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ENERGY TRAINING FOR VARIATIONAL SHAPE DETECTION

MATTHIAS FUCHS AND SAMUEL GERBER

ABSTRACT. This paper presents a novel variational formulation incorporating
statistical knowledge to detect shapes in images. We propose to train an energy
based on joint shape and feature statistics inferred from training data. Variational
approaches to shape detection traditionally involve energies consisting of a fea-
ture term and a regularization term. The feature term forcesthe detected object
to be optimal with respect to image properties such as contrast, pattern or edges
whereas the regularization term stabilizes the shape of theobject. Our trained en-
ergy does not rely on these two separate terms, hence avoids the non-trivial task
of balancing them properly. This enables us to incorporate more complex image
features while still relying on a moderate number of training samples. Shape de-
tection in microscope images and tracking of moving objectson cluttered back-
ground illustrate the capability of the proposed method to automatically adapt
itself to different image features.

1. INTRODUCTION

Variational approaches to detect shapes in images are basedon functionals which
map shape geometries to an energy that reflects how well the given shape corre-
sponds to the image features. Mumford and Shah [12] proposedto use the mean
intensity of the region defined by the shape compared to the intensity of the back-
ground as such a feature. This idea can be extended to regionsof homogeneous
patterns as in Chan and Vese [1]. A second important feature are the edges in im-
ages. Kass et al. [9] proposed the Snakes approach to fit curves to the edges of an
image. Both formulations require an additional regularization term in the energy
functional to ensure that the corresponding variational problem is well-posed. This
term measures the regularity of the boundary of the detectedregion.

These traditional methods have difficulties to correctly detect shapes that are
partially occluded, on cluttered image background, or on images corrupted by too
much noise. A common solution to this problem is the use of shape priors as in
Chen et al. [2], Cremers et al. [4], Fang and Chan [5], Gastaudet al. [6], Leventon
et al. [11], Rousson and Paragios [14] and Tsai et al. [16]. Shape prior methods
use training data to compute shape statistics. These statistics define a likelihood
functional that maps a shape to its probability w.r.t.the shape statistics and replaces
the regularization term in the traditional variational formulation. This regulariza-
tion ensures that only shapes which seem to be “reasonable” with respect to the
training statistics are detected.

A common property of approaches based on shape priors is thatthey require the
choice of a weighting parameter which determines the influence of the shape statis-
tics. A high weight stabilizes the shape detection but mightrender it impossible to
detect shapes which are very different from the training shapes (but still correct),
whereas a too low weight introduces the danger of getting wrong results in case
of noisy, cluttered or occluded image data. The correct choice of the parameter is
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not trivial and application dependent. Multiple (possiblytime consuming) tests are
often necessary to validate the weighting parameter.

The cited approaches further limit themselves to the use of only one kind of
image feature, e.g.image contrastor edges. A combination of multiple features
would again require each of them to be weighted with respect to the other and thus
introduce even more parameters.

In this paper we propose an approach which does not require the explicit choice
of a regularization parameter. Similar to the above works onshape priors, we train
statistics on annotated data. In contrast of limiting the statistics to shapes only, we
incorporate the corresponding image features from the training data. This allows
us to learn the full-fledged segmentation energy and not onlya regularization term.
Furthermore, we avoid the choice of regularization parameters. Our method is
capable of incorporating an arbitrary number of different kinds of image features.
The relative importance of the various features is automatically learned from the
training data. I.e.the trained energy gives high weight to combinations of features
it learned to be representative for a class of objects and does not consider features
which vary a lot across the training data. The computationaleffort to evaluate the
resulting energy for a given shape is comparable to the methods mentioned above
and the number of required training samples is very moderate.

The idea of learning an energy from multi-dimensional training data and leave
the work of selecting important features to the learning process is similar to ma-
chine learning approaches acting on raw pixel values of image data (cf. LeCun et
al. [10, and references therein]). In comparison to these methods our approach re-
quires significantly less training because we use shape knowledge and intelligently
computed image features. Another approach related to ours was proposed by Cre-
mers et al. [3]. There, the authors learn a kernel density based on shape and image
features. In contrast to our work, they focus on level set representations of shapes
and the intensity distribution within shapes. They also consider the distributions of
the shapes and the image features separately, whereas we treat them jointly.

The outline of this paper is as follows. In the next section weintroduce the
shape-to-feature map which, for a given image, maps a shape to a vector of image
features determined by this shape. The shape-to-feature map is used to learn an
energy based on shape and image feature statistics. For the results in this paper we
concentrated on features which can be expressed as boundaryintegrals along the
shape outline. Section 3 is dedicated to the training of an energy for a given image,
a given set of training samples and a given shape-to-featuremap. We present two
different kinds of energies which are based on estimating the parameters of a nor-
mal distribution and kernel density estimation respectively. In addition, we state
the variational problem based on these energies.

The last part is devoted to experimental results. We first applied our method
to the detection of objects in biologic microscope images. These results were ob-
tained by gradient and intensity based image features together with normal density
estimates. In a second application we tracked moving objects in a movie sequence.
In these experiments we use gradient information and intensity histogram data of
each color channel in combination with the kernel density energy. We conclude
with a summary of our key contributions and an outlook on future work.

1.1. Notation and preliminaries. In the following we always assumeu : Ω → R
d

to be a (possibly vector valued) image defined on a 2-dimensional domainΩ⊆ R
2.
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If d = 1 thenu can be interpreted as a gray-scale image. Letγ be a closed planar
curve inΩ without self-intersections, i.e.γ : S1 → Ω, injective. We assumeγ to
be piecewise differentiable. We refer toγ as ashape. The shapeγ is completely
determined by ashape parameter p ∈ R

m. This is denoted byγ(p). In our case
p parametrizes the medial axis of the shapes, but it might as well be a list of the
coefficients of a B-spline curve or any other kind of shape parametrization.

Finally note that our work is presented for the planar case only, but generalizes
to higher dimension very easily.

2. SHAPE-TO-FEATURE MAP

We call a mapF,

(1) F : R
m → R

n , p → F(γ(p)) ,

which maps a shape parameter to a vector of features of the image u a shape-
to-feature map. I.e.F depends only on the shapeγ(p) but not onp itself. It is
important to note, though, thatF does depend on the imageu. To simplify notation
and because we choseu to be fixed throughout the paper we do not denote this
dependence.

In this paper we concentrate on a subclass of shape-to-feature maps, which is
characterized by a special form ofF. In particular, we considerF to be the com-
positionF = G◦H, whereG : R

k → R
n andH : R

m → R
k. We assume that only

H depends on the imageu whereasG is independent of the image and the shape.
Each of the componentsHi, 1≤ i≤ k, of H should have one of the following forms:

(2) Hi(p) =

∫

γ(p)

ai(u)ds or Hi(p) =

∫

γ(p)

bi(u) ·dn ,

whereai(u) : Ω → R , bi(u) : Ω → R
2 andn denotes the outer unit normal ofγ(p).

I.e.we assume each component ofH to be either the integral of a scalar function
along the shape boundary or the integral of a vector field along the same boundary.
This construction enables us to evaluate complex image features and still give good
estimates on the complexity of an evaluation ofF for a given shapeγ(p). Because
ai(u) and bi(u) depend only on the imageu but not on the shapeγ(p) we can
precompute a discretized version of them. The computation of Hi(p) then involves

• the computation ofγ(p), and
• the evaluation of a 1-dimensional boundary integral.

For accordingly chosen functionsai(u) it is possible to evaluate a wide range
of features such as intensity, histogram data and gradient information along the
shape boundary. By the use of the divergence theorem, the integral overbi(u)
enables us to compute the same values over the regionΓ(p) ⊆ Ω inside a given
shapeγ(p). Assume a scalar functionci(u) which we want to integrate overΓ(p).
We first computebi(u) such that∇ · bi(u) = ci(u). This equation constitutes an
underdetermined system of partial differential equationsfor bi which is trivial to
solve for a given imageu. Then

(3)
∫

Γ(p)

ci(u)dx =

∫

γ(p)

bi(u) ·dn .

For ai(u) = 1 or ci(u) = 1 the integrals (2) evaluate to the length of the boundary
of γ(p) and its volume, respectively.
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FIGURE 1. Left: The skeleton and the maximal circles of this
cross are parametrized byp. The outlineγ(p) is computed by
interpolating the points on the circles.Right: Medial axis shape
model for a human silhouette.

The mapG is used to combine the values of the integralsHi to get more mean-
ingful features. In our examples the functionG normalizes the integrals along the
boundaryγ(p) and the regionΓ(p) w.r.t.the length ofγ(p) and area ofΓ(p), re-
spectively. It is further possible to write the simplified Mumford-Shah functional
[12, 1] and the Snakes [9] functional in the formF = G ◦H with H being an ex-
pression of integrals as in (2).

2.1. Shape representation. The shape model we use is based on the idea of pa-
rameterizing a shape by constructing a discrete approximation of its medial axis
as proposed by Joshi et al. [8]. In our case, a shape parameterp parametrizes
a tree-like skeleton consisting of nodes, edges connectingthe nodes, and circles
at the nodes. These circles are supposed to be maximal circles within the shape,
i.e.they touch the shape in at least two points. In more detail, the components ofp
determine

• the position and rotation of the skeleton,
• the lengths and the angles of the edges of the skeleton, and
• the radii of maximal circles centered at the nodes of the skeleton.

From this data we compute points on the maximal circles and interpolate them
tangentially with a B-spline curve. Two different implementations of this idea
(corresponding to the two applications in this paper) are illustrated in Figure 1.
Note that the skeleton does not necessarily correspond to the real medial axis of
the resulting shape. Still, the underlying idea of the medial axis results in a much
more natural interpretation of the different components ofa shape parameter than
it is e.g.the case for a vector of B-spline coefficients.

Because we will explicitly refer to the position and rotation of shapes later on,
we decide that the first three components ofp determine these properties, i.e.

(4) p = ( p1, p2, p3
︸ ︷︷ ︸

position, rotation

, p4, . . . , pm
︸ ︷︷ ︸

skeleton, radii

)T .

3. ENERGY TRAINING

The main contribution of this paper is the computation of an energyE for given
training shape parametersp1, . . . , pN and a shape-to-feature mapF. In this section
we will introduce the variational form of the shape detection problem based on this
energy and explain two different ways to train energies based on normal density
estimation and kernel density estimation.



ENERGY TRAINING FOR VARIATIONAL SHAPE DETECTION 5

The energyE : R
m → [0,∞) maps an unseen shape parameterp to a non-

negative value which determines how wellγ(p) fits on the image considering shape
and image properties learned from the training shapes. Small valuesE(p) corre-
spond to a good match. Hence, the shape detection problem of single shape can be
written as

(5) p = argminp∈D E(p) ,

whereD ⊆ R
m. The domainD constrains the above variational problem. In all

applications we choseD such that only shapes on the image domainΩ are consid-
ered. We further can adaptD such that shapes close to training shapes or already
detected shapes on the same image are not considered in the minimization problem.

In the following we explain two different approaches to compute E. As men-
tioned before we assumeu to be a fixed image. Furthermore,p1, . . . , pN are the
parameters of manually determined training shapes on this image. This means that
we expect the shapesγ(p1), . . . ,γ(pN) to match objects onu. Finally let F be a
feature map foru. Then, for a given shape parameterp, we define itsshape-feature
vector q(p) by setting

(6) q(p) = (p4, . . . , pm,F1(p), . . . ,Fn(p))T ∈ R
M ,

whereM := m + n−3. In other words,q(p) consists of the features for the shape
determined byp and the shape parameterp excluding position and rotation. We
further denote the shape-feature vectors of the training data pi asqi := q(pi), 1≤
i ≤ N.

In this paper we consider energies of the form

(7) E(p) = − log f (q(p)) ,

wheref is a probability density onRM and depends on the training datap1, . . . , pN .
This formulation translates the energy learning into a density estimation problem.
For our experiments we consider a parametric and a non-parametric approach to
estimate the densityf (q).

It is worth noting that both versions are invariant to scaling of single components
of the shape-feature vector. This is important as any dependence on scale would
implicitly introduce a regularization parameter which is exactly what we want to
avoid.

3.1. Normal density estimation. In this section we assumeq to be normally dis-
tributed with density function

(8) f (q) = (2π)−M/2 det(Σ)−1/2 e−
1
2(q−µ)T Σ−1(q−µ) .

with µ ∈ R
M andΣ a symmetric and positive definiteM ×M-matrix. Assuming

the shape-feature vectors of the training data to be independently and identically
distributed w.r.t.f we compute maximum-likelihood estimators of the parameters
µ andΣ:

µ =
1
N

N

∑
i=1

qi ,(9)

Σ =
1

N −1

N

∑
i=1

(qi −µ)(qi −µ)T .(10)
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By (7) the energyE of a given shape parameterp is then

(11) E(p) ∝ (q(p)−µ)T Σ−1(q(p)−µ) .

There exist several interpretations of the above expression. For one, it equals the
Mahalanobis distance betweenq and µ w.r.t.the covarianceΣ. Also, it can be
interpreted as the squared norm of the coefficients ofq w.r.t.the principal compo-
nent analysis of the training shape-feature vectors. It is further important to note
that (11) withµ andΣ as in (9) and (10) is invariant under linear transformation of
q. In particular, rescaling single components of the shape-feature vector does not
changeE.

3.2. Kernel density estimation. The parametric approach in Section 3.1 puts lim-
itations on the range of probability densities we are able toestimate properly and
therefore on the type of shape distributions we can successfully detect. We use a
kernel density estimator with a Gaussian kernel yielding the density function:

(12) f (q) = (2π)−M/2 det(Σ)−1/2 1
N

N

∑
i=0

e−
1
2(q−qi)

T Σ−1(q−qi) .

This leaves the problem of selecting an appropriate kernel width, a task which is
also known as bandwidth or window width selection [15]. Various approaches have
been proposed and there is no single optimal solution in practice. For our experi-
ments we set the variance to the diagonal matrixΣ = diag(σ2

1 , . . . ,σ2
M) ∈ R

M×M .
We chose the diagonal entries ofΣ to be the average of the squared pairwise dis-
tances of the corresponding components of the training shape-feature vectors and
then scaled the whole matrix by a constantα > 0:

(13) σ2
k =

2α
N(N −1)

N

∑
i=1

N

∑
j=i+1

(qk
i −qk

j)
2 , 1≤ k ≤ M .

Since we have a small number of training samples we setα = 10 to avoid a highly
peaked energy at the training locations. The resulting energy E of a shape param-
eterp is then

(14) E(p) ∝ − log
N

∑
i=0

e−(q(p)−qi)
T Σ−1(q(p)−qi) .

Due to the specific choice of the covariance matrixΣ in (13), the energy (14) is
invariant to scaling of the individual components of the shape-feature vector. The
energy as formulated in (14) allows to model complex energies at the cost of in-
creased computational effort (for large amounts of training data) as well as the
problem of selecting an appropriate kernel width.

4. RESULTS

We applied the proposed method to two kinds of image data. Thefirst appli-
cation is concerned with the detection of shapes in microscope image data. We
manually annotated some of the objects on a given image and automatically de-
tected the remaining ones by minimizing the energy learned from the annotated
data. In the second application, we annotated the shape of a walking human on a
couple of consecutive frames of a movie and tracked the same human silhouette in
the subsequent frames. In the first example we used an energy based on the normal



ENERGY TRAINING FOR VARIATIONAL SHAPE DETECTION 7

FIGURE 2. Microscope image (512× 512 pixels) of yeast cells.
Left: Manually annotated cells.Right: The training shapes and
the detected cells.

distribution estimation as detailed in Section 3.1, whereas in the tracking example
we used kernel density estimation (Section 3.2).

4.1. Shape detection in microscope images. This section is concerned with the
detection of similar objects in gray-scale microscope images. The data in Figure 2
involves two major challenges. The cells on the image form a huge cluster and
it is difficult to separate them with traditional methods. Inaddition, the shadow-
like features on each cell cause extra edge information in the cells which can not be
removed by smoothing. The objects in Figure 3 are more clearly set apart from each
other, but the quality of their appearance varies more than in the first examples.

We computed the same feature map for both images. First, we smoothed the
images with a 2-pixel-wide Gaussian kernel, denoting the result asuσ . Then we
definedF by

(15) F(p) =










∮

γ(p) |∇uσ |ds
∮

γ(p) uds
∮

γ(p) u2 ds
∮

Γ(p) udx
∮

Γ(p) u2 dx










.

Here,
∮

γ(p) ds and
∮

Γ(p) dx denote the integrals overγ(p) andΓ(p) normalized by
the length ofγ(p) and the area ofΓ(p) respectively. In a nutshell, we compute the
normalized values of the absolute values of the image gradients along the bound-
ary and the normalized values of the intensities and their first moment along the
boundary and inside the shape. Note that as in (3) the latter two integrals can
be transformed into a boundary integral of a vector field. This also holds for the
computation of the area ofΓ(p).

We computed the training shape-feature vectorsq1, . . . ,qN from the manually
annotated objects,N = 31 andN = 75 in Figure 2 and Figure 3, respectively. From
these training sets we estimatedµ andΣ as in (9) and (10) to define the energy (11).
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FIGURE 3. Microscope image (1536×1686 pixels) of a parame-
cium with cilia (a type of cell organelles).Left: Manually anno-
tated cilia.Right: The training shapes and the detected cilia.

The solution of (5) was done iteratively. We chose the problem domainD such
that only shapes on the imageΩ are considered and further removed all parameters
from D which corresponded to shapes which overlap with the training shapes. By
”overlapping shapes” we mean shapes whose common area is above some thresh-
old (50 common pixels in Figure 2 and 150 pixels in Figure 3).

To find multiple shapes in the image we used Algorithm 4.1. In simple words,
the algorithm generates random shapes and tries to improve the current detection
result p1, . . . , pM by successively replacing previously detected shapes withnew
ones.

Algorithm 1 Detection of multiple shapes

chooseM random shape parameters(p1, . . . , pM)
ci := E(pi), 1≤ i ≤ M
repeat

choose a random shape parameterp′

if E(p′) < ci for some 1≤ i ≤ M then
if γ(p′) does not overlap with any of the shapesγ(p1), . . . ,γ(pM) then

pi := p′ andci := E(p′)
else if γ(p′) overlaps withγ(pi1), . . . ,γ(pik) and E(p′) < min(ci1, . . .cik)
then

pi1 := p′ andci1 := E(p′)
choosepi2, . . . pik randomly
ci j := E(pi j), 2≤ j ≤ k

end if
end if

until (p1, . . . , pM) stop improving significantly

In the algorithm, by the random choice of a shape parameterp we mean selecting
p ∈ D as follows:
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• The position(p1, p2) and the rotationp3 are uniformly sampled on the
image domainΩ and in the interval[−π,π], respectively.

• We compute the meanµ4:M and the covariance matrixΣ4:M of the com-
ponents(p4

i , . . . , pM
i ), 1 ≤ i ≤ N, of the training data. Then we sample

(p4, . . . , pM) from the multivariate normal distribution with meanµ4:M and
varianceΣ4:M.

The result of the above selection is accepted ifp ∈ D. Otherwise a new candidate
p is sampled.

We choseM larger than the expected number of shapes in the image. After
stopping the algorithm we manually estimated a thresholdc0 > 0 such that the
shapesγ(pi) with E(pi) ≤ c0, 1 ≤ i ≤ M, represented usable results. In many
applications, the manual selection ofc0 does not really pose a problem, because it
is doneafter the algorithm is run. I.e.changes ofc0 can be visualized in real-time.
Furthermore, techniques to estimatec0 from the distribution of the final energies
ci, 1≤ i ≤ M, could be employed.

We chose this approach because it effectively demonstratesthe capability of the
E to detect shapes from learned shape and image features. Genetic algorithms
or the combination of genetic and gradient based approachesmight significantly
speed up the minimization process.

For this work we did not do any further investigations on alternative stopping
criteria for the algorithm but ran it until the result stopped to improve. An analysis
of how the number of random samples, i.e.the number of iterations, compares to
the quality of the result requires a meaningful way to measure the usefulness of a
detection result and is beyond the scope of this work.

4.2. Tracking. The tracking example uses frames 33 through 100 from thewalk-
ing straight sequence1. We annotated the walking person from frame 33 to frame
78. The task is to track the target person through the remaining frames. To avoid
the technicalities of handling multiple shape-to-featuremaps we define the image
u as the horizontal concatenation of the 125 frames into a single image. In this
example we are dealing with color images and refer withu j to the j channel ofu.

Note that the method is not specifically tuned for tracking but uses only statisti-
cal knowledge from the training shapes. The silhouette of the person to be tracked
varies significantly over one walking cycle.

We defined the shape-to-feature mapF(p) for u as the values of the normalized
K-bin histograms over the shape boundaryγ(p) and the areaΓ(p) inside the shape
w.r.t.intensity and gradient magnitude for each channelj of u. Formally, we denote
for a setA, a functionv : A → R and 1≤ k ≤ K

hA(v,k) = value of thek-th bin of the normalized

K-bin histogram ofv overA.
(16)

Then we set

(17) Fi(p) =







hγ(p)(u
j,k) for i = 4(3k + j−4)+1

hγ(p)(|∇u j
σ |,k) for i = 4(3k + j−4)+2

hΓ(p)(u
j,k) for i = 4(3k + j−4)+3

hΓ(p)(|∇u j
σ |,k) for i = 4(3k + j−4)+4

1http://www.nada.kth.se/ hedvig/data.html
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FIGURE 4. Top: 6 frames with manually annotated shapes from
the training set. Bottom: Detected shapes in 6 of the tracked
frames.

for 1 ≤ k ≤ K, 1≤ j ≤ 3 and 1≤ i ≤ 12K. Here,uσ denotes the imageu after
convolution with a 2-pixel-wide Gaussian kernel. In our experiments we setK = 5.

We then defined the energyE as in (14) using the shape-feature vectorsq1, . . . ,q36

of the annotated shapes in the frames 33 through 78. For the tracking we proceeded
as in Algorithm 4.2.

Algorithm 2 Tracking

p0 = shape parameters of the last annotated frame
for i = 1 to number of unseen framesdo

pi = pi−1 shifted to the next frame
c = E(pi)
for number of samplesdo

choosep′ randomly at locationpi−1 shifted to next frame
if E(p′) ≤ c then

pi = p′

c = E(pi)
end if

end for
end for

In the algorithm, the random selection of the samplep′ in the i-th frame is done
as follows:

• We setp′ to pi−1 and then offset the position ofp′ by the frame width to
move it to the next frame. We did not sample the rotational component but
kept it fixed during training and tracking.

• The remaining components ofp′ were chosen as in Section 4.1, i.e.we sam-
pled them from the(µ4:M ,Σ4:M)-normal distribution, whereµ4:M andΣ4:M

are the mean and the covariance of the upper components of thetraining
shape parameters.
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FIGURE 5. Tracked shape with a Diplodocus occluding the track-
ing target. The visible parts of the human are accurately detected.

Figure 4 shows 6 of the 36 manually annotated frames from the training set and
6 frames with tracked shapes. The proposed method is able to perform tracking
with a small amount of training data (36 samples).

In Figure 5 we manually overlaid an image of a dinosaur on the frames of
the movie sequence. We trained the energy as before on the original training set
(frames 33 through 78 without the added dinosaur) and then tracked in the images
with the dinosaur. This demonstrates the robustness of the proposed method to
occlusions.

5. CONCLUSION AND FUTURE DIRECTIONS

We suggest a novel variational formulation to shape detection based on training
a task-specific segmentation energy. The underlying mathematical model of our
method is very general and can be easily used for a wide range of applications.
The proposed energy learns the significant shape and image features from training
shapes and is able to distinguish them from non-relevant features. This is illustrated
in two different applications.

A major advantage over existing approaches is the absence ofa regularization
term. This avoids the often difficult task of choosing the optimal regularization for
a given application.

On the other hand, because we incorporate shape priors and rely on a meaning-
ful selection of image features, our approach requires far less training samples than
methods solely relying on learning pixel values [13] and thetraining is computa-
tionally cheap.

In future we would like to investigate different energies. E.g.learning a kernel
based on positive and negative training samples is considered. A Bayesian ap-
proach to the parametric density estimation could help mitigate difficulties due to
small training sets (over fitting). For the nonparametric approach, techniques such
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as adaptive kernel density estimation or projection pursuit density estimation could
further improve results [7]. Furthermore, the developmentof efficient algorithms
to minimize the learned energy is subject of ongoing research.
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