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Abstract. Inverse scale space methods are derived as asymptotic limits of
iterative regularization methods. They have proven to be efficient methods for
denoising of gray valued images and for the evaluation of unbounded operators.

In the beginning, inverse scale space methods have been derived from iter-
ative regularization methods with squared Hilbert norm regularization terms,
and later this concept was generalized to Bregman distance regularization (re-
placing the squared regularization norms); therefore allowing for instance to
consider iterative total variation regularization. We have proven recently ex-
istence of a solution of the associated inverse total variation flow equation. In
this paper we generalize these results and prove existence of solutions of in-
verse flow equations derived from iterative regularization with general convex
regularization functionals.

We present some applications to filtering of color data and for the stable
evaluation of the DiZenzo edge detector.

1. Introduction

There are at least two evolutionary concepts based on partial differential equa-
tions for data filtering:

Scale space methods with time dependent partial differential equations approxi-
mate data uδ (for instance images) by the solution of evolution equations (see e.g.
[15]) at some time t > 0. The value of t controls the amount of filtering.

Inverse scale space methods as introduced in [12] are defined as the semigroups
corresponding to iterative regularization

uk+1 =argmin
u∈H1

{

1

2α

∥

∥u − uδ
∥

∥

2

1
+

1

2
‖L (u − uk)‖2

2

}

=argmin
u∈H1

{

1

2α

∥

∥u − uδ
∥

∥

2

1
+

1

2
‖L(u)‖2

2 − 〈L∗Luk, u〉1

}(1)

where L : H1 → H2 is a linear and densly defined operator between two Hilbert
spaces H1 and H2 and L∗ denotes its adjoint. Here one typically initializes u0 = 0
or u0 =

∫

Ω
uδ dx and uk+1 satisfies the Euler-Lagrange equation

(2) uk+1 − uδ = α (L∗L(uk+1) − L∗L(uk)) .

Identifying the regularization parameter α and a time discretization ∆t via ∆t =
α−1 equation (2) can be considered as an implicit time step of the following flow
equation

(3)
u − uδ = (L∗Lu)

′
,

u(0) = u0 .
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For instance, for L = ∇ we have that L∗L = −△ and (3) becomes Showalter’s
method which has been used successively for image denoising and for the stable
evaluation of gradients (see e.g. [10]).

Two different approaches for generating nonlinear inverse scale spaces have been
considered that allow a consistent generalization of the linear case:

In [12] nonlinear evolution equations have been derived from variational regular-
ization techniques on reflexive Sobolev spaces.

In [14] the flow according to the iterative Bregman distance of the total variation
semi-norm has been derived, which has been analyzed in [5]. Iterative Bregman
distance regularization reads as follows:

• The first step consists in computing a minimizer u1 of ROF functional

u1 := argmin
1

2α

∥

∥u − uδ
∥

∥

2

L2 + |Du|(Ω).

• The k + 1-th iterate is determined from

(4) uk+1 = argmin
u∈L2

{

1

2α

∥

∥u − uδ
∥

∥

2

L2 + |Du|(Ω) − 〈s, u〉

}

,

where s is an element of the subgradient of the total variation semi norm
at uk.

Note that in the linear case (1) we always have that L∗Lu is an element of the
subgradient of 1

2 ‖L(·)‖2 at u. This shows that replacing the squared regularization
norm in the iterative method (1) by the Bregman distance (of the total variation
semi-norm) gives a consistent definition of nonlinear inverse scale spaces. It has
been shown in [5] that for α → ∞, the functions uα : [0,∞) → L2(Ω) with values
uα(t) = uk for k − 1 ≤ αt < k converge to the unique solution of the flow equation

(5) v′(t) = uδ − u(t), |Du(t)|(Ω) = 〈u(t), v(t)〉 .

In this paper we generalize the results of [14] and prove results for variational
regularization with Bregman distances of arbitrary convex functionals. Moreover,
we prove existence of solutions of according flow equations. In particular, the results
give existence of solutions of flow equations for denoising of vector valued data such
as color images. Moreover, the techniques can be applied for the stable evaluation
of unbounded operators such as the DiZenzo edge detector.

2. Iterative Regularization with the Bregman Distance

In the sequel, without stating this explicitly, we always assume that J : H →
R ∪ {+∞} be a convex, lower semicontinuous and proper functional defined on an
Hilbert space H . The norm on H is denoted by ‖·‖ and is induced by the inner
product 〈·, ·〉.

The domain D(J) of J denotes the set of all u ∈ Ω such that J(u) < +∞.
In order to analyze iterative Bregman regularization and the according gradient

flows we review basic results from convex analysis.

Definition 1 (Convex Analysis). An element s ∈ H is an element of the subgradient
∂J(u) of J at u ∈ H if

J(v) − J(u) − 〈s, v − u〉 ≥ 0 for all v ∈ H .

The Bregman distance of u, ũ ∈ H with respect to J and s ∈ ∂J(ũ) ⊆ H is defined
by

(6) Ds
J(u, ũ) := J(u) − J(ũ) − 〈s, u − ũ〉 .
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Moreover, let

I(α; u, ũ) :=

{

1

2α

∥

∥u − uδ
∥

∥

2
+ Dṽ

J(u, ũ)

}

for α > 0

With this notation iterative Bregman distance regularization reads as follows:

Algorithm 1. Let uδ ∈ H .

• Choose u0 ∈ D(J) and v0 ∈ ∂J(u0).
• For k = 0, 1, . . .

uk+1 := argmin
u∈H

I (α; u, uk) .

vk+1 := vk +
1

α
(uδ − uk+1) .

In the following we prove well-posedness of this algorithm and generalize some
results in [6] for Bregman distance regularization with convex functionals J .

Theorem 1. Assume that uδ ∈ H, α > 0, u0 ∈ D(J) and v0 ∈ ∂J(u0). Then for
each k ∈ N there exists a unique minimizer uk ∈ H of I(α; ·, uk) and a subgradient
vk ∈ J(uk) such that

(7) αvk + (uk − uδ) = αvk−1

and

(8)
∥

∥uk+1 − uδ
∥

∥ ≤
∥

∥uk − uδ
∥

∥ .

Proof. Let ũ ∈ H and s ∈ ∂J(ũ). We show weak lower semicontinuity and co-
ercivity of I(α; ·, uk). Then, existence of a minimizer follows from [7, Chap. 3,
Thm. 1.1]. Since both u → J(u) (J is convex) and u → 〈s, u〉 are weakly lower
semicontinuous on H , the Bregman distance

u 7→ Ds
J(u, ũ)

is weakly lower semicontinuous. Therefore I(α; ·, uk) is weakly lower semicontinuous
on H and proper. It remains to show that I(α; ·, uk) is coercive on H , that is for
every k ∈ N and every α > 0 there exist constants λ > 0 and γ ∈ R such that

I(α; u, uk) > λ ‖u‖ + γ

for all u in H . We verify the assertion for the functional I(α; ·, u0). For k > 1
the assertion can be proven analogously taking into account that uk ∈ D(J) and
vk ∈ ∂J(uk). Since J is convex we have that

J(u) ≥ J(u0) + 〈v0, u − u0〉 , for all u ∈ H.

Therefore,

1

2α

∥

∥u − uδ
∥

∥

2
+ J(u) − 〈v0, u〉 ≥

1

2α

∥

∥u − uδ
∥

∥

2
+ J(u0) − 〈v0, u0〉

≥
1

2α

∣

∣‖u‖ −
∥

∥uδ
∥

∥

∣

∣

2
+ J(u0) − 〈v0, u0〉 .

for all u ∈ H and hence we conclude that I(α; ·, u0) is coercive. Thus we can
apply [7, Chap. 3, Thm. 1.1] to obtain existence of a minimizer u1 satisfying the
Euler-Lagrange equation

v1 :=
uδ − u1

α
∈ ∂J(u1).

Uniqueness follows from the strict convexity of ‖·‖2
.
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Moreover since the Bregman distance is nonnegative we have

1

2α

∥

∥uk+1 − uδ
∥

∥

2
≤

1

2α

∥

∥uk+1 − uδ
∥

∥

2
+ D

vk+1

J (uk+1, uk)

= I(α; uk+1, uk) ≤ I(α; uk, uk) =
1

2α

∥

∥uk − uδ
∥

∥

2
.

This shows (8) �

As we will see in Section 3, the dual formulation of Algorithm 1 turns out to be
the key ingredient in order to establish the corresponding continuous inverse scale
space. The dual formulation is based on the Fenchel transform defined by:

Definition 2. The Legendre-Fenchel conjugate of J is the functional J∗ : H →
R ∪ {+∞} defined by

u∗ 7→ J∗(u∗) := sup
u∈H

{〈u∗, u〉 − J(u)} .

We consider the dual functional of I with respect to v ∈ H which is given as
follows:

(9) I∗(α; v, ṽ) :=
α

2
‖v − ṽ‖2

+ J∗(v) −
〈

uδ, v
〉

, ṽ ∈ H.

Theorem 2. Assume that uδ ∈ H, α > 0, u0 ∈ D(J) and v0 ∈ ∂J(u0). Then vk

as defined in Algorithm 1 satisfy

(10) vk = argmin
v∈H

I∗ (α; v, vk−1) .

Proof. The functional I∗ is strictly convex and weakly lower semicontinuous with
respect to v and thus I∗(α; ·, vk−1) attains a unique minimizer ṽk. It remains to
show that vk = ṽk. From the definition of vk in Algorithm 1 and Theorem 1 it
follows that

(11) vk = vk−1 −
1

α
(uk − uδ) ∈ ∂J(uk) .

Then, from the duality relation (see for instance [9])we have that

(12) uk ∈ ∂J∗

(

vk−1 −
1

α
(uk − uδ)

)

.

Moreover (11) is equivalent to −α(vk − vk−1) = uk − uδ and this yields

(13) (vk − vk−1)α − uδ = −uk.

Combination of (11), (12) and (13) shows that

(14) 0 ∈ α(vk − vk−1) − uδ + ∂J∗(vk) = ∂I∗(α; vk, vk−1) .

Therefore, vk minimizes the functional I∗(α; ·, vk−1), which together with the fact
that the minimizer is unique implies that vk = ṽk. �

For the inverse total variation flow equation – i.e. J(u) = |Du|(Ω) – J∗ is a
barrier function. That is J∗(v) = 0 if and only if the G-norm (see [13], [3]) of
u ∈ BV(Ω) such that |Du|(Ω) = 〈u, v〉 is less than 1 (see e.g. [5]) and +∞ else.
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3. Continuous Inverse Scale Space Flow

In this section we show that the sequences {uk} and {vk} in Algorithm 1 can be
considered as discrete approximations of the unique solution (u, v) of

v′(t) = uδ − u(t), v(t) ∈ ∂J(u(t)),(15a)

v(0) = v0 u(0) = u0.(15b)

The following analysis uses results from [2] where a theory of gradient flows in
metric spaces has been established. Moreover, we show that the solution (u, v) of
(15) satisfies the inverse fidelity axiom, that is

lim
t→∞

∥

∥u(t) − uδ
∥

∥ = 0

provided that uδ ∈ D(J). The last relation justifies to call (15) inverse scale space
method.

For α > 0, initial data u0 ∈ D(J) and v0 ∈ ∂J(u0) and k ∈ N the Bregman
iterates uk and vk are extended to piecewise constants functions Uα(t) and V α(t)
satisfying

(16) Uα(t) = uk, V α(t) = vk, for
k

α
≤ t <

k + 1

α

Convergence of the functions
{

V α(t)
}

for α → ∞ follows from [2, Thm. 4.2.2] and
reads as follows:

Theorem 3. Assume that uδ ∈ H, u0 ∈ D(J) and v0 ∈ ∂J(u0). Then there exists
a absolutely continuous function v : [0,∞) → H such that

lim
α→∞

V α(t) = v(t)

uniformly on every bounded [0, T ].

Proof. The assertion is a consequence of [2, Thm. 4.2.2]. In order to apply this
theorem the following two assumptions have to be verified.

(A1) The functional φ(v) = J∗(v) −
〈

uδ, v
〉

is proper, lower semicontinuous and
there exists ṽ ∈ D(φ), and r̃ > 0 such that

(17) inf {φ(v) : ‖v − ṽ‖ ≤ r̃} > −∞.

(A2) For every v0, v1 and w in D(φ) we have that

I∗(α; (1 − t)v0 + tv1, w)

≤ (1 − t)I∗(α; v0, w) + tI∗(α; v1, w) −
α

2
t(1 − t) ‖v0 − v1‖

2

for all t ∈ [0, 1] and α ≥ 0.

Since by assumption J is lower semicontinuous and proper the same holds for
J∗. To verify the coercivity of J∗ (assumption (17)) set ṽ = 0 ∈ D(φ) and w =
argminv∈H I∗(α; v, 0). Then

−∞ <
α

2
‖w‖2

+ φ(w) −
αr̃2

2
≤ φ(v),

for all v ∈ H such that ‖v − 0‖ ≤ r̃. This shows (A1). Moreover, for all v0, v1 and
w in H we have

‖(1 − t)v0 + tv1 − w‖2
= (1 − t) ‖v0 − w‖2

+ t ‖v1 − w‖2 − t(1 − t) ‖v0 − v1‖
2
.
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This implies that for v0, v1, w ∈ D(φ)

Ī∗(α; (1 − t)v0 + tv1, w) =
α

2
‖(1 − t)v0 + tv1 − w‖2 − 〈(1 − t)v0 + tv1, w〉

=
α

2

(

(1 − t) ‖v0 − w‖2 + t ‖v1 − w‖2
)

−
α

2
t(1 − t) ‖v0 − v1‖

2 − (1 − t)
〈

v0, u
δ
〉

− t
〈

v1, u
δ
〉

= (1 − t)Ī∗(α; v0, w) + tĪ∗(α; v1, w) −
α

2
t(1 − t) ‖v0 − v1‖

2
.

Therefore assumption (A2) holds. �

In [2] actually the stronger result has been shown, that for each partition of the
interval [0,∞) the piecewise constant function converges to v provided that the
supremum of the stepsizes tend to zero.

In order to show that the function v in Theorem 3 satisfies a gradient flow
equation associated with φ we introduce the operator ∂0φ : D(φ) ⊆ H → H

defined by

∂0φ(v) = argmin
u∈H

{‖u‖ : u ∈ ∂φ}

= argmin
u∈H

{∥

∥u − uδ
∥

∥ : u ∈ ∂J∗(v)
}

and the slope function

|∂φ| : v 7→

{

∥

∥∂0φ(v)
∥

∥ if v ∈ D(φ)

+∞ else.

Since the norm in the Hilbert space H is strictly convex, it follows that for every
v ∈ D(φ) there exists a unique element u in ∂φ with minimal norm. Thus the
operator ∂0φ(v) is single valued and well defined.

Theorem 4. Under the assumptions of Theorem 3 the function v is the unique
solution of the gradient flow equation

v′(t) = −∂0φ(v(t)), for a.e. t ∈ [0,∞)(18a)

v(0) = v0.(18b)

Proof. The assertion the v solves (18) follows directly from [2, Thm. 2.3.3] and
[2, Prop. 1.4.1]. The results are applicable if (A1) and (A2) hold and the slope
function |φ| (v) is lower semicontinuous on H . The later follows from the strong-
weak closedness of ∂φ ⊆ H × H ([2, Lem. 2.3.6]). Uniqueness of v can be proven
with standard arguments as for instance from [4]. The mapping v → φ(v) is convex
and therefore ∂φ is monotone, that is

〈u1 − u2, v1 − v2〉 ≥ 0 for all vi ∈ H, ui ∈ ∂φ(vi), i = 1, 2.

Assume that there exist two solutions v, v̂ of (18), i.e.

−v′(t) ∈ ∂φ(v(t)), −v̂′(t) ∈ ∂φ(v̂(t)).

From the monotonicity it follows that 〈−v′(t) + v̂′(t), v(t) − v̂(t)〉 ≥ 0 and therefore

d

dt
‖v(t) − v̂(t)‖2

= 〈v′(t) − v̂′(t), v(t) − v̂(t)〉 ≤ 0.

This shows that v = v̂. �

From definition it follows that the right hand side of (18) can be written as
u(t) − uδ for a (unique) function u : [0,∞) → H satisfying u(t) ∈ ∂J∗(v(t)) for
all t ∈ [0,∞). This is equivalent to v(t) ∈ ∂J(u(t)) such that (u, v) is the unique
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solution of (15). In order to show the inverse fidelity property of the solution (u, v)
we cite one assertion of [2, Thm. 4.3.2]

Theorem 5. The solution (u, v) of (15) satisfies

(19)
∥

∥u(t) − uδ
∥

∥

2
≤ |∂φ|2 (ṽ) +

1

t2
‖ṽ − v0‖

for all ṽ ∈ D(φ).

Corollary 1. Let u† denote the orthogonal projection of uδ on to the closure of
D(J). Then we have that

lim sup
t→∞

∥

∥u(t) − uδ
∥

∥ ≤
∥

∥u† − uδ
∥

∥ .

In particular for uδ ∈ D(J) it follows that

lim
t→∞

∥

∥u(t) − uδ
∥

∥ = 0 .

Proof. Let ε > 0. Then there exists u†
ε ∈ D(J) such that

∥

∥u†
ε − u†

∥

∥ < ε. For

ṽ ∈ ∂J(u†
ε) we have u†

ε ∈ ∂J∗(ṽ) and consequently

|∂φ| (ṽ) = inf
u∈H

{∥

∥u − uδ
∥

∥ : u ∈ ∂J∗(ṽ)
}

≤
∥

∥u†
ε − uδ

∥

∥ ≤
∥

∥u† − uδ
∥

∥ + ε.

Using this inequality in (19) it follows that

∥

∥u(t) − uδ
∥

∥

2
≤

(∥

∥u† − uδ
∥

∥ + ε
)2

+
1

t2
‖ṽ − v0‖ .

Taking into account that ε > 0 is arbitrary and taking t → ∞ gives the assertion.
�

The previous results show that vk as in Algorithm 1 approximates the function
v(t) in the flow equation (18). In the sequel we show that Uα(t) approximates the
primal function u in (18) as well. We skip the proof since it uses exactly the same
techniques as [5, Thm. 7].

Theorem 6. Let Uα(t) and u be as in (16) and (15), respectively. Then

(20) lim
α→∞

Uα(t) = u(t), almost everywhere in [0,∞) .

Corollary 2 (Monotonicity). Let uδ ∈ H. If (u, v) is the solution of (15) we have

(21)
∥

∥u(s) − uδ
∥

∥ ≤
∥

∥u(t) − uδ
∥

∥

for almost all s, t in [0,∞) satisfying s > t.

Proof. Let {αl}l∈N ⊆ R
+ liml→∞ αl = ∞ and that (20) holds for s and t. Then

there exists an index l0 such that for all l > l0 we have that 1
αl

< s − t and it

consequently follows from (8) that
∥

∥Uαl
(s) − uδ

∥

∥ ≤
∥

∥Uαl
(t) − uδ

∥

∥ , for all l > l0.

With this we obtain the estimate
∥

∥u(s) − uδ
∥

∥ ≤
∥

∥Uαl
(s) − uδ

∥

∥ +
∥

∥Uαl
(s) − u(s)

∥

∥

≤
∥

∥Uαl
(t) − uδ

∥

∥ +
∥

∥Uαl
(s) − u(s)

∥

∥

≤
∥

∥Uαl
(t) − u(t)

∥

∥ +
∥

∥Uαl
(s) − u(s)

∥

∥ +
∥

∥u(t) − uδ
∥

∥ .

Taking the limit l → ∞ shows (21). �

4. Applications

In this Section we highlight some applications of inverse scale spaces and iterative
Bregman distance regularization.
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4.1. Linear Inverse Scale Space. In [12] we introduced inverse scale spaces as
methods for evaluation of unbounded operators. Let L : D(L) ⊆ H1 → H2 be a
linear, closed, densely defined and unbounded operator between two Hilbert spaces
H1 and H2. Since L is unbounded, computing y = L(u) for a given u ∈ H1 is ill
posed. That is, for small perturbation uδ of u it might be that uδ 6∈ D(L) or that
∥

∥L(uδ) − L(u)
∥

∥ might be significantly large.
In order to provide a stable method for evaluation of L the iterative Tikhonov-

Morozov regularization (1) can be used. In [12] it is shown that the discrepancy
principle provides termination after a finite number of iterations. The discrepancy
principle stops the iteration when for the first time the iteration error

∥

∥uk − uδ
∥

∥

1
is

below a given upper bound δ for the data error. As we have explained in Section 1
iterative Tikhonov Morozov regularization is equivalent to Bregman regularization
with

J : u 7→
1

2
‖L(u)‖2

2 .

Note that linearity of L implies convexity of J and lower semicontinuity follows from
the closedness of L. From the analysis presented in Section 3 it follows that iterative
Bregman distance regularization can be considered the solution of an implicit time
step of

(22) (L∗Lu)
′
= uδ − u, u(0) = 0

with time step size 1
α
. Moreover since L is densly defined we see from Corollary 1

that

lim
t→∞

u(t) = uδ .

Let Ω ⊆ R
n and m ≥ 1.

If L denotes the gradient D : H1(Ω)m ⊆ L2(Ω)m → L2(Ω)nm, then

L∗L(~u) = −△~u := − (△ui)1≤i≤m .

The according inverse scale space is the flow equation

(23) (△~u)
′
= ~u − ~uδ, ~u(0) = 0 .

It can be used for stable evaluation of the derivative of a function ~u ∈ H1(Ω)m from
noisy data ~uδ ∈ L2(Ω)m. This is for instance useful for approximating the diZenzo
edge detector [8] defined by

(24) z(~u)(x) = (D~u(x)) (D~u(x))
T ∈ R

n×n .

The eigensystem of z(~u) at a point x ∈ Ω describes the geometry of the data. For
m = 1 it is well known that the eigenvectors of z(u)(x) are perpendicular and

tangential to the level set of u at x and the corresponding eigenvalues are |∇u|2

and 0 respectively.
In the numerical experiments we have calculated the DiZenzo edge detector with

the inverse scale space method consisting in solving (23). Figure 1 shows the data
(right column), the larger eigenvalue λ1 (middle column) and the eigenvectors of
z(x) for a small subset of Ω (left column). The upper and middle row shows the
original and noisy data respectively (additive Gaussian noise). The bottom row
shows the solution of (22) at time t = 0.9.

4.2. Inverse Total Variation Denoising. Minimization of total variation based
regularization functionals has turned out to be effective in image denoising appli-
cations.

Let Ω ⊆ R
n be an open and bounded set with piecewise Lipschitz boundary. We

take H = L2(Ω)m, m ≥ 1 and define for a vector valued function u ∈ L2(Ω)m the
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Figure 1. Left column. top: data, middle: noisy data, bottom:
solution of (22) at t = 0.9. Middle column. corresponding edge
detectors λ1 right column. corresponding eigenvectors of z; zoom
in some detail).

total variation semi-norm:

(25) J(u) :=









m
∑

i=1









sup
φ∈C1

c
(Ω)

|φ(x)|2≤1

∫

Ω

divφ ui dx









2







1
2

=

{

(∑m

i=1 |Dui|(Ω)2
)

1
2 if u ∈ BV(Ω)m .

+∞ else

J is convex and proper (since BV(Ω)m ∩ L2(Ω)m 6= ∅). Moreover J is lower semi-
continuous w.r.t. L2(Ω)m norm (see e.g. [11, Chap. 5.2, Thm.1] or [1, Thm. 2.3]).
The numerical experiments in Figure 2 show the multi-scale evolution of a color
image by the inverse total variation flow with J as in (25) and Figure 3 shows the
texture part of the images.

5. Conclusion

In this paper we have generalized the analysis of inverse Bregman distance to-
tal variation regularization to Bregman distance regularization of arbitrary convex
functionals. Moreover, we have derived the according flow equations and analyzed
them using general results from [2]. We applied the results for filtering of color
data and for the stable evaluation of DeZenzo’s edge detector.
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Figure 2. Inverse TV scale space: original image (upper left),
solutions of (15) at times t = 1, 5 and 20 (from left to right).

 

 

 

 

 

 

Figure 3. Difference images |uδ − u(t)|2 for t = 1, 5 and 20.
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