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Chapter 1
Texture Enhancing Based on Variational Image
Decomposition

F. Fr̈uhauf, C. Pontow, O. Scherzer

Abstract
In this paper we consider the Augmented Lagrangian Method for image decom-

position. We propose a method which decomposes an image intotexture, which is
characterized to have finitel1 curvelet coefficients, a cartoon part, which has finite
total variation norm, and noise and oscillating patterns, which have finiteG-norm.
In the second part of the paper we utilize the equivalence of the Augmented La-
grangian Method and the iterative Bregman distance regularization to show that the
dual variables can be used for enhancing of specific components. We concentrate
on the enhancing feature for the texture and propose two different variants of the
Augmented Lagrangian Method for decomposition and enhancing.

Key words: Image decomposition, image enhancement, anisotropic diffusion, tex-
ture, curvelets, total variation

1.1 Introduction

The problem of simultaneous reduction of noise and enhancement of important in-
formation in image data is an active research area in image analysis. The motivation
for this work comes from specifying texture as important image feature. We base
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our work on recently developed variationalimage decompositionmodels, which
separate the imagef into independent components.

Given image dataf , variational decomposition models developed fromvaria-
tional denoisingmethods, which are written in the form

argmin{Φ0(v0)+α1Φ1(v1) : f = v0 +v1} . (1.1)

HereΦ0 and Φ1 are appropriate functionals andα1 > 0 is an appropriate tuning
parameter. The paradigm of such a method is the Rudin-Osher-Fatemi (ROF) model
[12] which consists in calculating the minimizer of

argmin

{

∫

Ω
|v0|

2 +α1J(v1) : f = v0 +v1

}

, (1.2)

whereJ(v1) is the total variation ofv1 on Ω . Thus the ROF model is of the form
(1.1) with Φ1 = J and withΦ0 the squared distance of theL2-norm. Typically, the
minimizer v̂1 of the ROF functional reveals a blocky structure and looks like a car-
toon image, and this is considered the essential image feature of f . Consequently
v̂0 := f − v̂1 is considered noise.

In the recent years research has been devoted to further extractfinestructures out
of the imagef (see [9, 7, 11, 2, 1, 15, 5] to mention but a few). This leads toexact
decompositionmodels at several scales:

argminD(v0,v1, . . . ,vn) with

D(v0,v1, . . . ,vn) :=

{

Φ0(v0)+
n

∑
i=1

αiΦi(vi) : f =
n

∑
i=0

vi

}

.
(1.3)

By using f = ∑n
i=0vi in the functionalΦ0 we obtain the following unconstrained

optimization problem:

argminR(v1, . . . ,vn) with

R(v1, . . . ,vn) :=

{

Φ0

(

f −
n

∑
i=1

vi

)

+
n

∑
i=1

αiΦi(vi)

}

.
(1.4)

Here, typicallyΦ0 is theL2-norm, or, after discretization, the Euclidean distancel2,
respectively. Image regularization and decomposition, ingeneral, use sophisticated
normsΦi , i = 1,2, . . . ,n.

For instance, an exact decomposition model with four components (i.e.,n = 3)
has been considered in [2]. There the functionalsΦi , i = 1,2,3 used for decompo-
sition are the total variation semi-norm, theG-norm and the dual of a Besov-space
norm, respectively. Y. Meyer [9], who introduced theG-norm to the image analy-
sis community, characterized functions with finiteG-norm astexture. For instance,
oscillating functions have a finiteG-norm and are paradigms of texture. However,
also noise can have finiteG-norm, and thus theG-norm contains oscillating patterns
as well as noise. This becomes evident from our compuations where the middle left
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image of Figure 1.2, and Figure 1.3, respectively, show oscillating structures from
the silhouette of the Zebra and noise.

In our work we investigate an exact decomposition into a cartoon part (using
the total variation semi-norm), a texture component (whichhas a finite norm on
a curvelet space) and a noise component (meaning finiteE-norm, which has also
been considered in [9] and is equivalent to theG-norm). The motivation for this
work is to consider curvelet components as texture, becausethey characterize very
well anisotropic structures of different lengths, which are inherent in many images
(cf. [8, 3]). At this point we mntion that already in [14] curvelet based functionals
have been used, however, there to characterize the cartoon part.

The second part of paper is concerned with texture enhancingbased on decom-
position models. We consider a two step approach with several alternatives:

1. The first one is theAugmented Lagrangian Method(ALM), for finding a de-
composition(v̂i)

n
i=1, i.e.,

f =
n

∑
i=1

v̂i (note that there is no noise component ˆv0) ,

which minimizes the functional

(v1, . . . ,vn) →
n

∑
i=1

αiΦi(vi) .

In comparison with standard implementations of ALM, we apply alternating
direction minimization with respect to specific components. In such a way it
is possible to enhance for instance the texture component. Nowadays, ALM is
also called iterative Bregman distance regularization [10], and in this modern
terminology the algorithm is formulated below, because it makes transparent the
enhancing features of the algorithm. To our best knowledge Bregman distance
regularization appears first in [4]. As it was shown in [13], Bregman distance
regularization with respect to the texture, which we alwaysdenote byv2 in this
paper, enhances it with the dual variable. In fact Bregman distance regulariza-
tion consists of an explicit step backward in time of a generalized diffusion
process, which the later is the enhancing procedure.

2. The work of [14] has been picked up by [8] and iterative Bregman regulariza-
tion has been used to solve for the compressed sensing problem. The focus of
our paper is different, however, because we focus on enhancing with respect to

texture components. For enhancing we use the dual variableζ2 = lim ζ (k)
2 of

ALM. This provides a texture enhancement strategy:

venh
2 = v2 + τζ2 , (1.5)

whereτ is chosen significantly larger than 1.

The core of the new enhancing procedure is the decompositionmodel, which is
outlined below in detail.
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1.2 Image Decomposition Model

In the following we consider a family of image decompositionmodels. In what
follows everything is considered in a discrete setting. Thenotation and background
information can be found in Section 1.5.

Consider a discrete imagef ∈ X, the proposed image decomposition method is
to calculate a minimizer of

J(v1,v2,v3) = J(v1)+α2Ca(v2)+α3B∗(v3/δ ) , (1.6)

subject to the constraint

f =
3

∑
i=1

vi . (1.7)

Here,

1. ‖·‖X is the Euclidean norm of the intensities of the noise partv0,
2. J(v1) is the discrete total variation ofv1 (cf. (1.15)),
3. Ca(v2) is the weighted curvelet transform (cf. (1.20)),
4. B∗ is an approximation of the dual-norm of the Besov space normḂ1

1,1 (cf.
(1.19)).

For evaluating the dual of the Besov space norm atv3/δ , B∗(v3/δ ), and the curvelet
functionalCa(v2), respectively, we considerv2 andv3 as piecewise constant func-
tions on the pixels and assume that they are extended by zero outside ofΩ .

Note that in our setting the choice of the parameterα3 is irrelevant, becauseB∗

only attains the two values zero and infinity. Thus, without loss of generality,α3 is
set to one in the sequel.

For the solution of the constrained minimization problem, we considertwo vari-
ants of ALM, which are bothalternating direction algorithms. To describe these
two methods at once, we introduce a parameterβ , which is 0 for the first method
(denoted by ALM1) and 1 for the second method (denoted by ALM2).

• Initialize k = 0, v(0)
i = 0, i = 1,2,3, ζ (0) = 0, and consequently,v(0)

0 = f . More-
over, choose a sequence of positive parameters(τ(k))k. 1

• Assignk→ k+1. Check for an appropriate stopping criterion.

– Givenv(k−1)
i , i = 0,1,2,3 definev(k−1)

0 = f −∑3
i=1v(k−1)

i .
– Calculate

v(k)
3 :=argmin

v3

{

τ(k)

2
‖ f −v(k−1)

1 −v(k−1)
2 −v3‖

2
X +B∗(v3/δ )

}

. (1.8)

– Calculate

1 In general one has to assume that∑∞
k=0 τ(k) = ∞, which, of course, is the case if one simply

choosesτ(k) = τ > 0.
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v(k)
1 := argmin

v1

{

τ(k)

2
‖ f −v1−v(k−1)

2 −v(k)
3 ‖2

X +DJ(v1,v
(k−1)
1 )

}

(1.9)

where we use the term

DJ(v1,v
(k−1)
1 ) = J(v1)−β

(

J(v(k−1)
1 )+

(

ζ (k−1)
1 ,v1−v(k−1)

1

))

. (1.10)

Hereζ (k−1)
1 denotes an element of the subgradient ofJ at v(k−1)

1 . That is,

for β = 1, DJ(v1,v
(k−1)
1 ) is the Bregman distance of the total variation semi-

norm and forβ = 0 it is the total variation semi-norm.
– Calculate

v(k)
2 := argmin

v2

{

τ(k)

2
‖ f −v(k)

1 −v2−v(k)
3 ‖2

X +α2DCa(v2,v
(k−1)
2 )

}

, (1.11)

where

DCa(v2,v
(k−1)
2 ) = Ca(v2)−Ca(v

(k−1)
2 )−

(

ζ (k−1)
2 ,v2−v(k−1)

2

)

(1.12)

denotes the Bregman distance ofCa andζ (k−1)
2 denotes an element of the

subgradient ofCa atv(k−1)
2 .

This step is identical for both ALM1 and ALM2.
– For ALM2 (β = 1), motivated from the classical Augmented Lagrangian

method, we uses the following update of the dual variable

ζ (k)
1 = ζ (k−1)

1 + τ(k)( f −v(k)
1 −v(k−1)

2 −v(k)
3 ) ,

ζ (k)
2 = ζ (k−1)

2 + τ(k)( f −v(k)
1 −v(k)

2 −v(k)
3 ) .

(1.13)

For ALM1 (β = 0), we use only the update forζ (k)
2 .

Remark 1.Both algorithms are ad-hoc methods for the solution of the constrained
minimization problem. Ad-hoc refers to the fact that in general the subgradient of
the sum of three terms is a superset of the sum of the single subgradients. In fact
equality only holds if at least one of the subgradientsJ(v1) andCa(v2) is continuous
andv3/δ ∈ domain(B∗) (see [6]). However, this, a–priori is not guaranteed.

Since each Bregman distance minimization contains an enhancing step (see [13])
by ALM2 only the curvelet components are enhanced, while ALM1 also enhances
the total variation component in addition.

Convergence of the ALM algorithm has been proven in a very general setting. In
our application, we have a simple situation of a finite dimensional Euclidean space
and anl2 comparison functional

(v1,v2,v3) → E (v1,v2,v3) =
1
2
‖ f −v1−v2−v3‖

2
X .
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Thus the ALM method is convergent in the following sense.

Theorem 1. Let f be admissible: That is, there exists a triple(ṽ1, ṽ2, ṽ3), which is
an element of the domain ofJ, such that

ṽ1 + ṽ2 + ṽ3 = f .

Then the ALM method consisting in minimization of

(v(k)
1 ,v(k)

2 ,v(k)
3 ) := argmin

(v1,v2,v3)

{τ(k)

2
‖ f −v1−v2−v3‖

2+

DJ((v1,v2,v3),(v
(k−1)
1 ,v(k−1)

2 ,v(k−1)
3 ))

}

(1.14)

satisfies

v(k)
1 +v(k)

2 +v(k)
3 ) → f .

Remark 2.ALM2 is an alternating direction realization of the Augmented La-
grangian Method. To see this, we note thatB∗ is the characteristic function of the
unit sphere with respect to theE-norm. Therefore, the gradient is zero on the domain
and+∞ outside. This means that forw in the domain ofB∗ we have

DB∗(w3,w) = B∗(w3) .

Thus in each iteration an alternating direction of the Bregman distance is minimized.
Taking into account the equivalence relation of the Bregmandistance regularization
and ALM, this show that our approach is an alternating direction minimization of
the ALM method.

The second difference, resulting from the alternating direction minimization, are

two Lagrange parametersζ (k)
i , i=1,2. The standard ALM only uses one: According

to (1.8) and (1.9) we have

ζ (k)
1 −ζ (k−1)

1 ∈ ∂v1E (v(k)
1 ,v(k−1)

2 ,v(k)
3 ) ,

ζ (k)
2 −ζ (k−1)

2 ∈ ∂v2E (v(k)
1 ,v(k)

2 ,v(k)
3 ) .

ALM1 leaves out the update with respect to the total variation semi-norm (variable
v1) and enhances only the curvelets component (variablev2). Therefore ALM1 pro-
nounces the cartoon part more and the according decomposition into texture and
noise appears rather intuitive.

1.2.1 Numerical Results

The following image shows some decompositions calculated with the above algo-
rithm. We used as input the noisy Zebra image, Figure 1.1 (right), which was calcu-
lated from Figure 1.1 (left) by adding Gaußian random noise of variance 50.



1 Texture Enhancing Based on Variational Image Decomposition 7

 

 

0

50

100

150

200

250

 

 

50 100 150 200 250

50

100

150

200

250

−100

0

100

200

300

400

Fig. 1.1 Left: Ideal image. Right: Zebra data, which contains Gaußianrandom noise of variance
50.

The following images are the output of the ALM1 algorithm after 40 iterations
and of the ALM2 algorithm after 20 iterations. In both cases the input imagef is
decomposed intov1,v2, andv3. We emphasize that after a finite number of iterations
the decomposition has only been calculated approximatively, but sufficiently well.

Figure 1.2 shows an approximative decomposition obtained with ALM1, where
we used the parameters,α2 = 0.6, δ = 58.87 and the curvelet weights
(a1,a2,a3,a4,a5) = (8,2,0.02,0.02,0.02) of Ca (cf. (1.20)). Figure 1.3 shows an
approximative decomposition obtained with ALM2, where we used the parameters,
α2 = 0.15,δ = 58.87 and the curvelet weights
(a1,a2,a3,a4,a5) = (0.5,0.5,0.005,0.005,0.005) of Ca (cf. (1.20).

A comparison of Figure 1.2 and Figure 1.3 shows that ALM1 findsa more dis-
tinct separation into components. Especially the cartoon part of ALM2 contains
significant textured components.

1.3 Texture Enhancing based on Image Decomposition

For enhancingdata, a common procedure is by calculating a parabolic diffusion
process backward in time. Here, we discuss an enhancing strategy based on dual
variables of the ALM method.
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Fig. 1.2 ALM1: Top Left: Cartoon componentv1, Top Right: Texture componentv2, Middle Left:
G-norm componentv3. Middle Right:ζ2. Bottom: Cartoon + Texture:v1 +v2.

Enhancing with dual variables

The proposed algorithm consists of two steps:

1. Image decomposition: By minimizing the functionalF defined in (1.6) we cal-
culate three componentsvi , i = 1,2,3 of f = v1 +v2 +v3. We use both ALM1
and ALM2.

2. The second step is by enhancing the texture component. Here, we note that the

dual variable limk→∞ ζ (k)
2 =: ζ2 ∈ ∂Ca(v2) and calculate the enhanced image by

venh
2 = v2 + τζ2
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Fig. 1.3 ALM2: Top Left: Cartoon componentv1, Top Right: Texturev2, Middle Left: G-norm
componentv3. Middle Right:ζ2. Bottom: Cartoon + Texturev1 +v2.

whereτ is significantly larger than 1.

The following images show cartoon enhanced images. In Figure 1.4 we show en-
hanced texture components by adding 10 times the texture componentζ2 (dual vari-
able of ALM1 and ALM2, respectively).

Then the image consisting of the sum of the cartoon, the enhanced texture, and
the texture component are displayed.
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Fig. 1.4 Top Left: ALM2 enhanced texture component ofv2 with t = 10. Top Right: ALM2 en-
hanced image= venh

2 + v1. Bottom Left: ALM1 enhanced texture component ofv2 with t = 10.
Bottom Right: ALM1 Enhanced image= enhancedvenh

2 +v1.

1.4 Conclusion

In this paper we have consider two alternating direction variants of the Augmented
Lagrangian Method for image decomposition. We have proposed a method which
decomposes into texture, which is characterized to have finite l1 curvelet coeffi-
cients, a cartoon part, which has finite total variation norm, and noise and oscillating
patterns, which have finiteE, G-norm, respectively. So far, the convergence analysis
of the two variants is open. In the second part of the paper we have utilized the equiv-
alence of the Augmented Lagrangian Method and the iterativeBregman distance to
motivate some methods for texture enhancing. We concentrate on the enhancing fea-
ture for the texture and propose two different variants of the Augmented Lagrangian
Method for decomposition and enhancing.
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1.5 Notations and Some Theoretical Background

Discrete Images:

This paper is devoted to image decomposition and texture enhancing of discrete
images.

• A discrete image consists of pixelsΩ = {1, . . . ,N}2 and intensity valuesU :=
(ui j )(i, j)∈Ω associated with the pixels. Therefore every discrete imagecan be
written as a matrix. Wavelets expansion require information on IN× IN. We
therefore associate with each imageU the extended image(ui j )(i, j)∈IN×IN , where
ui j = 0 for (i, j) /∈ Ω .

• X := IRN×N is the Euclidean space of images. It is associated with the scalar
product(u,v)X = ∑1≤i, j≤N ui, jvi, j .

• For u∈ X we define thediscrete gradient∇u via (∇u)i, j =
(

(∇u)1
i, j ,(∇u)2

i, j

)

,

where

(∇u)1
i, j =

{

ui+1, j −ui, j if i < N
0 otherwise

and

(∇u)2
i, j =

{

ui, j+1−ui, j if j < N
0 otherwise.

• Thetotal variationof the discrete imageu is defined by

J(u) = ∑
1≤i, j≤N

|(∇u)i, j | . (1.15)

Besov Space

In this paper we use the homogeneous Besov spacesḂ1
1,1 of functions defined on IR2

and its dualE := Ḃ∞
−1,∞. These spaces are defined as follows:

• Φ j,k denotes an orthonormal basis of smooth and compactly supported wavelets
in L2(IR2). The indexj ∈ Z refers to scale and the indexk refers to position in
IR2. That is, each functionu∈ L2(IR2) can be written as

u(x) = ∑
( j,k)∈Z3

c j,kΦ j,k(x) for x ∈ IR2 , (1.16)

where
‖u‖L2 = ∑

( j,k)∈Z3

|c j,k|
2 < ∞ .

• It can be shown thaṫB1
1,1 is the space of functions defined on IR2 of the form

(1.16) satisfying
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∑
( j,k)∈Z3

|c j,k| < ∞ .

• The spaceE denotes the dual space ofḂ1
1,1. It can be characterized by that the

wavelet coefficients of functions inE satisfy

sup
( j,k)∈Z3

|c j,k| < ∞ .

We refer the interested reader for more information on this topic to [9].

Fenchel Duality

• Let X be a locally convex space (such as IRn with the Euclidean topology).
• Let Φ : X → IR∪ {−∞,∞} be a convex, proper, and lower semi-continuous

functional. We denote byΦ∗ the dual or polar ofΦ , i.e.,

Φ∗(v) = sup
u

((u,v)X −Φ(u)) .

• For a proper, convex, and lower semi-continuous functionalΦ : X → IR and
f ∈ X , the following statements are equivalent (see e.g. [6]):

1. û is a minimizer of the functional

u→ Φ(u)+
1

2λ
‖ f −u‖2

X . (1.17)

2. ŵ := f − û is a minimizer of the functional

w→ Φ∗
(w

λ

)

+
1

2λ
‖ f −w‖2

X . (1.18)

• Let Φ be a semi-norm, thenΦ∗ is the indicator function of a closed convex set.
For instance, letΦ(w) = ‖w‖Ḃ1

1,1
be the norm of the homogeneous Besov space

Ḃ1
1,1, then

B∗(w/δ ) = χδBE
(w) =

{

0 if w∈ δBE := {w : ‖w‖E ≤ δ}
+∞ otherwise.

(1.19)

Curvelets

• Curvelet functionsψ j,k,l form a tight frame ofL2(IR2). Here j denotes the scale
index, l is a index of the angle, andk is the index of the position. For more
background on curvelets we refer to [3] (see also [8]) and references therein.
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• Since the curvelet functions are constructed in such a way that they form a tight
frame, every functionf ∈ L2(IR2) can be expanded in terms of these ansatz
functions:

u(x) = ∑
( j,k,l)∈Z4

c j,k,l ψ j,k,l (x)

and satisfies
‖u‖2

L2 ≤ ∑
( j,k,l)∈Z4

|c j,k,l |
2 .

• Let a = (a j) be a vector of numbers, which are uniformly bounded from below
by a positive constant. The (scale) weighted discrete curvelet transformCa of a
function f is defined by

Ca(u) := ∑
( j,k,l)∈Z4

a j |c j,k,l | . (1.20)

We call the functionalCa scale-weighted since the value ofCa is affected dif-
ferently by the values ofa j .
The subgradient ofCa at u is the set of all functions with coefficientsu j,k,l ∈
sgn(c j,k,l ) for which

a j |u j,k,l | ∈ l2 .

Here sgn(ρ) is an element of[−1,1] if ρ = 0 and+1 if ρ > 0 and−1 if ρ < 0.
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