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Abstract. We consider constraint ill-posed operator equations such that we restrict the domain
to functions, which in the first case are piecewise constant and in the second case attain values
in a certain interval. We use Ginzburg-Landau regularization methods for solving this equations.
In our numerical examples we consider the inverse conductivity problem which has applications in
electrical impedance tomography. We present a numerical implementation along with some results
and compare them with standard H1-Tikhonov regularization.
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1. Introduction. The goal of this paper is to solve the constraint ill-posed op-
erator equation

F (z) = y(1.1)

where F is a nonlinear continuous operator from L1(Ω) into a Hilbert space Y . Here
we discuss (1.1) with two different constraints:

C1: We restrict z to be in a set of admissible functions P := {z : z = 1 + χD} ⊂
L1(Ω) where D ⊂⊂ Ω is a set of finite perimeter and χD denotes the charac-
teristic function of the set D.

C2: The function z attains values in a certain interval [a, b].
For solving (1.1) under C1 we work out the following methods. One possible way to
enforce the restriction is by introducing a projection operator

P :=





H1(Ω) → P ⊂ L1(Ω)

φ(·) 7→
{

1 for φ(·) < 0
2 for φ(·) ≥ 0

(1.2)

and involve P into the equation (1.1), i.e.

F (P (φ)) = y .(1.3)

Then we consider an ill-posed operator equation where we can decompose the operator
into a continuous and a discontinuous part. Such a problem was investigated in [8, 9]
by regularization, which means to minimize the functional

1
2
‖F (P (φ))− y‖2Y + αR(φ)(1.4)

over H1(Ω), where R is a regularization functional.
A regularization approach involving the projection operator (1.2) is called level

set regularization since we recover the boundary of an object which we regard as the
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zero level set of the function φ. Considering characteristic functions as level sets of
higher dimensional data has been used before in the context of multiphase flow (see
e.g. [16, 22, 6]) and segmentation (see e.g. [5]). Level set methods have been used
successfully in many applications since the pioneering work of Osher and Sethian [19].
For solving inverse problems with level sets we refer to [20, 4, 8].

Another possibility to constrain z to be in P is by introducing an appropriate
penalizer. To solve (1.1) under constraint C1 we minimize the functional

1
2
‖F (z)− y‖2Y + αSε(z) .(1.5)

We denote minimizers of (1.5) by zε,α. The functional Sε is taken in such a way, that
for ε → 0 we have zε,α(x) ∈ {1, 2}. We choose a real Ginzburg-Landau (GL) type
functional as regularizer Sε in (1.5), which means

Sε(z) :=
∫

Ω

(
ε

2
|∇z|2 +

1
ε
W (z)

)
dx(1.6)

where W is an appropriate potential. Such GL functionals were also used in topolog-
ical optimization, see [14] or for modelling immiscible fluids, cf. [1, p.99].

Next we consider constraint C2. A standard approach for solving nonlinear prob-
lems is regularization. Therefore we minimize

1
2
‖F (z)− y‖2Y + αR(z) .(1.7)

Solving such nonlinear problems is discussed in [17, 18, 7], where classical results on
convergence and stability are described.

To make use of the a-priori knowledge that z has values in [a, b] we take a complex
GL regularizer. We achieve this by using a complex valued function v with real part
z = <(v) and minimize

1
2
‖F (z)− y‖2Y + αT (v) .(1.8)

We choose as regularizer a complex GL functional

T (v) :=
∫

Ω

(
λ

2
|∇v|2 +

1
λ

W (v)
)

dx ,(1.9)

where W is taken in an appropriate way to enforce z ∈ [a, b].
So far such functionals were applied in digital inpainting to reconstruct missing

areas in pictures, cf. [10]. Equations like (1.9) have proven to be useful in several
areas, for example to describe phase transitions in superconductors near critical tem-
peratures, cf. [13], or to model some types of chemical reactions like the famous
Belousov-Zhabotinsky reaction, to specify boundary layers in multi-phase systems,
and to describe the development of patterns and shocks in non-equilibrium systems,
cf. [11, 15, 21]. To the best of our knowledge complex regularization functionals have
not been used for solving ill-posed operator equations with constraint C2.

Note that in C1 we are only interested in reconstructing the shape of D whereas
in C2 we have the possibility to determine concrete values of z.

The outline of this paper is as follows. In section 2 we describe the regularization
methods considered in this paper. The existence of minimizers is guaranteed. Fur-
thermore the optimality conditions and the numerical implementation for an inverse
conductivity problem is described in section 3. Finally, in section 4 we present some
results and discuss them.
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2. The regularization functionals. In this section we analyze properties of the
regularization functionals. Let Ω ⊂ IR2 be an open bounded domain with sufficiently
smooth boundary. First we consider (1.1) under constraint C1:

1. Tikhonov: To minimize (1.4) we follow [8], where detailed analysis to this
method can be found, when R consists of a bounded variation seminorm
term and the H1-Tikhonov regularization functional. Here we just consider
the H1-Tikhonov regularization functional, i.e., R(φ) = 1

2‖φ−φ0‖2H1(Ω). The
function φ0 is an a-priori guess. We approximate the discontinuous projection
P by a Lipschitz continuous operator

Pε(φ)(x) :=





1 for φ(x) < −ε

2 + φ(x)
ε for − ε ≤ φ(x) ≤ 0

2 for φ(x) > 0
, x ∈ Ω .(2.1)

Then we minimize the functional

Fε,α(φ) :=
1
2
‖F (Pε(φ))− y‖2Y + αR(φ)(2.2)

over H1(Ω) and denote the minimizer by φε,α. Thereafter we understand the
minimizer φα of (1.4) as

φα = lim
ε→0+

φε,α

where the limit is understood in an appropriate sense.
For the computation of a minimum of the functional (2.2) we need the
variational derivative of R(φ) = 1

2‖φ − φ0‖2H1(Ω). It is well known to be
R′(φ) = (I −∆)(φ− φ0).

2. Real GL: Now we observe the functional Sε from (1.6) with the potential
W . Here W denotes a symmetric double well potential, i.e., a potential with
two minima. The location of the minima is chosen at the desired values of
zε,α. For our problem an obvious choice would be

W (s) =
1
4

((s− 2) · (s− 1))2 .(2.3)

For fixed α > 0, according to a result of Modica & Mortola (see [1, sections
14 and 15]), lim

ε→0
Sε(z) < ∞ if and only if z = 1 + χD.

An easy calculation shows

S ′ε(z) = −ε∆z +
1
ε
(z − 1)(z − 2)(z − 3

2
) .(2.4)

Let us denote by zε(·, t) the gradient flow of Sε, i.e., the solution of the semi-
linear parabolic equation

∂z

∂t
= ε∆z − 1

ε
(z − 1) (z − 2)(z − 3

2
)(2.5)

which is a real GL equation. For a bounded, open set E ⊂⊂ Ω with smooth
boundary we have that for ε → 0

zε(x, t) → 2, for (x, t) ∈
⋃

t∈[0,T )

Et × {t}(2.6)

zε(x, t) → 1, for (x, t) ∈
⋃

t∈[0,T )

(Ω \ Et)× {t}(2.7)
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for solutions of (2.5) with zε(·, 0) = 1 + χσ
E . Here χσ

E denotes a slightly
smoothed version of χE with sgn(χσ

E) = sgn(χE), and Et denotes the set
which originates from E if its boundary ∂E evolves under mean curvature
motion up to time T . In this sense (2.5) approximates mean curvature motion
as ε tends to zero. Further details can be found in [1].

To solve (1.1) under constraint C2 we observe the following methods:
1. Tikhonov: To minimize the functional (1.7) we choose again the H1-Tikhonov

regularization functional R(z) = 1
2‖z − z0‖2H1(Ω). Here we do not introduce

the constraint z ∈ [a, b].
2. Complex GL: Finally we consider the complex GL functional T from (1.9).

In the example in 4.2 we have the a-priori knowledge that z(x) ∈ [1, 2] for
x ∈ Ω. Therefore we set

W (s) =
1
4

(
|s− 3

2
|2 − 1

4

)2

(2.8)

which attains its minimum on the complex sphere with center 3
2 and radius

1
2 . Thus we force z to have values in [1, 2].
We find the variational derivative of T

T ′(v) = −λ∆v +
1
λ

(
|v − 3

2
|2 − 1

4

)(
v − 3

2

)
.(2.9)

Solutions of −λ∆v + 1
λ

(|v|2 − 1
)
v = 0 have been investigated in detail in

[2]. Equation (2.9) is attained by an appropriate coordinate transform and
therefore its solutions have similar properties.

We can guarantee the existence of a minimizer for Fε,α.
Theorem 2.1. The functional Fε,α from (2.2) attains a minimizer φε,α, if R

is weak lower semi continuous, if there exist c > 0 and b ∈ IR such that R(φ) >
c‖φ‖2H1(Ω) + b for all φ ∈ H1(Ω), and there exists at least one φ̃ ∈ H1(Ω) such that

Fε,α(φ̃) is finite.
The proof for the Tikhonov regularization can be found in [8]. To fulfill the

required conditions of the regularization functional we need appropriate boundary
conditions for the GL regularizers, for example see section 3.2. Then the theorem is
also applicable for the functionals (1.5), (1.7) and (1.8).

Note that the assumptions of the theorem do not necessarily imply that lim
ε→0+

P (φε,α) ∈
P. In [8] this condition was enforced by introducing the BV-seminorm |Pε(φ)|BV as
additional penalizing term.

3. Numerics. To receive a minimizer of the functionals we calculate the for-
mal optimality conditions. In section 2 we derived the variational derivatives of the
regularizing terms. Now we consider the derivative of the data term.

3.1. The variational derivative of the data term. In our numerical exam-
ples we consider an operator F which corresponds to the inverse conductivity problem.
We can formulate the problems as follows:

C1: We are interested in determining inclusions of constant conductivity in a
surrounding medium of a different constant conductivity.

C2: We want to reconstruct conductivities which are assumed to take on values
in a certain interval.
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Therefore we consider the Neumann problem

∇ · (a∇u) = 0 in Ω ,
a∂u

∂ν = h on ∂Ω ,∫
∂Ω

u ds = 0 .
(3.1)

It is well known that there exists a unique solution u ∈ H1(Ω) if h ∈ L2
¦(∂Ω) :={

u ∈ L2(∂Ω) :
∫

∂Ω
u ds = 0

}
and a ∈ L∞+ (Ω). In C1 we restrict us to conductivities

a =
{

2 in D
1 in Ω \D .

(3.2)

In C2 the conductivity a is piecewise C2(Ω, [1, 2]). These restrictions on the conduc-
tivity guarantee that a ∈ L1(Ω) ∩ L2(Ω). Let g = u|∂Ω ∈ L2

¦(∂Ω) be the trace of u
and h 6≡ 0 fixed. We introduce the operator

Fh :
{

L1(Ω) → L2
¦(∂Ω)

a 7→ g
.(3.3)

The inverse problem consist in reconstructing the unknown conductivity a from
the knowledge of the Neumann data h and the corresponding Dirichlet data g. Then
the following proposition applies, cf. [12, Theorem 5.7.1].

Proposition 3.1. Let D1, D2 be open subdomains of Ω with Lipschitz boundaries
such that Ω \Di, i = 1, 2 are connected and Di ⊂⊂ Ω. Assume γ is a given C2(Ω)-
function and

ai := γ + χDiki

where ki is C2(Ω)-function with ki 6= 0 on ∂Di, i = 1, 2. Then

Fh(a1) = Fh(a2) implies a1 = a2.

The same result is applicable if ai ∈ W 1,p(Ω) for p > 1, cf. [3].
Let us now take Y = L2

¦(∂Ω), then we receive the variational derivatives

1
2

δ

δz
‖F (z)− y‖2Y := F ′(z)∗(F (z)− y)(3.4)

and
1
2

δ

δφ
‖F (Pε(φ))− y‖2Y := P ′ε(φ)F ′(Pε(φ))∗(F (Pε(φ))− y)(3.5)

where the adjoint is taken with respect to the L2(Ω) scalar product. Following [9] the
adjoint operator F ′h(a)∗ of the Frechet-derivative of Fh has the following form

F ′h(a)∗(s) = −∇u · ∇ws, for each s ∈ L2
¦(∂Ω),

where u is a solution of (3.1) and ws solves (3.1) with Neumann boundary condition
a∂ws

∂ν = s. Therefore we receive the following algorithm to calculate F ′h(Pε(φ))∗(Fh(Pε(φ))−
y):

1. Calculate Fh(Pε(φ)): Solve the Neumann problem

∇ · (Pε(φ)∇u) = 0 in Ω ,
Pε(φ)∂u

∂ν = h on ∂Ω ,∫
∂Ω

u ds = 0 .
(3.6)

Then Fh(Pε(φ)) = u|∂Ω.
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2. Evaluate the residual r = Fh(Pε(φ))− y.
3. Calculate F ′h(Pε(φ))∗(r): Solve the Neumann problem

∇ · (Pε(φ)∇w) = 0 in Ω ,
Pε(φ)∂w

∂ν = r on ∂Ω ,∫
∂Ω

w ds = 0 .

Then F ′h(Pε(φ))∗(r) = −∇u · ∇w.
Note that the same minimization algorithm applies to F ′h(z)∗(Fh(z)−y) if we replace
Pε(φ) by z.

3.2. Implementation. The approach for solving C1 and C2 is essentially the
same and therefore we do not distinguish between the two cases unless it is special
mentioned.

1. Tikhonov: We use the same implementation as in [8].
2. GL: To minimize the functionals (1.5), resp., (1.8) we employ a gradient

descent method, i.e., we solve the “time dependent” PDE

∂z

∂t
= −F ′(z)∗(F (z)− y)− αS ′ε(z)(3.7)

resp.,

∂v

∂t
= −F ′(z)∗(F (z)− y)− αT ′(v)(3.8)

up to a stationary state in time.
Since all solution methods are iterative we have to prescribe an initial guess φ0, z0

or v0. Numerical experiments have shown that the solutions do not depend on the
choice of the initial guess as long as some natural assumptions are fulfilled, see section
4.

For our numerics we want to reconstruct conductivities of the form given in propo-
sition 3.1 with γ ≡ 1. The inclusion D is not necessarily connected. For C1 we set
k = 1 and use the following boundary conditions. For the Tikhonov regulariza-
tion method we adopt Neumann boundary conditions, cf. [8]. The boundary value
z|∂Ω = 1 for the real GL regularizer was chosen to be a stationary value of the poten-
tial W . For C2 we get better results if we introduce the Dirichlet boundary condition
z|∂Ω = 1 to the Tikhonov regularization method, since D should be completely con-
tained in Ω. For the complex GL regularization we use the Dirichlet boundary data
equal to v = 1 since this is a minimum of the corresponding potential.

We use a finite difference discretization, and perform explicit Euler time stepping
for all methods except the Tikhonov regularization. The two elliptic PDEs related
to the operator F (see section 3.1) are solved directly by using Matlab’s backslash
operator.

For our numerical examples we used Ω = (0, 1)2 discretized with a homogeneous
rectangular grid with gridsize ∆x. For all regularizations in C1 the parameter ε
corresponds roughly to the width of the inclusion boundary in the solution. Thus we
set ε = ∆x to achieve maximally sharp object boundaries within the limits imposed
by the discretization.

The Neumann boundary data h to calculate the operator Fh (see (3.6)) were
chosen as two periods of the sine function extending around the unit square.

The boundary measurement data y for solving the inverse problem are obtained by
solving the elliptic boundary value problem (3.1). In order to avoid “inverse crimes”
the direct problem (3.1) is solved on a finer grid than the inverse problem.
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two squares constant “8” ramp “8”

Fig. 4.1. The three conductivities which should be reconstructed.

4. Results and Discussion.

4.1. Examples for C1. In our experiments we take random initial data for real
GL regularization, such that 1 ≤ z0(x) ≤ 2 for all x ∈ Ω. For this choice the initial
values lie between the two minima of the potential W . We used a signed distance
function centered in Ω as initial condition such that Pε(φ0)|∂Ω = 1 and that P ′ε(φ0) > 0
for some x ∈ Ω for the Tikhonov regularization.

The conductivities which we want to reconstruct are plotted in figure 4.1 left,
resp., middle. In figure 4.2, resp., 4.3 we show results obtained by using different reg-
ularizers for reconstructing. For the real GL regularizer we directly plot the solution
z, whereas for the Tikhonov we plot the projection Pε(φ). Note that the resolution
in figure 4.1 is finer than in the other figures.

In the first experiment we want to reconstruct two squares located at opposite
corners of Ω. For both regularizers a spurious signal remains in the center of Ω for
many iterations. The reason for this phenomenon is that the influence of the boundary
values spreads slowly into the interior. After the spurious signal has vanished higher
values remain only in the locations of the squares. The shape of the two squares is bet-
ter recognized with the real GL regularization, therefor with the Tikhonov regularizer
the boundaries are sharper.

In the second experiment a nonconvex inclusion should be reconstructed. We
derive nearly the same effects for both regularizers as in the previous example. Again
good reconstructions are achieved by the Tikhonov and the real GL regularization
but the concavity on the right side is lost by the Tikhonov regularization.

4.2. Examples for C2. For C2 we take initial data as follows:
1. Tikhonov: z0(x) = 1 for all x ∈ Ω
2. complex GL: <(v0(x)) = 1 and =(v0(x)) = 0 for all x ∈ Ω

In the experiment we want to reconstruct the same “8”-shaped inclusion as for C1, but
now we have a slope in the conductivity, cf. the right picture in figure 4.1. Note that
this conductivity is not in H1(Ω) but the minimizers of the functionals necessarily are
in H1(Ω).

The results are plotted in figure 4.4. The Tikhonov regularization reconstructs
the maximum values better, but there is a distinctive minimum of the values in the
middle of the “8”. The slope of the conductivity is reconstructed by the complex GL
method. Furthermore the reconstruction of the surrounding medium is better by the
complex GL regularization.

Now we consider the same example, where we add 3 % gaussian noise to the
data. The reconstructions are shown in figure 4.5. Again the maximum values in the
object are found better by the Tikhonov regularizer. But the slope is not recognized
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Tikhonov, α = 0.06
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Fig. 4.2. Course of evolution for the regularizers of C1

Tikhonov Real Ginzburg-Landau
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α = 0.05, 4500 iterations α = 1 · 10−6, 1500 iterations

Fig. 4.3. Stationary solutions of the regularizes of C1.

satisfactory as well as the surrounding medium. The reconstruction with the complex
GL regularizer of the surrounding medium is quite good. The constant slope of the
conductivity in the object is found, but the values are not correct.
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Fig. 4.4. Stationary solutions of both regularizes for C2. Note that the results are differently
scaled.
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Fig. 4.5. Stationary solutions of both regularizes for C2 with noise. Note that the results are
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