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Chapter 1

Texture Enhancing Based on Variational | mage
Decomposition

F. Fiuhauf, C. Pontow, O. Scherzer

Abstract

In this paper we consider the Augmented Lagrangian Methoohfage decom-
position. We propose a method which decomposes an imagéeittare, which is
characterized to have finité curvelet coefficients, a cartoon part, which has finite
total variation norm, and noise and oscillating patternsictv have finiteG-norm.
In the second part of the paper we utilize the equivalencé@fAugmented La-
grangian Method and the iterative Bregman distance reigatéon to show that the
dual variables can be used for enhancing of specific compen®@fe concentrate
on the enhancing feature for the texture and propose twerdiit variants of the
Augmented Lagrangian Method for decomposition and enhagnci

Key words. Image decomposition, image enhancement, anisotropiesitiifi, tex-
ture, curvelets, total variation

1.1 Introduction

The problem of simultaneous reduction of noise and enhaectaof important in-
formation in image data is an active research area in imaglgsis. The motivation
for this work comes from specifying texture as important gmdeature. We base
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our work on recently developed variationatage decompositiomodels, which
separate the imagkinto independent components.

Given image datd, variational decomposition models developed fromaria-
tional denoisingnethods, which are written in the form

argmin{ ®o(vo) + o1 P1(v1) : f =vo+Vvi} . 1.1)

Here @y and @, are appropriate functionals amd > 0 is an appropriate tuning
parameter. The paradigm of such a method is the Rudin-0sdtemi (ROF) model
[12] which consists in calculating the minimizer of

arg min{/ Vo2 + ad(vy) : f :v0+v1} , 1.2)
Q

whereJ(vi) is the total variation o, on Q. Thus the ROF model is of the form
(1.1) with @; = J and with @ the squared distance of thé-norm. Typically, the
minimizervy of the ROF functional reveals a blocky structure and looks & car-
toon image, and this is considered the essential imageréafu. Consequently
Vo := f —Vy is considered noise.

In the recent years research has been devoted to furthacdite structures out
of the imagef (see [9, 7, 11, 2, 1, 15, 5] to mention but a few). This leadsxct
decompositiomodels at several scales:

argminZ(vo, V1, . . ., Vo) with
7( )i { @) + T a@ ) f = -2
Vo,V1,...,Vp) := o(Vo [of] Vi) T = Vi p .
n i; 11 | i;l

By using f = 1! v in the functional®, we obtain the following unconstrained
optimization problem:

argminZ(vi, ..., Vn) with

R(Vi,... V) : {aa (f iv)JriacD(v)} (4
2\V1,...,Vn) = 0 - i i iV .

Here, typically®, is theL?-norm, or, after discretization, the Euclidean distakfge
respectively. Image regularization and decompositiogeineral, use sophisticated
norms®;,i=12...,n.

For instance, an exact decomposition model with four coreptn(i.e.,n = 3)
has been considered in [2]. There the functiomlsi = 1,2, 3 used for decompo-
sition are the total variation semi-norm, tBenorm and the dual of a Besov-space
norm, respectively. Y. Meyer [9], who introduced t@enorm to the image analy-
sis community, characterized functions with finenorm astexture For instance,
oscillating functions have a finit€-norm and are paradigms of texture. However,
also noise can have finig-norm, and thus th&-norm contains oscillating patterns
as well as noise. This becomes evident from our compuatitvesarthe middle left
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image of Figure 1.2, and Figure 1.3, respectively, showllasicig structures from
the silhouette of the Zebra and noise.

In our work we investigate an exact decomposition into aocartpart (using
the total variation semi-norm), a texture component (whiels a finite norm on
a curvelet space) and a noise component (meaning fiiterm, which has also
been considered in [9] and is equivalent to tBeorm). The motivation for this
work is to consider curvelet components as texture, bedaesecharacterize very
well anisotropic structures of different lengths, whiclke arherent in many images
(cf. [8, 3]). At this point we mntion that already in [14] cutet based functionals
have been used, however, there to characterize the caréobn p

The second part of paper is concerned with texture enhareisgd on decom-
position models. We consider a two step approach with skakeanatives:

1. The first one is thé\ugmented Lagrangian MethddLM), for finding a de-
composition(V){,, i.e.,

n
f= Z\“/i (note that there is no noise componegit,
i=

which minimizes the functional
n
(V1,...,Vp) — ZlaiCD,(vi) )
i=

In comparison with standard implementations of ALM, we gpalternating
direction minimization with respect to specific componeitssuch a way it
is possible to enhance for instance the texture componentatlays, ALM is
also called iterative Bregman distance regularizatiorj,[a0d in this modern
terminology the algorithm is formulated below, becausedkes transparent the
enhancing features of the algorithm. To our best knowledggman distance
regularization appears first in [4]. As it was shown in [13te@man distance
regularization with respect to the texture, which we alwdgsote by, in this
paper, enhances it with the dual variable. In fact Bregmatadte regulariza-
tion consists of an explicit step backward in time of a geliwzd diffusion
process, which the later is the enhancing procedure.

2. The work of [14] has been picked up by [8] and iterative Bnag regulariza-
tion has been used to solve for the compressed sensing proble focus of
our paper is different, however, because we focus on enhgmgth respect to
texture components. For enhancing we use the dual vargabtelim Zz(k) of
ALM. This provides a texture enhancement strategy:

V"= v, + 1o, (1.5)

whereT is chosen significantly larger than 1.

The core of the new enhancing procedure is the decompositaatel, which is
outlined below in detail.
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1.2 Image Decomposition M odel

In the following we consider a family of image decompositimodels. In what
follows everything is considered in a discrete setting. mbgation and background
information can be found in Section 1.5.

Consider a discrete imadec X, the proposed image decomposition method is
to calculate a minimizer of

J(V1,V2,Vv3) = J(v1) + a2Cq(V2) + a3B (v3/9), (1.6)

subject to the constraint
3

f= Zivi . .7

1. ||-|lx is the Euclidean norm of the intensities of the noise part

2. J(v1) is the discrete total variation @f (cf. (1.15)),

3. Ca(v2) is the weighted curvelet transform (cf. (1.20)), _

4. B* is an approximation of the dual-norm of the Besov space anrp (cf.
(1.29)).

For evaluating the dual of the Besov space normgd, B*(vs/9d), and the curvelet
functionalC4(v2), respectively, we considep andvs as piecewise constant func-
tions on the pixels and assume that they are extended by atsid® ofQ.

Note that in our setting the choice of the parameigis irrelevant, becausg*
only attains the two values zero and infinity. Thus, withassl of generalitygs is
set to one in the sequel.

For the solution of the constrained minimization problers,a@nsidetwo vari-
ants of ALM, which are bottalternating direction algorithmsTo describe these
two methods at once, we introduce a paramgtewhich is 0 for the first method
(denoted by ALM1) and 1 for the second method (denoted by A.M2

Here,

e Initializek=0, vi(o) =0,i=1,2,3,9 =0, and consequentlyéo) = f. More-
over, choose a sequence of positive paramgmefy),. 1
e Assignk — k+ 1. Check for an appropriate stopping criterion.

~ Givenv'* Y, =0,1,2,3 definevg ) = f — 53, v* .

— Calculate
Ct® 3 _ .
v(3k> ::argmln{2||f—v(1k 1>—v(zk 1)—V3||)2(—|—B (V3/5)} . (1.8)
V3

— Calculate

1 In general one has to assume tiygt , ¢ = o, which, of course, is the case if one simply
chooseg™ =1 > 0.
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(k)
v§k> = arg min{ TT ||f—vi— vg(_l) = v<3k) &+ DJ(vl,v(lk_l>)} (1.9)
Vi

where we use the term

DI ) = 3va) - B (34 + (&P - Y) ) . w10)

Here Zl(kfl) denotes an element of the subgradient]attv(lkfl). That is,
forg =1, DJ(vl,vgk_l)) is the Bregman distance of the total variation semi-
norm and forB = 0 it is the total variation semi-norm.

— Calculate

(k)
v(zk) = arg min{ TT I —v(lk) -V —v<3k> 1%+ azDCa(VZ,v(zkl))} , (1.12)
V2

where

DGl g ) =Catva) - ety = (& M- Y) 2

denotes the Bregman distance@f and Zz(k_l) denotes an element of the
subgradient o€, atv(zk’n.

This step is identical for both ALM1 and ALM2.
— For ALM2 (B = 1), motivated from the classical Augmented Lagrangian

method, we uses the following update of the dual variable

0 =g e D )

3 (1.13)
209 — 28D 4 00 R 8

For ALM1 (B = 0), we use only the update fdék).

Remark 1Both algorithms are ad-hoc methods for the solution of thestrained
minimization problem. Ad-hoc refers to the fact that in gethéhe subgradient of
the sum of three terms is a superset of the sum of the singlgradients. In fact
equality only holds if at least one of the subgradielits ) andC,(v2) is continuous
andvs/d € domain(B*) (see [6]). However, this, a—priori is not guaranteed.

Since each Bregman distance minimization contains an eiastep (see [13])
by ALM2 only the curvelet components are enhanced, while ALdlko enhances
the total variation component in addition.

Convergence of the ALM algorithm has been proven in a verggdsetting. In
our application, we have a simple situation of a finite dinemal Euclidean space
and anl? comparison functional

1
(V1,V2,V3) — &(V1,V2,V3) = éHf —vi—V2 — V3% .
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Thus the ALM method is convergent in the following sense.

Theorem 1. Let f be admissible: That is, there exists a trigflg, V»,V3), which is
an element of the domain &f such that

Vi+Vp+Vg="f.
Then the ALM method consisting in minimization of

()
T
) := argmin{ —— || —v1 — vz — v *+
(V17V27V3) 2 (114)

DI ( (v vz, v, (4 Y 5 )}

k Kk Kk
(0 VO (o

satisfies

(k)

WO ¥

+v, +v(3k>) — f.

Remark 2ALM2 is an alternating direction realization of the AugmedtLa-
grangian Method. To see this, we note tBatis the characteristic function of the
unit sphere with respect to tlienorm. Therefore, the gradient is zero on the domain
and+ outside. This means that ferin the domain oB* we have

DB* (w3, w) = B*(ws) .

Thus in each iteration an alternating direction of the Bragmistance is minimized.
Taking into account the equivalence relation of the Bregdiatance regularization
and ALM, this show that our approach is an alternating dio@cminimization of
the ALM method.

The second difference, resulting from the alternatingatiog minimization, are

two Lagrange parametefék), i=1,2. The standard ALM only uses one: According
to (1.8) and (1.9) we have

& - g € Wl YY),
& - 20 € B, ).

ALM1 leaves out the update with respect to the total variaiemi-norm (variable

vi) and enhances only the curvelets component (varighld herefore ALM1 pro-

nounces the cartoon part more and the according decompositio texture and
noise appears rather intuitive.

1.2.1 Numerical Results

The following image shows some decompositions calculatid tve above algo-
rithm. We used as input the noisy Zebra image, Figure 1.htfigvhich was calcu-
lated from Figure 1.1 (left) by adding Gauf3ian random nofseadance 50.
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Fig. 1.1 Left: Ideal image. Right: Zebra data, which contains Gauom noise of variance
50.

The following images are the output of the ALM1 algorithmeaftlO iterations
and of the ALM2 algorithm after 20 iterations. In both cades input imagef is
decomposed inta;,vo, andvs. We emphasize that after a finite number of iterations
the decomposition has only been calculated approximgtitsat sufficiently well.

Figure 1.2 shows an approximative decomposition obtainéd ALM1, where
we used the parameters; = 0.6, = 58.87 and the curvelet weights
(aq,a2,83,84,85) = (8,2,0.02,0.02,0.02) of C, (cf. (1.20)). Figure 1.3 shows an
approximative decomposition obtained with ALM2, where \gedithe parameters,
a2 = 0.15,6 = 5887 and the curvelet weights
(a1,az,a83,a4,8s5) = (0.5,0.5,0.005 0.005 0.005) of C, (cf. (1.20).

A comparison of Figure 1.2 and Figure 1.3 shows that ALM1 fiadsore dis-
tinct separation into components. Especially the cartoamn pf ALM2 contains
significant textured components.

1.3 Texture Enhancing based on I mage Decomposition

For enhancingdata, a common procedure is by calculating a parabolic gidfu
process backward in time. Here, we discuss an enhancinggtrbased on dual
variables of the ALM method.
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Fig. 1.2 ALM1: Top Left: Cartoon componen, Top Right: Texture componewms, Middle Left:
G-norm componen¥s. Middle Right,. Bottom: Cartoon + Textures + Va.

Enhancing with dual variables

The proposed algorithm consists of two steps:

1. Image decomposition: By minimizing the functioratlefined in (1.6) we cal-

culate three components | = 1,2,3 of f = vy + Vo + v3. We use both ALM1
and ALM2.

2. The second step is by enhancing the texture componerd, Wernote that the
dual variable lim_,e Zék) =: {2 € dC4(v2) and calculate the enhanced image by

M=o+ 12,
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Fig. 1.3 ALM2: Top Left: Cartoon component;, Top Right: Texturev,, Middle Left: G-norm
component/s. Middle Righti,. Bottom: Cartoon + Texture; + vo.

wherert is significantly larger than 1.

The following images show cartoon enhanced images. In Eigut we show en-
hanced texture components by adding 10 times the texturpa@oamt{, (dual vari-
able of ALM1 and ALM2, respectively).

Then the image consisting of the sum of the cartoon, the ehtexture, and
the texture component are displayed.
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Fig. 1.4 Top Left: ALM2 enhanced texture componentwfwith t = 10. Top Right: ALM2 en-
hanced image= v§”h+ vi. Bottom Left: ALM1 enhanced texture componentwfwith t = 10.
Bottom Right: ALM1 Enhanced image enhanced§™+ v;.

1.4 Conclusion

In this paper we have consider two alternating directiomavess of the Augmented
Lagrangian Method for image decomposition. We have prapasmethod which
decomposes into texture, which is characterized to have fihicurvelet coeffi-
cients, a cartoon part, which has finite total variation nand noise and oscillating
patterns, which have finité, G-norm, respectively. So far, the convergence analysis
of the two variants is open. In the second part of the paperawe ttilized the equiv-
alence of the Augmented Lagrangian Method and the iter8tiggman distance to
motivate some methods for texture enhancing. We concertrethe enhancing fea-
ture for the texture and propose two different variants efAligmented Lagrangian
Method for decomposition and enhancing.
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1.5 Notations and Some Theoretical Background
Discrete | mages:

This paper is devoted to image decomposition and texturaresiing of discrete
images.

e A discrete image consists of pixed = {1,..., N}2 and intensity valueb =
(Uij)(i,jeo associated with the pixels. Therefore every discrete intagebe
written as a matrix. Wavelets expansion require informmatbtm N x N. We
therefore associate with each imagiéhe extended imageii; ) i j)en xn, Where
uj =0for(i,j) ¢ Q.

e X :=RN*N s the Euclidean space of images. It is associated with thksc
product(u,v)x = ¥ 1< j<n Ui jVi,j-

e Forue X we define thaliscrete gradient]u via (Cu); j = ((Du)%j,(Du)ﬁO,
where

1 JUpj—ujifi<N
(Bu)ij = {0 otherwise

and

2 Ui j+1—Uij if ] <N
(Du)"l o {0 otherwise.

e Thetotal variationof the discrete image is defined by

J(u) = Ou)i jl - 1.15
(u) lS%NI( Ui j| (1.15)

Besov Space

In this paper we use the homogeneous Besov s;ﬁ}gpef functions defined on R
and its duak := B"jlm. These spaces are defined as follows:

e @ denotes an orthonormal basis of smooth and compactly stgupeavelets
in L(R?). The index] € Z refers to scale and the indé&xefers to position in
R?. That is, each function € L?(R?) can be written as

ux)= 5 cjx®jk(x)forxe R?, (1.16)
(jk)ezd

where
2
lule= 5 loikl®<e.
(jk)ezd

e It can be shown thal%il is the space of functions defined orf Bf the form
(1.16) satisfying
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Z |Cj_’k| < 00,

(j,k)ez3

e The spacé denotes the dual space Bfl It can be characterized by that the
wavelet coefficients of functions i satisfy

Sup |Cjk| < .
(jk)ezs

We refer the interested reader for more information on thpéctto [9].

Fenchel Duality

e Let 2 be alocally convex space (such a®Wth the Euclidean topology).
o Let ®: 2 — RU{—w,} be a convex, proper, and lower semi-continuous
functional. We denote bgp* the dual or polar ofp, i.e.,

@' (v) = sup((uv)  — P()

e For a proper, convex, and lower semi-continuous functighalZ” — R and
f € 27, the following statements are equivalent (see e.g. [6]):

1. dis a minimizer of the functional

1
u— ) + oy [|f —u 2. (1.17)
2. W:= f — (s a minimizer of the functional
" w 1 2
W @ (X)+§Hffw\\%. (1.18)

e Let @ be a semi-norm, the®* is the indicator function of a closed convex set.
For instance, leto(w) = ||WHB%1 be the norm of the homogeneous Besov space

B ,, then

0 ifwedBg :={w:|w|g <o}

400 otherwise. (1.19)

WW®=MMM={

Curvelets

e Curvelet functionsp; ¢ | form a tight frame ol.?(R?). Here| denotes the scale
index, | is a index of the angle, arkl is the index of the position. For more
background on curvelets we refer to [3] (see also [8]) aneregfces therein.
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e Since the curvelet functions are constructed in such a watytlley form a tight
frame, every functionf € L?(R?) can be expanded in terms of these ansatz
functions:

ux)= 5%  Ciki¥jki(X)
(jxhez4

and satisfies
< S lejwil
(jk ez
e Leta= (a;) be a vector of numbers, which are uniformly bounded fromwelo
by a positive constant. The (scale) weighted discrete teirtransfornC, of a
function f is defined by

(j.k,1)ez4

. (1.20)

We call the functionaC, scale-weighted since the value@f is affected dif-
ferently by the values d;.
The subgradient of, at u is the set of all functions with coefficientg | €
sgn(cj k,) for which

aj|Uj7k)|‘ c |2 .

Here sgifp) is an element of—1,1] if p=0and+1if p >0and—1if p <O0.
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