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Abstract

This paper presents a novel variational formulation in-
corporating statistical knowledge to detect shapes in im-
ages. We propose to train an energy based on joint shape
and feature statistics inferred from training data. Varia-
tional approaches to shape detection traditionally inwolv
energies consisting of a feature term and a regularization
term. The feature term forces the detected object to be opti-
mal with respect to image properties such as contrast, pat- Figure 1. Mumford-Shah segmentation of a croissft: Relative
tern or edges whereas the regularization term stabilizes th regularization parameter = 1. Right: Relative regularization pa-
shape of the object. Our trained energy does not rely on rametera = 5. The arrows indicate areas where the regularization
these two separate terms, hence avoids the non-trivial taskcontracts the curve too much.
of balancing them properly. This enables us to incorpo-
rate more complex image features while still relying on a t5rm of these energies is
moderate number of training samples. Cell detection in mi-
croscope images illustrates the capability of the proposed Eqs=1+0aR, Q)
method to automatically adapt itself to different image fea

tures. We also introduce a nonlinear energy and exemplar- Wherel denotes théit-to-data term R the regularization
ily compare it to the linear approach. termand o > 0 theregularization parameter The fit-to-

data term assigns small energies to shapes which fit to the
image features whereas the regularization term favors “reg
ular” shapes. In the approaches cited above this regularity

1. Introduction is ensured by penalizing the length or area of the boundary.
This forces the shape boundary to be bounded.

Variational approaches to detect shapes in images are The regularization term is necessary to ensure the well-
based on functionals which map shape geometries to an enposedness of the variational problem associated with the en
ergy that reflects how well the given shape corresponds toergy functionals. In Figure 1 we illustrate the influence of
the image features. Mumford and Shah [18] proposed tothe regularization parametarin the Mumford-Shah func-
use the mean intensity of the region defined by the shapetional. This example indicates that the correct choice of
compared to the intensity of the background as such a feathe regularization parameter is important to obtain satisf
ture. This idea can be extended to regions of homogeneougng segmentation results.
patterns as in Chan and Vese [1]. A second important fea- These traditional methods have difficulties to correctly
ture are the edges in images. Kasal [13] proposed  detect shapes that are partially occluded, on clutteregéma
the Snakes approach to fit curves to the edges of an imagebackground, or on images corrupted by too much noise. A
Both formulations require an additional regularizatiome =~ common solution to this problem is the use of shape priors.
in the energy functional to ensure that the correspondingThe idea of using statistics of shapes as a basis for shape
variational problem is well-posed. This term measures the detection was introduced by Cooteisal. [5]. More recent
regularity of the boundary of the detected region. A general approaches are Chenal. [2], Cremerset al. [7], Fang and




Chan [8], Gastauet al. [9], Leventonet al. [16], Rous- the number of required training samples is very moderate.
son and Paragios [20, 21] and Tsaial. [23]. Shape prior
methods use training data to compute shape statisticseThes ~Learning a combination of shape and image features was
statistics define a likelihood functional that maps a shape t proposed by Cootest al [3] in their work about Active
its probability w.r.t. the shape statistics and replaceséig- Appearance Models. There, the complete intensity distribu
ularization term in the traditional variational formulati. tion inside the shapes is learnt whereas in our work we con-
This regularization ensures that only shapes which seem tcsider features obtained by integration over the shape bound
be “reasonable” with respect to the training statisticsiare ~ ary. The idea of learning an energy from multi-dimensional
tected. training data and leave the work of selecting important fea-
Again, the above approaches define energies of thelUresto the Iearning processis z?\lso similar to _machinelear
form (1) whereR includes the statistical prior information. N @pproaches acting on raw pixel values ofimage data (cf.
The regularization parameter determines the influence of-€Cunetal [15, and references therein]). In comparison to
the shape statistics. A high weight stabilizes the shapetn©Se methods our approach requires significantly less trai
detection but might render it impossible to detect shapesiNd because we use shape knowledge and intelligently com-
which are very different from the training shapes (but still Puted image features.
correct), whereas a too low weight introduces the danger of
getting wrong results in case of noisy, cluttered or ocatlide
image data. The correct choice of the parameter is not triv-
ial and application dependent. Multiple (possibly time con
suming) tests are often necessary to validate the weightin
parameter. This situation is illustrated in Figure 2. Theee

Another approach related to ours was proposed by Cre-
merset al [6]. There, the authors learn a kernel density
based on shape and image features. In contrast to our work,
gIhey focus on level set representations of shapes and the

Intensity distribution within shapes. They also consider

manually annotated the cells in the central cluster in the im the distributions of the shapes and the image features sep-

age and estimated the mean and the covariance of the shapEl’sr ately, whereas we treat_ them 10|ntly. An app rogch to
solve the problem of choosing the optimal regularization pa

parameters of the training shapes. Then we minimized the ; i . d by Ml h and
Snakes functional with a regularization term defined by the rameter for a given 'mage was presente by Mc r_1tos an
Hamarneth [17]. They minimize a quadratic functional for

statistics of the training data and compared the results for larizati hich vield d .
regularization parameters at three orders of magnitude. regularization para_meters which yield convex | etection en
In our setting, the problem of the optimal regular-

As in the previous example we observe that this approach®9!€s-

gives satisfying results for a correctly chosen reguldiora ization is equivalgnt FO the selection c.)f Fhe image features
parameter but fails in case of too small or too large vaIuesthe shape detection is based on. This is related to éaw

of o al. [14].
The cited approaches further limit themselves to the use e outline of this paper is as follows. In the next section
of only one kind of image featura.g image contrasor we introduce theshape-to-feature mawhich, for a given

edges. A combination of mgltiple fea.\tures would again re- image, maps a shape to a vector of image features deter-
quire each of them to be weighted with respect to the other yineq by this shape. The shape-to-feature map is used to
and thus introduce even more parameters. learn an energy based on shape and image feature statis-
In this paper we propose an approach which does not retics. For the results in this paper we concentrated on fea-
quire the explicit choice of a regularization parametem-Si  tures which can be expressed as boundary integrals along
ilar to the above works on shape priors, we train statistics the shape outline. Section 3 is dedicated to the training of
on annotated data. In contrast to limiting the statistics to an energy for a given image, a given set of training samples
shapes only, we incorporate the corresponding image fea-and a given shape-to-feature map.
tures from the training data. This allows us to learn the
full-fledged segmentation energy and not only a regulariza- The subsequent section is devoted to experimental re-
tion term. Furthermore, we avoid the choice of regulariza- sults. We applied our method to the detection of objects in
tion parameters. Our method is capable of incorporatingbiologic microscope images. These results were obtained
an arbitrary number of different kinds of image features. by gradient and intensity based image features togethler wit
The relative importance of the various features is automati normal density estimates. In Section 5 we outline the ap-
cally learned from the training dathe. the trained energy  proach we used to minimize the learnt energy. In the last
gives high weight to combinations of features it learned to section of the paper we exemplarily demonstrate the use of
be representative for a class of objects and does not cansidenonlinear density estimates to learn a shape statistic with
features which vary a lot across the training data. The com-two modes. We use this energy to detect shapes in artificial
putational effort to evaluate the resulting energy for @giv  image data and compare them to the results obtained by the
shape is comparable to the methods mentioned above andormal density estimate.
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Figure 2. Edge-based segmentation with shape regulanizdp, left: Manually annotated training shapd®p, right: Detected shapes
with relative regularization parameter= 1. bottom, left: Detected shapes with relative regularization parameter0.1. bottom, right:
Detected shapes with relative regularization paraneeterl0.

1.1. Notation and preliminaries wherea;(u) : Q — R, bi(u) : Q — R? andn denotes the
outer unit normal ofy(p). |.e. we assume each component
of H to be either the integral of a scalar function along the
shape boundary or the integral of a vector field along the
same boundary. This construction enables us to evaluate
complex image features and still give good estimates on the
complexity of an evaluation of for a given shape/(p).
Because, (u) andb;(u) depend only on the imagebut not

In the following we always assume: Q — RY to be a
(possibly vector valued) image defined on a 2-dimensional
domainQ C R2. If d = 1 thenu can be interpreted as
a gray-scale image. Let be a closed planar curve @
without self-intersections,e. y : St — Q, injective. We as-
sumey to be piecewise differentiable. We refer yaas a

shape 'L'he shﬂzr:ne/_li_i_cqmgletelty(;iﬁterminled by shape on the shapg(p) we can precompute a discretized version
parameter ps = . This IS denote y(p). Inour casq) of them. The computation ¢ (p) then involves
parametrizes the medial axis of the shapes, but it might as

well be a list of the coefficients of a B-spline curve or any e the computation of/(p), and
other kind of shape parametrization.

Finally note that our work is presented for the planar case ~ * the evaluation of a 1-dimensional boundary integral.

only, but generalizes to higher dimension very easily. For accordingly chosen functiors(u) it is possible
to evaluate a wide range of features such as intensity,
2. Shape-to-feature map histogram data and gradient information along the shape
boundary. The integral ovés(u) enables us to compute
We call a magF, the same values over the regibip) C Q inside a given
shapey(p). Assume a scalar functiog(u) which we
F:R"—R", p—F(y(p), (2)  want to integrate ovef (p). We first computeb;(u) such

_ that - bj(u) = ¢i(u). This equation constitutes an under-
which maps a shape parameter to a vector of features of thgjetermined system of partial differential equations tpr

imageu a shape-to-feature mapl.e. F depends only on  which is trivial to solve for a given image. Then, by the
the shapey(p) but not onp itself. It is important to note,  gjvergence theorem,

though, that~ does depend on the image To simplify
notation and because we chast® be fixed throughout the / c(u)dx= / bi(u) - dn. 4)
paper we do not denote this dependence. .

In this paper we concentrate on a subclass of shape- ® np)

to-feature maps, which is characterized by a special formpor a;(u) = 1 or¢;(u) = 1 the integrals (3) evaluate to the
of F. In particular, we considef to be the composition  |ength of the boundary gf(p) and its volume, respectively.
F=GoH, whereG: R — R"andH : R™ — R¥. We The mapG is used to combine the values of the inte-
assume that onlj depends on the imagewhereasG is gralsH; to get more meaningful features. In our examples
independent of the image and the shape. Each of the comthe functionG normalizes the integrals along the boundary
ponentdd;, 1 <i <k, of H should have one of the following  y(p) and the regiof (p) w.r.t. the length of/(p) and area of
forms: I'(p), respectively. Itis further possible to write the simpli-
fied Mumford-Shah functional [18, 1] and the Snakes [13]
Hi(p) = /a(u)ds or Hi(p) = / bi(u)-dn, (3) functional in the fornF = G oH with H being an expression
vip) vip) of integrals as in (3).



E(p) correspond to a good match. Hence, the shape detec-
tion problem of single shape can be written as

p=argmin,.p E(p), (6)

whereD C R™. The domairD constrains the above vari-
ational problem. In all applications we choBesuch that
only shapes on the image domé&lrare considered. We fur-
Figure 3.Left: The skeleton and the maximal circles of this cell ther can adadd such that shapes close to training shapes or
shaped object are parametrizediyThe outliney(p) is computed  glready detected shapes on the same image are not consid-
by interp(_)Iat?ng the points on the circleRight: Medial axis ered in the minimization problem.
parametrization of a cross. In the following we explain two different approaches to
computeE. As mentioned before we assuméo be a fixed
2.1. Shaperepresentation image. Furthermorey, ..., pn are the parameters of man-

ually determined training shapes on this image. This means

The shape model we use is based on the idea of parameat we expect the shapgp,), ..., y(pn) to match objects
terizing a shape by constructing a discrete approximafion o oy, Finally letF be a feature map far. Then, for a given

a shape parametgrparametrizes a tree-like skeleton con- y setting

sisting of nodes, edges connecting the nodes, and circles at
the nodes. These circles are supposed to be maximal circles ~ q(p) = (p*,...,p™ Fi(p),....Fa(p))" € RM, (7)
within the shapeij.e. they touch the shape in at least two

points. In more detail, the componentsmdetermine whereM :=m-+n—3. In other wordsg(p) consists of
the features for the shape determinedpognd the shape
e the position and rotation of the skeleton, parametemp excluding position and rotation. We further

denote the shape-feature vectors of the training pgates
g:=9q(pi), 1<i<N.
In this paper we consider energies of the form

¢ the lengths and the angles of the edges of the skeleton
and

e the radii of maximal circles centered at the nodes of _
the skeleton. E(p) = —logf(a(p)). (8)

where f is a probability density oiR™ and depends on

We chose this model because it is a more natural o ) .
the training data;, ..., pn. This formulation translates the

parametrization of shapes than B-spline curves but still al o . L
energy learning into a density estimation problem.

lows for complex shapes as illustrated in Figure 3. o ) .
For the shape detection in the microscope image we as-

Because we will explicitly refer to the position and rota- b llv distributed with density funci
tion of shapes later on, we decide that the first three compo—Sumeq 0 be normally distributed with densily function

nents ofp determine these properties. f(q) = (2n)’M/2det(Z)*1/2 eﬁ%(qinz—l(qiu) )

—( nl p2 3 ot m\T
p=( pp5p° , P, P G)  with pu e RM and = a symmetric and positive definite
position, rotation skeleton, radii M x M-matrix. Assuming the shape-feature vectors of the

training data to be independently and identically distigou
w.r.t. f we compute maximum-likelihood estimators of the

3. Energy training parameters and:
The main contribution of this paper is the computation of 1N
- ini =35> 0 (10)
an energ)E for given training shape parametgs ..., pn N 2
and a shape-to-feature mé&p In this section we will in- '17 N
troduce the variational form of the shape detection problem 5 — Z(qi — (G- )T (11)
based on this energy and explain two different ways to train N—-1.£

energies based on normal density estimation and kernel den- . .
sity estimation. By (8) the energ¥e of a given shape parametgis then

. m - —
The energye : R™ — [Qv°°) maps an unseen shape pa E(p) O (a(p) - u)Tz 1(q(p) ). (12)
rameterp to a non-negative value which determines how
well y(p) fits on the image considering shape and image There exist several interpretations of the above expressio
properties learned from the training shapes. Small valuesFor one, it equals the Mahalanobis distance betwpeand



by
§y(p) |Oug|ds
fv(p)UdS
Fip=| $puds |. (13)
I (p) U
§r(p)u2dx

Here, §,, ds and ¢ dx denote the integrals over(p)
andl (p) normalized by the length of(p) and the area of
I"(p) respectively. In a nutshell, we compute the normalized
values of the absolute values of the image gradients along
the boundary and the normalized values of the intensities
and their first moment along the boundary and inside the
shape. The first moments in (13) enable us to capture vari-
ations of intensities as in the cells in Figure 4. Note that
as in (4) the latter two integrals can be transformed into a
boundary integral of a vector field. This also holds for the
computation of the area of(p).

We computed the training shape-feature vectors
[, .- E ' di,...,0qn from the manually annotated objectd, = 31
Figure 4. Microscope image (532512 pixels) of yeast cells. The  andN = 75 in Figure 4 and Figure 5, respectively. From
image shows training shapes as in Figure 2 and the detedted ce thege training sets we estimatecnds as in (10) and (11)
to define the energy (12).

u w.r.t. the covarianc&. Also, it can be interpreted as S. Minimization

the squared norm of the coefficientscpiv.r.t. the principal The solution of (6) was done iteratively. We chose the
component analysis of the training shape—feature_ Vvediors.  problem domairD such that only shapes on the ima@e
is further important to note that (12) wifhandx asin (10)  are considered and further removed all parameters from

and (11) is invariant under linear transformationcpf In D which corresponded to shapes which overlap with the
particular, rescaling single components of the shapesfeat training shapes. By "overlapping shapes” we mean shapes
vector does not chandge whose common area is above some threshold (50 common

pixels in Figure 4 and 150 pixels in Figure 5).

To find multiple shapes in the image we used Algo-
rithm 5. In simple words, the algorithm generates ran-
dom shapes and tries to improve the current detection result
p1,...,Pm by successively replacing previously detected

We used the proposed method to detect shapes in mi'shapes with new ones.
croscope image data. We manually annotated some of the | the algorithm, by the random choice of a shape pa-
objects on a given image and automatically detected the rerameterp we mean selecting € D as follows:
maining ones by minimizing the energy learned from the

4. Results

annotated data. e The position(p!, p?) and the rotatiop® are uniformly
o ) ) sampled on the image domath and in the interval
The data in Figure 2 involves two major challenges. The [ 11, 71, respectively.

cells on the image form a huge cluster and it is difficult

to separate them with traditional methods. In addition, the e We compute the meagm and the covariance matrix
shadow-like features on each cell cause extra edge informa- 4. of the component&p?, ..., pM), 1<i <N, of the
tion in the cells which can not be removed by smoothing. training data. Then we sampl@*,...,pM) from the
The objects in Figure 5 are more clearly set apart from each multivariate normal distribution with meam. and
other, but the quality of their appearance varies more than variance> 4.

inthe first examples. The result of the above selection is acceptegldf D. Oth-

We computed the same feature map for both images.erwise a new candidaeis sampled.
First, we smoothed the images with a 2-pixel-wide Gaus- We choseM larger than the expected number of shapes
sian kernel, denoting the result ag. Then we definedr in the image. After stopping the algorithm we manually



Figure 5. Microscope image (15361686 pixels) of the ciliatdParamecium bursariacontaining many symbiotic green algaé&eft:
Manually annotated symbiontRight: The training shapes and the detected symbionts.

estimated a thresholg) > 0 such that the shapgép;) with Algorithm 1 Detection of multiple shapes
E(pi) < co, 1<i <M, represented usable results. In many  chooseM random shape parametés, ..., pv)

applications, the manual selectionggfdoes not really pose G:=E(p),1<i<M

a problem, because it is domaéter the algorithm is runl.e. repeat

changes oty can be visualized in real-time. Furthermore, choose a random shape parameter

techniques to estimatg from the distribution of the final if E(p/) < ¢ for some 1< i < M then

energiess, 1 <i <M, could be employed. if y(p') does not overlap with any of the shapes
Compared to greedy techniques this approach is very y(p1).-..,y(pm) then

inefficient but completely avoids local minima. Thus, it pi ;= p andg := E(p)

effectively demonstrates the capability of tReto detect else if y(p') overlaps withy(p,),...,y(pi,) and

shapes from learned shape and image features. Genetic al- E(p') < min(ci,...c,) then

gorithms or the combination of genetic and gradient based pi, := p’ andc;, := E(p')

approaches might significantly speed up the minimization choosepi,, ... pi, randomly

process. Model based shape detection using genetic algo- ¢, =E(p),2<j <k

rithms was investigated by Hill and Taylor [10]. end if
For this work we did not do any further investigations end if

on alternative stopping criteria for the algorithm but ran i until (pg,...,pm) stop improving significantly

until the result stopped to improve. An analysis of how the
number of random samplese. the number of iterations,

compares to the quality of the result require_s a meaningfu_lthe capability of the proposed method to model more com-

\t’;’ay todmheasure thef uhs_efulnle;ss of a detection result and I%Iicated shape-feature distributions by the use of a kernel
eyond the scope of this work. density estimator. For shapes, nonlinear statistics were i

vestigated by Cootes and Taylor [4]. The kernel density

6. Nonlinear density estimation with a Gaussian kernel is given by the function

The normal density estimation approach presented in N
Section 3 puts limitations on the range of probability den- f(q) = (ZH)*M/Zdet(Z)*l/ZE o a-a) Tz a-q)
N2, |

sities we are able to estimate properly. The energy (8) is
not limited to normal distributions, though. We illustrate (14)



This leaves the problem of selecting an appropriate kernel
width, a task which is also known as bandwidth or window
width selection [22]. Various approaches have been pro-
posed and there is no single optimal solution in practice. @i
For our experiments we set the variance to the diagonalma- = -
trix = = diag(0?,...,03) € RM*M_ We chose the diago-
nal entries ofz to be the average of the squared distances
from each training vectag; to its K nearest neighbo®;,
1<i <N, scaled by a parametgr> 0:

2
of = 1<k<M. (15)
KZC‘J;?|

The resulting energlg of a shape parameteris then

N
“log 20ef(q(p)fquTifl(q(p)fqi) . (16)

Due to the specific choice of the covariance malrir (15),
the energy (16) is invariant to scaling of the individual com
ponents of the shape-feature vectors as long askhedar- %
est neighbors stay the same. The energy as formulated ' : g e : :

in (16) allows to model complex energies at the cost of in- Flgure 6 Training data The two dn‘ferent orlented cornmefye-
creased computational effort (for large amounts of trgjnin SNt the two major modes in the shape distribution

data) as well as the problem of selecting an appropriate ker- .

nel width. Note also that in principle the proposed energyis =
not restricted to energies based on density estimation. One "=~ .
coulde.g use neural networks to learn an energy function
as proposed in [15].

We illustrate the performance of the kernel density en-
ergy on an artificial data set. Figure 6 shows the training
data. Note that the corners point downward for one half of
the training data and upward for the other half. This creates -+ =~ ‘ ' e LN
a shape distribution with two major modes. We applied Al- Figure 7. Detected Shapes Wlth energy values from tOp IOUDH
gorithm 5 withM = 3 to an image containing two shapes Left: Kernel density estimation: -1.99, -0.43, -1 R&ht: Normal
similar to the training shapes and a third straight line ghap d€nsity estimation: 239.05, 87.29, 184.05
For the computation of the shape-feature-vectors we used
again the shape-to-feature map (13) and pre-smoothed the/ Conclusion and future directions
images with a 3-pixel-wide Gaussian kernel. In (15) w
chose = 10 andK = 15. We suggest a novel variational formulation to shape de-

In Figure 6 we compare the results of the minimization of tection based on training a task-specific segmentation en-
the kernel density to the normal density. The kernel density ergy. The underlying mathematical model of our method is
energy detects the two shapes corresponding to the trainingyery general and can be easily used for a wide range of ap-
data correctly and assigns a significantly higher energy toplications. The proposed energy learns the significanteshap
the wrong result in the middle. Note that the kernel density and image features from training shapes and is able to dis-
in energy (16) is not normalized and thus not necessarily tinguish them from non-relevant features.
positive. The normal density energy accurately detects all The key advantage over existing approaches is the ab-
shapes but identifies the straight line shape as the best fisence of an explicit regularization term. This avoids the
(assigning a significantly lower energy to this shape). Thus often difficult task of choosing the optimal regularization
in this example the normal density estimate prefers shapedor a given application. On the other hand, because we in-
it was not trained for whereas the kernel density energy cor-corporate shape priors and rely on a meaningful selection
rectly reflects the geometry of the training shapes. of image features, our approach requires far less training




samples than methods solely relying on learning pixel val-
ues [19] and the training is computationally cheap.

Section 6 demonstrates that the proposed method can be[8]
easily extended to nonlinear energies to detect objects in
cases where the normal density energy might deliver wrong
results. 9]

In the future we would like to investigate different en-
ergies. E.g. learning a kernel based on positive and nega-
tive training samples is considered. A Bayesian approach
to the parametric density estimation could help to mitigate
difficulties due to small training sets (over fitting). Also
nonparametric techniques such as adaptive kernel densit 11]
estimation or projection pursuit density estimation could
further improve the performance of the method [11]. Fi-
nally, the development of efficient algorithms to minimize [12]
the learned energy is subject of ongoing research.
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