficients (i.e.
wn = ani v

i). In case of coefficients v1, . . . , vn, the vector v ∈ R
N refers to

v = (v1, . . . , vn). E.g. the inner product of viEi and wiEi can be expressed
by vtw, if (En)1≤n≤N is an orthonormal basis.

We denote the Riemannian metric of M as 〈 · , · 〉 and as 〈 · , · 〉p for a
specific p ∈ M . Accordingly ‖ · ‖p denotes the norm on TpM defined by
‖V ‖2

p = 〈V, V 〉p, V ∈ TpM . By S(N) we mean the symmetric (N × N)-
matrices.

3. Regularization Functionals on Riemannian Manifolds

We start with the problem of minimizing a proper, continuous functional
defined on M . I.e. we assume

(3.1) F : M → [0,∞] , F 6= +∞ , F continuous .

Then the infimum of F on M is finite, but a minimizer of F may not exist.
The idea is to define a regularization functional Iα by adding a regularization
term Rα to F . The resulting regularization functional should satisfy the
following two properties (cf. [11]):
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(1) Iα should attain a minimum on M .
(2) Provided that a minimizer p̄ of the original functional F exists, the

minimizers of Iα should converge to p̄ in a suitable sense as α tends
to 0.

First we introduce an exact notion of the regularization term. In the
following we denote dom(J) := {p ∈ M : J(p) 6= ∞} for a map J : M →
[0,∞].

Definition 3.1. Let Rα : M → [0,∞], α > 0, be a family of continuous
maps. Define

D =
⋂

α>0

dom(Rα) .

We call (Rα)α>0 a regularization on M , if it satisfies the following conditions:

• Rα vanishes for small parameters α, i.e. for every p ∈ D

(3.2) lim
α→0

Rα(p) = 0 .

• There exists p0 ∈M such that for every sequence (pk)k∈N , pk ∈M ,
satisfying

lim
k→∞

dM (p0, pk) = ∞ ,

the regularization is unbounded, i.e. for every α > 0

(3.3) lim
k→∞

Rα(pk) = ∞ .

• For every p̄ ∈ D there exists C > 0, such that for all p ∈ M and all
α > 0

(3.4) Rα(p) ≤ Rα(p̄) ⇒ dM (p0, p) ≤ C .

We call D the domain of the regularization (Rα)α>0.

Now assume F as above and define

Iα = F +Rα : M → R̄ .

Then we can state the following theorem:

Theorem 3.1. The functional Iα attains a minimum in M for every α. I.e.
there exists p′ ∈M such that

Iα(p
′) = inf

p∈G
Iα(p) .

Proof. This is a simple consequence of the fact thatRα forces any minimizing
sequence of Iα to be bounded and that Iα is continuous. Let (pk)k∈N be such
that limk→∞ Iα(pk) = infp∈M Iα(p) =: c. Because F and Rα are bounded
from below, c is finite. Because of property (3.3) the sequence (pk)k∈N is
bounded in M .

By extracting a converging subsequence (M is complete according to Def-
inition 1.1) and defining p′ = limk→∞ pk we obtain

c = lim
k→∞

I(pk) = I(p′) .

�

Next we prove that Iα is indeed a regularization functional.
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Theorem 3.2. Let F , Rα and Iα for α > 0 be as in Theorem 3.1 and D the
domain of (Rα)α>0. Assume that a minimizer of F exists in M ∩ D. For
α > 0 denote the set of all minimizers of Iα as argminp∈M Iα(p). Then for
every sequence (αk)k∈N satisfying limα→∞ αk = 0 and every sequence

(pk)k∈N , pk ∈ argmin
p∈M

Iαk
(p) ,

there exists p′ ∈M satisfying

F (p′) = inf
p∈G

F (p) ,

and a subsequence (pℓ)ℓ∈N , pℓ ∈M such that

lim
ℓ→∞

pℓ = p′ .

Proof. Let α > 0, pα ∈ argminp∈M Iα(p) and p̄ ∈ (argminp∈M F )∩D. From

F (p̄) +Rα(p̄) = Iα(p̄) ≥ Iα(p
α) = F (pα) +Rα(pα) ≥ F (p̄) +Rα(p

α)

it follows that

Rα(p
α) ≤ Rα(p̄) .

In consequence, by property (3.4), the regularized solutions are bounded.
Let (αk)k∈N be a real sequence converging to 0. Define (pk)k∈N by choosing
pk ∈ argminp∈M Iαk

(p) for every k ∈ N . Since the sequence (pk)k∈N is
bounded we can extract a convergent subsequence (pℓ)ℓ∈N and define its
limit as

p′ = lim
ℓ→∞

pℓ .

From the definition of a regularized solution and the fact that Rα ≥ 0 it
follows that

F (p′) = F
(

lim
ℓ→∞

pℓ
)

= lim
ℓ→∞

F (pℓ)

= lim
ℓ→∞

(

F (pℓ) +Rαℓ
(pℓ) −Rαℓ

(pℓ)
)

= lim
ℓ→∞

(

Iαℓ
(pℓ) −Rαℓ

(pℓ)
)

≤ lim
ℓ→∞

inf
p∈M

Iαℓ
(p) .

(3.5)

Moreover,

inf
p∈M

Iαℓ
(p) = inf

p∈M

(

(F (p) +Rαℓ
(p)

)

≤ F (p̄) +Rαℓ
(p̄) .

This, together with (3.5) and the fact that F (p̄) = infp∈M F (p), shows that

F (p′) ≤ inf
p∈M

F (p) + lim
ℓ→∞

Rαℓ
(p̄) .

Moreover, from (3.2) it follows that

lim
ℓ→∞

Rαℓ
(p̄) = 0 ,

which proves the claim. �
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4. Mahalanobis Distance on M

In the following we generalize the notion of the Mahalanobis distance to
Riemannian manifolds. We start with a review of the Mahalanobis distance
on R

N . Assume that we are given a vector µ ∈ R
N and a symmetric and

positive definite matrix Σ ∈ S(N). Usually µ and Σ correspond to the mean
and the covariance of a given probability distribution on R

N . Then the
Mahalanobis distance dΣ(x, y) of x, y ∈ R

N is defined by

(4.1) d2
Σ(x, y) = (x− y)tΣ−1(x− y) .

Note that in some literature the term “Mahalanobis distance” refers to the
square of dΣ. We prefer (4.1) because it also defines a metric on R

N . If we
define the inner product 〈 · , · 〉Σ on R

N by

〈v,w〉Σ = vtΣ−1w ,

then we can rewrite (4.1) as

d2
Σ(x, y) = 〈x− y, x− y〉Σ .

Our goal is the extension of the above definition to Riemannian manifolds.
Since the notion of a “symmetric, positive definite” matrix does not make
sense on manifolds we replace Σ by a symmetric, positive definite bilinear
form on the tangent bundle of M . In Section 5 we see that it makes sense to
assume a fixed element µ ∈ M and an inner product on TµM as a starting
point for the definition of a statistically motivated distance on M . For a
given µ, we shall agree that E1, . . . , EN is a fixed orthonormal basis of TµM
with respect to the metric 〈 · , · 〉µ. We further assume a symmetric, positive
definite matrix Σ ∈ S(N). This matrix defines an inner product 〈 · , · 〉Σ on
TµM by

(4.2) 〈viEi, w
iEi〉Σ = vtΣ−1w

for two tangent vectors viEi and wiEi in TµM .
Our next step is to transport this inner product to larger parts of the

manifold M . This is done by utilizing the parallel transport along geodesics
on Riemannian manifolds as described in [1, Chapter VII]. Let

(4.3) U := {p ∈M : there exists a unique geodesic connecting µ and p} .

Then we can state the following result:

Theorem 4.1. Let b be a bilinear form on TµM . Then there exists a unique
family (bp)p∈U of bilinear forms on the tangent bundle of U which satisfies
the following properties:

(1) The family (bp)p∈U extends b, i.e. b = bµ.
(2) Let Vµ,Wµ ∈ TµM be tangent vectors, p ∈ U and Vp,Wp the unique

parallel transport of Vµ,Wµ along the (unique) geodesic connecting
µ and p. Then

(4.4) b(Vµ,Wµ) = bp(Vp,Wp) .

Proof. Let E1, . . . , EN be an orthonormal basis of TµM , D ∈ R
N×N the

matrix defined by

Dij = b(Ei, Ej) ,
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and p ∈M . Using the parallel transport along the unique geodesic connect-
ing µ and p we move the frame (En)1≤n≤N into TpM . Denote the transported
frame as (En,p)1≤n≤N and define the bilinear form bp by

(4.5) bp(v
iEi,p, w

iEi,p) = vtDw .

Because the parallel transport of an arbitrary viEi ∈ TµM to TpM can be
expressed by viEi,p, Equation (4.4) is satisfied.

Assume two families (bp)p∈U and (b′p)p∈U of bilinear forms on the tangent
bundle of U satisfying the properties in the theorem. Transporting a basis
from µ to each p ∈ U immediately shows that the matrices of bp and b′p agree
and thus the two bilinear forms are equal. �

The above considerations motivate the following definition:

Definition 4.1. Let µ ∈ M , U as in (4.3) and 〈 · , · 〉Σ as in (4.2). We
call the transport of this inner product as in Theorem 4.1 the Mahalanobis
metric 〈 · , · 〉p,µ,Σ with respect to µ and Σ on TpM .

The Mahalanobis distance dM,µ,Σ from p to q on U with respect to µ and
Σ is given by

(4.6) dM,µ,Σ(p, q) = inf
γ:[0,1]→U

γ(0)=p
γ(1)=q

∫ 1

0
〈γ̇, γ̇〉

1

2

γ,µ,Σ dt .

As in the definition of dM we assume γ to be a piecewise differentiable curve.

Note that U is not empty, because it includes at least a normal neighbor-
hood of µ. Moreover, U contains not only the points uniquely connected to
µ but also the corresponding geodesics themselves. Also keep in mind that
the Mahalanobis distance on manifolds depends not only on Σ but also on
the mean µ. This is not the case in the vector space setting.

Remark 4.1. If U is open (this can always be achieved by replacing U by
its interior), then Definition 4.1 means that U with the metric 〈 · , · 〉p,µ,Σ is
again a Riemannian manifold.

Below we rewrite 〈 · , · 〉p,µ,Σ in terms of the eigenvector decomposition of
Σ. This will be used to derive some properties of the Mahalanobis distance
in Theorem 4.2.

Remark 4.2. Let µ, U and 〈 · , · 〉p,µ,Σ be as in Definition 4.1. As in the
introduction we assume an orthogonal frame (En)1≤n≤N in TµM and let
Σ−1 be the matrix of 〈 · , · 〉p,µ,Σ with respect to this frame. Let v1, . . . , vN be
an orthonormal basis of eigenvectors of Σ and σ2

1, . . . , σ
2
N the corresponding

eigenvalues. As in the proof of Theorem 4.1 En,p denotes of the parallel
transport of En to TpM , 1 ≤ n ≤ N . Then for V = viEi,p and W =
wiEi,p ∈ TpM

〈V,W 〉p,µ,Σ =

N
∑

n=1

(vtvn)(w
tvn)

σ2
n

.
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In particular

(4.7) dM,µ,Σ(p, q) = inf
γ:[0,1]→U

γ(0)=p
γ(1)=q

∫ 1

0

(

N
∑

n=1

(

v(t)tvn
)2

σ2
n

)
1

2

dt ,

with

γ̇(t) = vi(t)Ei,γ(t) .

Before stating the next theorem we remind ourselves of the fact that the
parallel transport of the orthonormal frame (En)1≤n≤N is an orthonormal
system in every point p ∈ U with respect to the Riemannian metric on M .
In particular, the inner product of viEi,p and wiEi,p in TpM is

(4.8)
〈

viEi,p, w
iEi,p

〉

p
= vtw .

Theorem 4.2 (Properties). Assume µ, Σ and U as in Definition 4.1.

(1) For p ∈ U

dM,µ,Σ(p, p) = 0 .

(2) dM,µ,Σ is symmetric, i.e. for p, q ∈ U

dM,µ,Σ(p, q) = dM,µ,Σ(q, p) .

(3) The triangle inequality holds, i.e. for p, q, r ∈ U

dM,µ,Σ(p, r) ≤ dM,µ,Σ(p, q) + dM,µ,Σ(q, r) .

(4) Denote σ− := min(σ1, . . . , σN ) and σ+ := max(σ1, . . . , σN ) and as-
sume p, q ∈ U. Then

(4.9) σ−1
+ dU(p, q) ≤ dM,µ,Σ(p, q) ≤ σ−1

− dU(p, q) .

Here dU denotes the metric on U which is induced by the Riemannian
metric on M .

(5) Moreover,

(4.10) σ−1
+ dM (µ, p) ≤ dM,µ,Σ(µ, p) ≤ σ−1

− dM (µ, p) .

Proof.

(1) – (3) Follows from Definition 4.1.
(4) Let σ− > 0 be as in the theorem. As in Remark 4.2 we write

γ̇(t) = vi(t)Ei
(

γ(t)
)

for t ∈ [0, 1]. Let further be (vn)1≤n≤N be

the eigenvectors of Σ. Then Vn(p) = vinEi(p), 1 ≤ n ≤ N , is an
orthonormal basis of TpM for p ∈ U. From (4.7) it follows that for
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p, q ∈ U

dM,µ,Σ(p, q) = inf
γ:[0,1]→U

γ(0)=p
γ(1)=q

∫ 1

0

(

N
∑

n=1

(

v(t)tvn
)2

σ2
n

)
1

2

dt

≥ σ−1
+ inf

γ:[0,1]→U

γ(0)=p
γ(1)=q

∫ 1

0

(

N
∑

n=1

〈

γ̇, Vn(γ)
〉2

γ

)
1

2

dt

≥ σ−1
+ inf

γ:[0,1]→U

γ(0)=p
γ(1)=q

∫ 1

0
|γ̇| dt = σ−1

+ dU(p, q)

In the second line we made use of the equality (4.8). Analogous for
the second part.

(6) For p ∈ U

dM,µ,Σ(µ, p) = inf
γ:[0,1]→U

γ(0)=µ
γ(1)=q

∫ 1

0

(

N
∑

n=1

〈

γ̇, vn(γ)
〉2

γ

σ2
n

)
1

2

dt

≥ σ−1
+ inf

γ:[0,1]→U

γ(0)=µ
γ(1)=q

∫ 1

0

(

N
∑

n=1

〈γ̇, vn(γ)〉
2
γ

)
1

2

dt

= σ−1
+ dM (µ, p)

because dM (µ, p) is attained by the length of a geodesic which is
entirely in U (by the definition of U). Again the second part is
analogous.

�

Note that estimate (4.9) means that the Mahalanobis distance is bounded
from above and below only by dU but not by the original Riemannian dis-
tance dM . In contrast, the Mahalanobis distance of an arbitrary point to
µ is compared to dM in (4.10). It is easy to see that (4.10) does not hold
for every pair p, q on M (think e.g. of the cylinder S1 × R ⊆ R

3 with the
induced metric).

In the following we investigate, if dM,µ,Σ as defined in Definition 4.1 is
consistent with existing definitions, i.e.

• if it corresponds to the classical Mahalanobis distance in the Eu-
clidean setting, and

• if it corresponds to the standard Riemannian metric on M in the
case σ2

1 = . . . = σ2
N = 1.

Theorem 4.3. Assume that µ and Σ are as in Definition 4.1. For µ ∈ R
N

and Σ ∈ S(N) the distance d
R

N ,µ,Σ(p, q) is defined for every pair (p, q) ∈

R
N × R

N (provided that Σ is non-singular) and

d
R

N ,µ,Σ(p, q)2 = (p − q)tΣ−1(p − q) .
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Moreover, assume M , µ and U as in Definition 4.1 and let Σ = IdN .
Then for every p ∈M

dM,µ,IdN
(µ, p) = dM (µ, p) .

Proof. Obviously U in Definition 4.1 equals R
N . We further observe that

γ̇(t) = γ̇i(t)Ei (i.e. the parallel transport of the standard basis gives the
standard basis in every point). By definition

d
R

N ,µ,Σ(p, q) = inf
γ:[0,1]→U

γ(0)=p
γ(1)=q

∫ 1

0
〈γ̇, γ̇〉

1

2

γ,µ,Σ dt

= inf
γ:[0,1]→U

γ(0)=p
γ(1)=q

∫ 1

0

(

γ̇tΣ−1γ̇
)

1

2 dt .

Computing the optimality condition of this variational problem gives γ̈ = 0.
This again shows that the optimal γ is the straight line segment connecting
p and q. The second claim is obvious by the definition of the Mahalanobis
metric. �

In the proof of Theorem 4.3 we state that the geodesics with respect to
the standard metric on R

N and with respect to the Mahalanobis distance
coincide (in both cases they are line segments). This is not true in general. In
other words, if a minimizer exists for the variational problem (4.6), it can be
different from the geodesic with respect to the Riemannian metric. A simple
example is the 2-dimensional sphere S2, σ1 > σ2 > 0 and Σ = diag(σ2

1 , σ
2
2).

The Mahalanobis metric with respect to Σ and with respect to any µ ∈ S2

and orthonormal frame E1, E2 ∈ TµM induces geodesics which are not great
circles.

Note that Theorem 4.3 holds only for the distance from µ to points in
U but not for arbitrary pairs p, q ∈ U. This is because in general U does
not completely cover the manifold M . If, however, p and q are such that
at a sequence of curves, whose lengths converge to dM (p, q), lies in U, then
the original Riemannian distance and the Mahalanobis distance coincide.
This is e.g. the case on the 2-dimensional sphere S2 but not on the cylinder
S1 × R .

If Σ is the covariance matrix of a given probability distribution then the
Mahalanobis distance dM,µ,Σ reflects the shape of this distribution. Roughly
spoken, it assigns large distances from a reference point to elements which
are located in “improbable directions”, whereas the distance between two
“probable elements” is small. If the Mahalanobis distance is used as a reg-
ularization, this has the beneficial effect that we penalize deviations from a
reference element in an intelligent way, i.e. depending on how probable they
are.

5. Principal Geodesic Analysis

In this section we want to outline the idea of the Principal Geodesic Anal-
ysis (PGA) on manifolds as proposed in [14, 13]. A more sophisticated
analysis of this topic can be found in [20].
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The PGA is based on the idea of the Principal Component Analysis (PCA)
on vector spaces. The PCA of a given set of data points in a vector space
V is an orthonormal basis of V such that the first basis vector points into
the direction of the largest variance of the data, the second one into the
direction of the second-largest variance and so on. Thus, the PCA can also
be interpreted as sequence of orthogonal linear subspaces Vn⊆V given by
the linear hull of the n-th basis vector. On manifolds the concept of linear
subspaces is replaced by geodesic submanifolds. These are submanifolds of
the manifold M such that geodesics in the submanifolds are also geodesics
in M .

Let p1, . . . , pS ∈ M be data points on M . We start by giving a formal
definition of a PGA of the data p1, . . . , pS . This definition motivates the
introduction of the approximated Principal Geodesic Analysis later in this
section. The mean µ′ of p1, . . . , pS is defined by

(5.1) µ′ := argmin
p∈M

S
∑

s=1

dM (ps, p)
2 .

Note that we do not state any results concerning existence and uniqueness
of µ′, but provide them later for the approximated mean instead. Assum-
ing that µ′ is well-defined, we proceed with the definition of the principal
geodesics. First, we formally define the projection on a closed subset H ⊆M

as
πH : M → H , p 7→ argmin

h∈H
dM (h, p)2 .

Now let

(5.2) V ′
1 := argmax

V ∈TµM

|V |=1

S
∑

s=1

dM
(

µ, πH1(V )(ps)
)2
.

Here for V ∈ TµM

H1(V ) = Expµ
(

〈V 〉
)

,

i.e. the exponential of the linear hull of V . In other words, H1(V ) is the
image of the geodesic γ defined by γ(0) = µ and γ̇(0) = V . We proceed by
recursively defining

(5.3) V ′
n := argmax

V ∈TµM

|V |=1
V⊥ R 〈V ′

1
,...V ′

n−1
〉

S
∑

s=1

dM
(

µ, πHn(V )(ps)
)2
, 2 ≤ n ≤ N ,

where for V ∈ TµM

Hn(V ) = Expµ
(

〈V ′
1 , . . . , V

′
n−1, V 〉

)

,

i.e. the exponential of the linear hull of the vectors V ′
1 , . . . , V

′
n−1 and V .

Again the existence and uniqueness of V ′
1 , . . . , V

′
N is not clear in this set-

ting but is shown for the corresponding approximations below. We call µ,
V ′

1 , . . . , V
′
N the Principal Geodesic Analysis of the data p1, . . . , pS .

From (5.1), (5.2) and (5.3) we now derive an approximation of the Prin-
cipal Geodesic Analysis. In Section 2 we stated that d(q, q′) = |Logq(q

′)|
provided that q and q′ are elements of a common normal neighborhood as
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we introduced it in Section 2. Assume that also p lies in this neighborhood.
Then we can approximate dM (q, q′) = |Logq(q

′)| by

(5.4) |Logp(q) − Logp(q
′)| .

This observation leads us to the following introduction of the approximated
PGA which eventually can be reduced to a standard PCA in tangent spaces.

We now assume that p1, . . . , pS are contained in a common normal neigh-
borhood. Let further p ∈ M be an element in this normal neighborhood.
Applying (5.4) to (5.1) leads to the definition of the approximated mean µ

of p1, . . . , pS as

(5.5) µ := argmin
p′∈M

S
∑

s=1

(

Logp(ps) − Logp(p
′)
)2
.

This immediately yields

µ = Expp

( 1

S

S
∑

s=1

Logp(ps)
)

.

Provided that the data points p1, . . . , pS are close enough to each other and
that also p is chosen close enough to them µ is well-defined and unique.

Having fixed µ we apply (5.4) to (5.2) and (5.3). This yields the following
equations for the approximations V1, . . . , VN of V ′

1 , . . . , V
′
N :

(5.6) V1 := argmax
V ∈TµM

|v|=1

S
∑

s=1

〈V,Logµ(ps)〉
2
µ ,

and

(5.7) Vn := argmax
V ∈TµM

|V |=1
V⊥ R 〈V1,...Vn−1〉

S
∑

s=1

(

n−1
∑

k=1

〈Vk,Logµ(ps)〉
2
µ + 〈V,Logµ(ps)〉

2
µ

)

,

for 2 ≤ n ≤ N . Looking these equations we observe that they define a PCA
of Logµ(p1), . . . ,Logµ(pS) ∈ TµM . This means that we get V1, . . . , VN by
computing the eigenvalues of the covariance matrix of Logµ(p1), . . . ,Logµ(pS).

Thus, we choose an orthonormal basis E1, . . . , EN of TµM and write wisEi =
Logµ(ps), 1 ≤ s ≤ S. The covariance matrix of Logµ(p1), . . . ,Logµ(pS) with
respect to E1, . . . , EN is given by

(5.8) Σ =
1

S

S
∑

s=1

wsw
t
s ∈ S(N) .

Let v1, . . . , vN be eigenvectors of Σ and σ2
1, . . . , σ

2
N its eigenvalues. Then

Vi = vinEi, 1 ≤ n ≤ N .
The above considerations are summarized in the following definition:

Definition 5.1. Assume M and data points p1, . . . , pS ∈ M as above. Let
µ be as in (5.5) and E1, . . . , EN an orthonormal basis of TµM . Let further
be Σ as in (5.8). We call (µ, Σ) the approximated Principal Geodesic Anal-
ysis (approximated PGA) of the data p1, . . . , pS with respect to the basis
E1, . . . , EN .
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Obviously, the approximated PGA reduces to a tangent space PCA cen-
tered around the approximated mean µ which is again obtained in the tan-
gent space setting. This means, that in principle this approach is limited to
training data which can be mapped to a common tangent space, i.e. which
are close enough to each other. To our experience this is does not pose a
problem in many applications. In particular the parameter manifolds we
consider in Section 8 can be mapped to a single tangent space with the
exception of a set of lower dimension only.

Note that the approximated PGA with respect to E1, . . . , EN provides not
only the mean and the principal directions of the data p1, . . . , pS but also
its variation into the principal directions. In other words, the eigenvalues
(σ1, . . . , σN ) of Σ can be interpreted as the standard deviation within the
corresponding submanifold. I.e.

Expµ(−σnVn) , µ , Expµ(σnVn)

correspond to the mean and to the elements of the n-th geodesic submanifold
whose distance to µ is σ. We call the above triple the n-th mode of the data
p1, . . . , pS .

6. Mahalanobis Distance on Products of Manifolds

A number of parametric shape spaces can be represented as products of
manifolds. E.g. circles can be parametrized by the position of their center
and the radius, which means the that M = R

2 × R
+. Ellipses might

be considered in M = R
2 × S1 × R

+ × R
+ and planar spline curves in

R
2 × . . .× R

2. The parametric medial axis representation we introduce in
Section 8 is a further prominent example of a product manifold. There are
various ways of defining Riemannian metrics on such products. Perhaps the
most simple approach is to use the product metric defined by the metrics
on the single factor manifolds. This metric is unique except for a constant
scaling of each component. Note that the choice of these weighting factors
can not be avoided but is inherently done whenever the product metric
is utilized. The obvious idea of setting each weight to 1 just pushes the
decision about the scaling from the product metric to the metric of each of
the factor. The choice of these scaling coefficients influences the distance on
the product manifold but not the shape of geodesics between them (Theorem
6.1). But still in general, the scaling of the individual metrics influences the
performance of minimization algorithms on the product manifolds and the
question of optimal weighting factors in this respect is a difficult one.

In this section we will show that the Mahalanobis metric on product
manifolds is invariant to the choice of these coefficients if the underlying
statistics have been computed with respect to the same metric. I.e. for all
problems formulated on M equipped with the Mahalanobis metric the initial
choice of the weighting of the metrics of the factor manifolds is negligible. In
particular, minimization routines utilizing the Mahalanobis metric perform
identically for each sequence of scaling factors.

Assume M to be the product of K Riemannian manifolds, i.e. M = M1×
. . . ×MK . Let further c = (c1, . . . cK) be a K-tuple of positive coefficients.
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We define the metric 〈 · , · 〉cp in p = (p1, . . . , pK) ∈M by

(6.1) 〈V,W 〉cp = c1〈V1,W1〉p1 + . . .+ cK〈VK ,WK〉pK
,

for two tangent vectors V = (V1, . . . , VK) and W = (W1, . . . ,WK) in TpM .
Moreover we denote the distance on M associated with 〈 · , · 〉cp as dcM .

Assume data points p1, . . . , pS ∈ M and their approximated PGA (µ,Σ)
with respect to the orthonormal basis E1, . . . , EN ∈ TµM . Let dM,µ,Σ be
the Mahalanobis distance on M . Now we replace the Riemannian met-
ric 〈 · , · 〉 on M by 〈 · , · 〉c and do the same computations again. We de-
note the resulting approximated PGA with respect to the orthonormal basis
Ec1, . . . , E

c
N ∈ TµcM as (µc,Σc) and the corresponding Mahalanobis distance

as dcM,µc,Σc. Note that the orthonormality of Ec1, . . . , E
c
N is also understood

with respect to 〈 · , · 〉c. In the following we will prove that for any choice of
coefficients c, the maps dM,µ,Σ and dcM,µc,Σc are defined on the same subset
of M and that

dM,µ,Σ = dcM,µc,Σc .

We remember the following fact about geodesics on products of Riemann-
ian manifolds:

Theorem 6.1. Let M = M1 × . . . ×MK be as above and c = (c1, . . . cK),
ci > 0, 1 ≤ k ≤ K. Denote the metric defined by the coefficients c as 〈 · , · 〉c.
Now assume p, q ∈M such that p and q can be connected by a unique geodesic
segment γ with respect to 〈 · , · 〉, i.e. γ is geodesic, γ(0) = p, γ(1) = q and
L(γ) = dM (p, q).

Then p and q are also connected by a unique geodesic segment with respect
to the scaled metric 〈 · , · 〉c. Moreover, these two geodesic segments coincide.

Proof. This is a straightforward consequence of the fact that the geodesic
segment γ minimizes the kinetic energy of paths connecting p and q (cf. [30]).
Let γ = (γ1, . . . , γK). According to (6.1) the kinetic energy of γ is given by

∫ 1

0
〈γ̇, γ̇〉γ dt =

K
∑

k=1

∫ 1

0
〈γ̇k, γ̇k〉γk

dt .

The latter sum is minimal if each of the summands are minimal, which
proves the claim. �

As a consequence we can state the following result:

Corollary 6.1. Let M = M1 × . . . . . .MK and c = (c1, . . . , cK), ck > 0 be
as in Theorem 6.1. Again we look at M equipped with the metrics 〈 · , · 〉 and
〈 · , · 〉c respectively. For p ∈ M denote the corresponding exponential and
logarithmic maps as Expp, Expcp and Logp, Logcp respectively. Then

Expp = Expcp and Logp = Logcp .

This finally leads us to the main result of this section:

Theorem 6.2. Let M = M1 × . . . ×MK and c = (c1, . . . , cK), ck > 0 be as
in Theorem 6.1. Assume data p1, . . . , pS ∈ M . As in the beginning of this
section let (µ,Σ) be the approximated Principal Geodesic Analysis of these
data with respect to the orthonormal basis E1, . . . , EN of TµM and

dM,µ,Σ : U × U → [0,∞[
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the corresponding Mahalanobis distance. With respect to the modified met-
ric 〈 · , · 〉c we accordingly get the approximated Principal Geodesic Analysis
(µc,Σc) with respect to the orthonormal basis Ec1, . . . , E

c
N of TµcM and the

Mahalanobis distance

dcM,µc,Σc : U
c × U

c → [0,∞[ .

Then µ = µc, U = Uc and for p, q ∈ U

dM,µ,Σ(p, q) = dM,µc,Σc(p, q)c .

Proof. Applying Corollary 6.1 to (5.5) shows µ = µc. Because the geodesics
with respect to 〈 · , · 〉 and 〈 · , · 〉c coincide (cf. Theorem 6.1), it follows that
U = Uc.

Let a = (aij)ij be the matrix transforming the basis (Ecn)1≤n≤N to (En)1≤n≤N ,

i.e. En = ainE
c
i , 1 ≤ n ≤ N . If

wisEi = Logµ(ps) , 1 ≤ s ≤ S ,

are the coordinate representations of the data ps, then

Logµ(ps) = wisa
j
iE

c
j , 1 ≤ s ≤ S .

Hence, from formula (5.8) it follows that

Σc = aΣat .

Assume p ∈ U. Let En,p, 1 ≤ n ≤ N , be the parallel transport of (En)1≤n≤N
to TpM . From (4.5) it follows that for p ∈ U and for V = viEi,p and
W = wiEi,p in TpM

(6.2) 〈V,W 〉p,µ,Σ = vtΣ−1w .

Let Ecn,p, 1 ≤ n ≤ N the parallel transport of (Ecn)1≤n≤N to p with respect
to 〈 · , · 〉c. In principle this transport depends on the metric on M (as
the metric defines the geodesics), but Theorem 6.1 shows that in our case
the geodesics on M with respect to 〈 · , · 〉 and 〈 · , · 〉c coincide. Hence, the
orthonormal bases

(

En,p
)

1≤n≤N
and

(

Ecn,p
)

1≤n≤N

are transported along the same geodesics. This means that the transforma-
tion between them is constant, i.e.

Ecn,p = ainEn,p for every p ∈ U .

This finally leads to

〈V,W 〉cp,µc,Σc =
〈

via
j
iE

c
j,p, w

ia
j
iE

c
j,p

〉

p,µc,Σc

= (av)t(aΣat)−1(av) = vtΣ−1v .

Together with Definition 4.1 and (6.2) this proves the claim. �
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7. The Regularization Functional

Let M be N -dimensional, p1 . . . , pS ∈M a set of training data and (µ,Σ)
its approximated Principal Geodesic Analysis. We assume that Σ is non-
singular, i.e. all its singular values are positive. In the following theorem
we show that the Mahalanobis distance qualifies as a regularization function
with the properties introduced in Section 3.

Let µ, Σ and U be as in Definition (4.1), i.e. the Mahalanobis distance
dM,µ,Σ is defined on U. Define for p ∈M

(7.1) Rα(p) =

{

αdM,µ,Σ(µ, p)2
(

dM (∂U, p)−1 + 1
)

for p ∈ U,

∞ for p 6∈ U,

where ∂U is the topological boundary of U. Then Rα ≥ 0 and clearly (3.2)
is satisfied for every p ∈ U. Because of (4.10) in Theorem 4.2 also (3.3) and
(3.4) hold. Thus, Rα qualifies as a regularization for any functional F with
dom(F ) = U. The regularization term forces minimizers of Iα to stay in U

and consequently ensures that the Mahalanobis distance is well-defined.
Note that in many applications U is chosen as the manifold M . This holds

in particular in all the cases we present in the next section. In this case (7.1)
reduces to

(7.2) Rα(p) = αdM,µ,Σ(µ, p)2 .

8. The Parametric Medial Axis Representation

In this section we introduce the parametric shape space we used in the ex-
amples in the following section. It is based on the medial axis representation
and was developed in [14, 15, 13, 21]. The authors’ idea was to parametrize
the medial axis transform of shapes instead of the actual boundary curve.
We chose a simple model which is defined as follows:

Definition 8.1. Assume a tree G (i.e. a connected graph without cycles)
with m vertices and m− 1 edges. Define

M = R
2 × R

m
+ ×

(

S1 × R +

)m−1
.

Obviously M is the direct product of Riemannian manifolds. On R
2 we

use the Euclidean metric, on S1 the metric induced by the embedding of S1

into R
2. There exists a unique (up to scalar multiplication) metric on R +

which is invariant with respect to multiplication [1, Chapter VI, Corollaries
(3.5), (3.7)]. We denote the product metric on M as 〈 · , · 〉. We emphasize
that according to Theorem 6.2 the Mahalanobis regularization (7.2) (with
respect to some training data) is invariant with respect to the choice of the
weighting coefficients of the metrics on R

2, S1 and R +.
To use this parameter manifold in actual applications, we have to provide

ways of computing the actual appearance of a shape p ∈ M . This leads us
to the following definition:

Definition 8.2. Let V⊆M an open subset of M and

ψ : V → C
1(S1, R

2) ,

such that for every p ∈ V the curve ψ(p) is a Jordan curve, i.e. ψ(p) is closed
and injective. Then we call (M,ψ) a shape model.
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Figure 1. An instance of a shape model. The shape param-
eters p ∈ M = R

2 × R
5
+ × (S1 × R +)4 are mapped to the

red outline on the right by ψ.

In Figure 1 we can see an example of a shape model. Here, M = R
2 ×

R
5
+ × (S1 × R +)4. On the left hand side is a visualization of one p ∈

M . Starting from the reference position (in R
2) we added four edges (in

S1 × R +). This results in the dark blue skeleton. The topology of the
skeleton is dictated by the graph G. Thus, the skeleton here is in fact the
first step of the application of ψ to p, which transforms the abstract data
p into its visual representation. Secondly, we add the light blue atoms of
different radii (in R +) with centers on the vertices of the skeleton. This
representations incorporates all the data provided by p.

To obtain the shape appearance of p we first selected the red points on
the atom circles. On the right image we interpolated these points with
cubic spline segments such that the resulting curve is differentiable and their
tangents in the interpolation points agree with the circle tangents. This
spline curve is ψ(p). We can see that the dark blue skeleton approximates
the medial axis of the red curve, which was the original motivation for this
kind of shape model.

In terms of the results in this paper, G is not a part of our shape space but
specifies how the shape appearance is computed from parameters p ∈ M .
As such it can be thought as a parameter of the map ψ.

9. Applications

In this section we present two examples of regularization functionals based
on the shape model introduced in the previous section. Both examples are
concerned with geometry reconstruction in image data.

Our approach consists of two steps. Starting from a fixed shape model
(M,ψ) we manually segment some training data. In other words, we esti-
mate a set of shapes p1, . . . , pS ∈ M which we consider to be a probable
collection of results of a segmentation. Then we perform an approximated
PGA of this data (Definition 5.1) and use the result to define the regular-
ization Rα as in (7.2).
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In the next step, we select a segmentation energy F , which is well suited
for the specific kind of image data and which maps a shape p to an energy
F (p). Then, we define the regularization functional Iα as in Definition 3.1.
If F is bounded from below and continuous, Theorem 3.1 tells us that a
minimizer of Iα exists. Furthermore, if F attains a minimum, then, by
Theorem 3.2, a subsequence of the minimizers of Iα converges to a minimizer
of F for α → 0. The actual minimization of Iα is done by using a gradient
descent technique in the first example and a Monte Carlo method in the
second one.

In addition to the properties of the regularization functional Iα mentioned
above, the knowledge of the statistics of the training data p1, . . . , pS has
several other advantages:

• Choosing a large regularization parameter α forces the minimizers
of Iα to be close to the mean shape µ. Furthermore, deviations from
the mean shape are only allowed into directions where the variation
of the data (ps)1≤s≤S is large. This property can be used to recon-
struct perturbed image data. Such perturbations can have the effect
that a minimizer of F does not represent a satisfactory result. The
regularization term penalizes these outcomes. This is well illustrated
in the example in Section 9.1.

• During the iterative minimization of Iα we can make use of the under-
lying statistics to select search directions which are most probable in
terms of the training data. A gradient descent technique e.g. might
compute the gradients of Iα with respect to 〈 · , · 〉p,µ,Σ instead of
the standard metric on M . In the case of Monte Carlo methods we
can confine ourselves to randomly generated shapes p which satisfy
Rα(p) < C for some constant C. This is equivalent to limiting the
search for optimal shapes to a ball of radius C around µ with respect
to dM,µ,Σ.

9.1. Region-Based Segmentation. In this example we use the Maha-
lanobis regularization together with a simplification of the Mumford-Shah
functional. We generate a training set by manually segmenting artificial
image data and apply the resulting regularization functional to a partially
occluded test image.

Assume a given image f : Ω → R , where Ω is a 2-dimensional domain.
The Mumford-Shah functional [28, 29] reads as

(9.1) IMS
β1,β2

(Γ, u) =

∫

Ω
(u− f)2dx+

β1

2

∫

Ω\Γ
|∇u|2dx+ β2H

1(Γ) ,

where u : Ω → R is smooth on Ω \ Γ and β1, β2 > 0. The goal is to find
u′ and Γ′ such that IMS

β1,β2
(Γ′, u′) is minimal. Then u′ is smooth everywhere

with exception of possible discontinuities along the 1-dimensional set Γ′ and
approximates the original image data f . If f consists of several regions of low
variation in contrast, then we expect u′ to approximate f on these regions
and Γ′ to separate them from each other. Thus, Γ′ is a segmentation of f .

Often a simplified version of (9.1) is used for segmentation. The idea
is to approximate f by piecewise constant functions instead of piecewise
smooth functions. The corresponding functional can be interpreted as the
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limit of IMS
β1,β2

for β1 → ∞. If we restrict ourselves to closed Jordan curves

γ : [0, 1] → Ω instead of general sets Γ we obtain

ISMS
β (γ) =

∫

I(γ)

(

u1(γ) − f
)2
dx+

∫

O(γ)

(

u2(γ) − f
)2
dx+ βLength(γ) ,

where

u1(C) =
1

|I(γ)|

∫

I(γ)
f dx and u2(C) =

1

|O(γ)|

∫

O(γ)
f dx

are the mean values of f inside and outside of γ. This functional was also
proposed by Chan & Vese in [4]. Note that the extension to a collection of
curves γ1, . . . , γR, which do not intersect or lie within each other, is straight-
forward [17].

Now consider a shape model ψ as illustrated in Figure 1. I.e. M =

R
2× R

5
+×

(

S1× R +

)4
(cf. Definition 8.1). Then we define F : M → [0,∞]

by

F (p) =

∫

I(ψ(p))

(

u1(ψ(p)) − f
)2
dx+

∫

O(ψ(p))

(

u2(ψ(p)) − f
)2
dx .

I.e. F maps a shape p to the simplified Mumford-Shah energy associated
with its boundary ψ(p) without length regularization (meaning that β = 0).

We manually segmented hand-drawn images of crosses and obtained 13
training shapes p1, . . . , p13 (Figure 2). The results of the approximated PGA
are illustrated in Figure 3. We used the PGA to define Rα and finally
Iα = F (p) + Rα. Since we consider the actual position and rotation of the
shape models not to be important for the statistics we additionally set the
corresponding parts of the Mahalanobis distance to zero. In other words,
for p, q ∈M

Rα(p) = Rα(q) ,

if p and q differ only in position and rotation.
In case f is continuous and ψ differentiable M → C1([0, 1], R

2), then F

is differentiable as a map M → [0,∞]. If we write F = G ◦ ψ, then its
derivative is

DF (γ) = DG
(

ψ(p)
)

◦Dψ(p) ,

where

DG(γ) =
(

u1(γ) − f ◦ γ
)2

nγ −
(

u2(γ) − f ◦ γ
)2

nγ ,

for a curve γ. Here nγ denotes the outer unit normal of γ.
The Mahalanobis distance on M is differentiable on

M \ R
2 × R

5
+ ×

(

{−µ} × R +

)4
,

and hence also Rα and the regularization functional Iα. Thus, we can mini-
mize Iα using steepest descent. As initial value we chose the mean µ of the
approximated PGA.

We applied this technique to a cross (not in the training set), where the
central part is missing. The result is depicted in the middle of the top row
in Figure 4. To illustrate the influence of the regularization parameter we
compared this result to the two minimizers we obtained by choosing the
regularization parameter α one order of magnitude larger and smaller (left
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Figure 2. 6 training shapes (out of 13).

and right) than in the middle image. The initial shape in the steepest descent
algorithm is displayed in the lower row at the left.

For further comparison, we computed the minimizer of ISMS
β in (9.1)

(lower row, middle). During the iterative minimization of ISMS
β the initial

curve γ is split into four curves γ1, . . . , γ4 by a topology handling routine.
Obviously with this general approach we are not able to recover the original
shape but detect the four remaining parts of the cross separately. On the
right we can see the minimizer of the map

p 7→ ISMS
β

(

ψ(p)
)

.

I.e. we reformulate (9.1) on M or, in other words, we replace Rα in Iα by
the simple regularization βLength

(

ψ(p)
)

. Obviously, the cross is in principle
detected as a cross (the shape model leaves no other possibility), but the
proportions reflected by the training shapes in Figure 2 are not preserved.

9.2. Edge-Based Segmentation. In this example we are concerned with
the detection of multiple yeast cells in microscope images. Because the
mean contrast of the objects in question does not significantly differ from
the background, we can not use region based segmentation techniques for
these image data. Hence, we chose an edge based segmentation technique
originally introduced by Kass et al. [22] (“Snakes”). There, the authors
propose to minimize

ISnakes
β (γ) = −

∫

γ

∣

∣∇f
(

γ(τ)
)
∣

∣dτ + βLength(γ)

for a curve γ.
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Figure 3. Modes 1–6 of the approximated PGA of the train-
ing data (including the shapes in Figure 2).

Figure 4. Top row: minimizers of the simplified
Mumford-Shah energy with (relative) regularization param-
eters α = 10, α = 1, α = 10−1 (left to right). Lower row:
initial shape in the steepest descent algorithm, minimizing
spline curve of the simplified Mumford-Shah energy (with
initial curve), minimizer of the simplified Mumford-Shah en-
ergy with length regularization (left to right).
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Again we reformulate this functional for an arbitrary shape model (M,ψ)
and define F : M → [0,∞] by

F (p) = −

∫

γ

∣

∣∇f
(

γ(τ)
)
∣

∣dτ .

We choose M = R
2 × R

2
+ × (S1 × R+) (i.e. a 6-dimensional manifold).

The associated map ψ is illustrated in Figure 5. Then we perform a manual
segmentation of 18 cells in the central part of a sample image (Figure 6, top
left) and compute the approximated PGA (µ,Σ) of this data. The results of
the PGA are illustrated in Figure 7. Again we do not consider variations in
position and rotation in the statistics, which means that only three modes
remain. As we can see, the variation of third mode of the cell data is very
small. In other words, the shapes of the training data are very close to a
5-dimensional geodesic submanifold of M . This complies with the intuitive
perception of the cells as ellipses (which can be considered a 5-dimensional
manifold, cf. Section 6).

As in the last example, the PGA leads to the regularization Rα and in
consequence to the regularization functional Iα = F + Rα. Note that F is
not necessarily bounded from below, so only Theorem 3.2 is applicable in
this case, but not Theorem 3.1.

To automatically detect cells in image data we choose a fixed number of
models (denoted as R) and minimize

(p1, . . . , pR) 7→

R
∑

r=1

Iα(pr) .

For the solution of (9.2) we used the following heuristic algorithm:

(1) Assume scalars c1 = . . . = cR = C for some C > 0 and a vector of
shapes (p1, . . . , pR).

(2) Choose a random shape p′ ∈ BC := {p ∈ M : dM,µ,Σ(µ, p) ≤ C}. If
Iα(p

′) < cr for 1 ≤ r ≤ R and ψ(p′) does not overlap with any of
the p1, . . . , pR, replace pr by p′ and set cr = Iα(p′). If it does overlap
with some elements of pr1, . . . prk but Iα(p

′) < min(cr1 , . . . crk), then
replace pr1 by p′ and set cr1 = Iα(p

′) and cr1 = . . . = crk = C.
Repeat this step.

By “overlapping” we mean that the common area of the bounding boxes of
two shapes does not exceed a certain value (relatively to the area of the
union of the bounding boxes).

In simple words, we generate random shapes and try to improve the cur-
rent segmentation by replacing shapes in (p1, . . . , pR) by the new shape.
This gradually improves the segmentation of the result. This algorithm is
far from being optimal and in fact does not necessarily lead to the best
result, but it demonstrates two important issues:

(1) We do not have to evaluate the gradient of Iα in this example. More-
over the danger of being trapped at local minima is much smaller
than with gradient descent techniques. This means that we are able
to detect different cells even if they are clustered as in our examples.
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Figure 5. An instance of a shape model. The shape param-
eters p ∈M = R

2 × R
2
+ × (S1 ×R+) are mapped to the red

outline on the right by ψ.

A simple active contour algorithm [2, 3] can not handle this situa-
tion, since features inside the clusters have to be considered for a
correct segmentation.

(2) The first property is a characteristic of Monte Carlo optimization
techniques in general. However, it is impossible to randomly sample
the entire manifoldM . One has to agree on some subset of“probable”
or“meaningful” shapes. In our case this selection is canonically given
by choosing shapes close to the mean shape and varying according
to the training data. In other words, by choosing shapes in BC
we generate only shapes, which we expect to actually appear in the
image data, as candidates for a correct segmentation.

10. Conclusion and Outlook

In this work we extended the notion of the Mahalanobis distance to Rie-
mannian manifolds and showed that the generalized Mahalanobis distance

• qualifies as a regularization of variational problems on finite dimen-
sional manifolds, and

• enables us to intelligently incorporate statistical knowledge about
shapes in such variational problems.

In examples we correctly detected partially occluded objects (Section 9.1)
and exemplarily introduced a segmentation method based on Monte Carlo
optimization, which can be trained to specific types of image data to optimize
its convergence characteristics (Section 9.2). The segmentation functionals
used in the examples were a simplified version of the Mumford-Shah energy
in the first and the “Snakes” energy in the second example.

In addition we concentrated on products of Riemannian manifolds. We
proved that the Mahalanobis distance based on the product metric is unique,
i.e. invariant with respect to the specific choice of the weighting coefficients
in (6.1).

Note that this is not true in the general case. The Mahalanobis distance
is invariant with respect to scaling of the factor manifolds, it still depends
on the underlying metrics themselves. One might e.g. also equip a shape
model (M,ψ) with the local metric

(10.1) 〈v,w〉p =

∫

ψ(p)
〈ψ∗(v),nψ(p)〉〈ψ∗(w),nψ(p)〉 ds
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Figure 6. Upper left image: Expert segmentation of 18
cells. Upper right and lower row: Automatic detection of
cells.

Figure 7. Modes 1, 2 and 3 of the approximated PGA of
the training data in Figure 6, upper left.)

for v,w ∈ TpM , p ∈M . Here the first inner product 〈 · , · 〉p is the metric on
M , whereas the ones inside the integral refer to the standard inner product
on R

2 (note that ψ∗(v) and nψ(p) are implicitly evaluated at s in the inte-
gral). One could also use an extension of the above concept as suggested by
Michor and Mumford [26, 25]. All these metrics are geometric metrics, in
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the sense that the are invariant with respect to the parametrization of shapes
and depend only on the actual shape itself (i.e. on ψ(p) in our terminology).

This means that our framework is flexible in the sense that it applies to a
wide range of underlying segmentation energies and parametric shape mod-
els. The original versions of both segmentation approaches we presented in
Section 9, i.e. the Mumford-Shah and the ”Snakes” energy, are regularized
by penalizing the boundary area of the detected region. Given the fact that
some kind of regularization is actually mandatory for the well-posedness of
the corresponding variational problem, it seems natural to use the Maha-
lanobis regularization on the shape parameter manifold if statistical a-priori
data is available. In contrast to the general formulation of variational seg-
mentation problems using for instance the level set approach or parametric
curves, we expect our approach to perform substantially better in case of
cluttered or partially occluded data.

Possible further investigations mainly cover two areas. First, in appli-
cations the minimization of the segmentation functional requires frequent
evaluations of the Mahalanobis distance. These computations are very cheap
for the product metric we used in connection with parametric medial axis
representation, but can be very expensive if a geometric metric as e.g. (10.1)
is used. The development of geometric metric on the M-Rep space, which is
yet easy to compute, is subject of current research.

Secondly, our approach is limited to one class of shapes. The variation
within this class can be large if this property is reflected by the training
data, but the existence of two or more distinct clusters will not be reflected
by the Mahalanobis distance. An approach as proposed by Cremers et al. [7]
might be used to resolve this shortcoming.
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