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Abstract. By simultaneously considering evolution processes
for parametric spline curves and implicitly defined curves, we
formulate the framework of dual evolution. This allows us to
combine the advantages of both representations. On the one
hand, the implicit representation is used to guide the topology
of the parametric curve and to formulate additional constraints,
such as range constraints. On the other hand, the parametric rep-
resentation helps to detect and to eliminate unwanted branches of
the implicitly defined curves. Moreover, it is required for many
applications, e.g., in Computer Aided Design.

1 Introduction

Implicitly defined curves and surfaces, i.e., curves and surfaces
which are described as the zero set of a scalar field, have been
used, e.g., for geometric modeling [7, 26], for the reconstruction
of geometric objects from unorganized points, see [6, 15, 19,
35, 36] and others. Several possible representations of the scalar
fields have been explored, such as hierarchical combinations of
simpler ones, radial basis functions, spline functions, and grid–
based discretizations.

On the other hand, parametric curves and surfaces (such as
NURBS representations) form the basis of the technology of
Computer Aided Design [12]. In particular, the problem of (re–)
constructing curves (and surfaces) from given point data has at-
tracted a lot of attention during the last years. Due to artificial
parameterization of the data, which is not a part of the described
geometry, it produces non–linear optimization problems. Differ-
ent strategies have been proposed, including ‘parameter correc-
tion’, quasi–Newton methods and geometrically motivated opti-
mization strategies [3, 12, 23, 24, 25, 27, 28, 31, 32].

Since techniques for non–linear optimization rely on iterative
methods, it is tempting to view the intermediate results as a time–
dependent curve (or surface) which adapts itself to the target
shape defined by the unorganized point data [24, 32]. This is
similar the notion of ‘active (parametric) curves’ which are used
for image segmentation in Computer Vision and image process-
ing [4, 16]. In order to do segmentation, [16] introduced the
idea ‘active curves’ which minimize an energy functional in a
space of admissible curves. As shown in [8], his problem can be
transformed to the problem of computing a geodesic curve in a
Riemannian space with a metric determined by the image data,
where solving this problem using the steepest-descent method

defines an evolution of the curve evolution.

Another related idea is the use of time–dependent discretiza-
tions of (approximations to) the signed distance function in the
so–called Level Set method [20, 21]. As the main advantage of
this implicit representation, it does not require a parameterization
and it naturally adapts the topology during the evolution. Conse-
quently, one may use it to detect complex topological structures,
such as objects consisting of multiple components, without using
prior knowledge.

This paper combines evolution processes for implicitly de-
fined curves and parametric curves for geometry reconstruction
and image segmentation. This leads to a new framework for evo-
lution, which we call the dual evolution, since the two represen-
tations of geometry are dual to each other.

By simultaneously considering both representations of the ge-
ometry, we combine the advantages of the two representations.
On the one hand, we obtain a parametric description, which is
useful for many applications, e.g., in Computer–Aided Design.
On the other hand, we use the implicit representation to identify
the correct topology, and in particular to guide the shape of the
parametric representations. Moreover, certain constraints, such
as range or convexity constraints, can more efficiently be formu-
lated in one of the two representations, and they can therefore be
added to the framework of dual evolution. For instance, range
constraints can be formulated as conditions on the sign of the
function defining the implicit representation, as demonstrated in
Section 4.

The remainder of the paper is organized as follows. The next
section describes evolution process for parametric curves and
for implicitly defined curves, and it formulates the framework
of dual evolution. Section 3 is devoted to the interaction of the
two representations. Section 4 discusses a particular type of con-
straints. Finally we conclude this paper.

2 Dual evolution of planar curves

After describing the idea of evolving or ‘active’ curves, we for-
mulate them in the cases of parametric curves and implicitly de-
fined curves. Finally, in order to combine the advantages of the
two representations, we introduce the framework of dual evolu-
tion.
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Figure 1: An “active” curve moving toward some
data points (3 time steps).

2.1 Evolving curves

Throughout this paper we assume that some data specifying one
or more closed planar curves are given. The data, which will
be referred to as the “target”, can be an unorganized point cloud
(e.g., generated by a measurement process), an image (e.g., in a
medical application), or another curve (e.g., a polygon).

We will describe a technique for extracting the information
describing the target curve(s) from the data, by generating both
implicitly defined and parametric curves which approximate the
point data, or which detect the contours in the given image. In
addition, it is possible to specify certain constraints, as will be
discussed in Section 4.

In order to detect or to reconstruct the geometric informa-
tion contained in the data, we will consider an evolution pro-
cess which drives the curve towards the target. More precisely,
we consider a time–dependent family of curves C = Ct, which
is sometimes called an “active” curve. The curve is described
by certain parameters (e.g., control points or coefficients) which
depend on a time variable τ . By continuously modifying these
parameters, we move the curve towards its target shape, see Fig.
2.1. The data is used to derive some information about the ex-
pected normal speed of the curve. This will be described in the
next section.

Remark 1

We recommend to choose the initial position of the active curve
(and similarly for surfaces) such that all data points lie within
it. In many cases, the method also works of the initial curve lies
within the target or if they intersect each other. This difference
is caused by the different evolution speed functions which are
described below.

We assume that the data does not specify nested loops. Tech-
niques for handling this situation are described in [34].

2.2 Speed functions

The evolution of the curve will be guided by the speed (or ve-
locity) function v, which depends both on the curve and on cer-
tain geometric information (normals ~n and the curvature κ) taken
from the current instance of the evolving curve.

closed curve point cloud

Figure 2: Precomputed distance fields.

In the case of image data D = D(x, y) we use the function

v = e(D) (λ + κ) − (1 − e(D)) (~nT ∇e(D)), (1)

which was proposed in [8], where e is the so–called edge detector
function

e(D) = e−η |∇D|2 . (2)

In this speed function, λ is a constant velocity (also known as the
balloon force) and η is a pre-described constant which depends
on the range of the data.

In the case of data points, we use

v = e(d) (λ + κ) − (1 − e(d)) (~nT ∇d), (3)

with the edge detector

e(d) = 1 − e−η d2

. (4)

Here, d is the unsigned distance function, and η is again a pre-
described constant which depends on the range of the data.

Remark 2 The edge detector functions as well as the unsigned
distance field will be pre–computed. To determine the unsigned
distance field we use graphics hardware acceleration [13]. There-
fore, d(x) and ∇d(x) can be efficiently acquired by linear in-
terpolation of the neighboring grid points. We use the pre–
computation in the initialization step of the algorithms which
will be described later.

Example 1 Fig. 2 shows two pre–computed distance fields. In
the case of a closed curve (left), one may distinguish between
interior (light gray) and exterior (dark gray) region. In the case
of a point cloud (right), this is no longer possible.

2.3 Evolution of parametric curves

We consider a closed parametric spline curve

f(u, τ) =

n∑

i=1

Bi(u) ci(τ) (5)

with B–splines Bi, curve parameter u ∈ [0, 1], time–dependent
control points ci = ci(τ), time parameter τ , and uniform peri-
odic knots. The curve is assumed to be C2 (e.g., a cubic spline
curve with single knots).
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We shall use the prime ′ in order to indicate differentiation
with respect to the curve parameter u,

∂f(u, τ)

∂u
= f ′,

∂2f(u, τ)

∂u2
= f ′′, etc., (6)

while the dot represents differentiation with respect to the time
parameter τ ,

∂f(u, τ)

∂τ
= ḟ ,

∂ci(τ)

∂τ
= ċi(τ). (7)

If the control points vary in time, the points of the curve travel
with the normal velocity

~n(u, τ)T ḟ(u, τ), (8)

where ~n(u, τ) is the unit normal vector of the curve at f(u, τ).
This normal velocity is to match the velocity field

v = v(f , f ′, f ′′), (9)

see Eqns. (1) and (3), which is determined by the given data and
by the current instance of the curve. In order to satisfy this con-
dition approximately, we formulate a least–squares problem

E0(ċ) =

∫ 1

0

(~nT ḟ − v)2 du → min . (10)

where c = (c1, . . . , cn) is obtained by gathering all control
points into a single vector. After replacing the integral by a sim-
ple numerical quadrature with N sample points uj , we arrive at

E(ċ) =

N∑

j=1

(~nT
j ḟj − vj)

2 → min (11)

with

fj = f(uj , τ), ḟj = ḟ (uj , τ),

~nj = ~n(uj , τ), vj = v(fj , f
′
j , f

′′
j ).

(12)

Finally, by using the B-spline representation for f , this can be
rewritten as

E(ċ) =

N∑

j=1

(
~nT

j

(
n∑

i=1

Bi(uj) ċi(τ)

)
− vj

)2

→ min .

(13)
The solution ċ(τ) of this problem is obtained by solving the
sparse linear system with a symmetric positive definite definite
matrix, which is obtained from

∂

∂ċi

E(ċ) = 0, i = 1, . . . , n. (14)

Very efficient algorithms for solving such systems exist [5].
The system (14) defines an ordinary differential equation

which specifies an evolution process for the curve. The time
derivatives of the control points can be computed from their cur-
rent values.

Since we are mostly interested in the final position of the
evolving curve, but not in the path of the evolution, we integrate

Figure 3: Evolution of a parametric curve towards a
point cloud.

the differential equation by an explicit Euler method. The up-
dated control points are chosen as

c(τ + ∆τ) = c(τ) + ċ∆τ. (15)

The step size ∆τ is chosen as min(1, L/vj , j = 1, . . . , N)

where L is a user-defined value. This value specifies the max-
imum allowed displacement of a point in normal direction per
iteration step. It should be chosen according to the expected size
of the geometry features in the target shape.

Example 2 Fig. 3 shows several time steps of the evolution of a
parametric curve towards a target point clouds consisting of two
parts. The final time step, where the curve reaches a stationary
state with two self–intersections, is shown as a black line.

Remark 3 In order to avoid numerical instabilities, the system
(14) has to be regularized. In our implementation, we use a sim-
ple Tikhonov regularization, by adding a damping term ω||ċ||

with a small positive weight ω. See [10] for more information on
this type of regularization.

Remark 4 In the case of given point or curve data, after the evo-
lution reaches the stopping criterion (the norm of ċ falls below a
user–defined threshold), one may improve the solution by solv-
ing the following non–linear least-squares problem

N∑

j=1

∣∣(xj −Qj)
T ~nj

∣∣2 → min, (16)

e.g., by using a Gauss–Newton method, such as the method of
normal distance minimization described in [4], see also [32].
Here Qj are the given data points and xj is the closest point
to Qj on the active curve. ~nj are the unit normals corresponding
to xj . As observed in [1, 2], this can also be seen as an evolution
of a curve, where the normal velocities of the closest points Qj

are equal to the oriented distances to the data.
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Figure 4: A T-spline grid. We use 4–fold knots at
boundaries.

control x-knots
points y-knots
C1 [s1 − ∆s0, s1 − ∆s0, s1, s2, s3]

[t1 − ∆t0, t1 − ∆t0, t1, t2, t3]

C2 [s1 − ∆s0, s1, s2, s3, s4]
[t1, t1 + ∆t5, t1 + ∆t5 + ∆t6, t2, t2 + ∆t7]

C3 [s1, s1 + ∆s6, s1 + ∆s6 + ∆s7, s2, s5]

[t1, t2, t2 + ∆t7, t3, t4]

Figure 5: The knot vectors for some selected control
points.

2.4 Evolution of implicitly defined curves

We consider a T–spline (see [29]) of the form

g(x, τ) =

n∑

i=1

Ti(x) ci(τ) x ∈ Ω ⊂ R
2, (17)

with the bivariate T-spline basis functions Ti and time–dependent
real coefficients ci = ci(τ), where the domain Ω is an axis–
aligned boxed containing the region of interest. The basis func-
tions

Ti(x) =
B3

si(x1)B
3
ti(x2)∑n

i=1 B3
si(x1)B3

ti(x2)

are defined with the help of (in our case) cubic B-splines over
certain knot vectors si = (si0, si1, si2, si3, si4) and ti which
are determined with the help of the so–called T-spline grid
(which generalizes the knot vectors of tensor–product splines).
This is illustrated by Fig. 4 and Fig. 2.4. See [29] for more infor-
mation.

Since the T–spline grid allows T-junctions, T-splines can be
refined locally. Clearly, this is not the case for tensor product
B-splines. If the T–spline grid does not contain T-junctions, then
the T-spline simplifies to a tensor–product spline.

The zero level set of the T-spline g,

Γ(g, τ) = {x ∈ Ω ⊂ R
2 | g(x, τ) = 0 }, (18)

defines a time–dependent planar curve. Similar to the case of a
parametric curve, we use the speed function v to derive an evo-
lution process.

Recall that the normal velocity of a point x of Γ equals
−ġ(x)/|∇g(x)|, where the unit normal vector has been chosen
as ~n = ∇g(x)/|∇g(x)|. Similar to (10), we formulate a least
squares problem

E0(ċ) =

∫

x∈Γ(g)

(ġ(x, τ) + v |∇g(x, τ)| )2 ds → min (19)

where s represents the arc length of the T–spline level set, and
c = (c0, . . . , cn). The value of the speed function depends on
the point x ∈ Γ and on the first and second derivative of the T–
spline g at x. Again, we use numerical integration in order to
approximate the integral,

E(ċ) =

N0∑

j=1

(ġ(xj , τ) + v(xj , τ) |∇g(xj , τ)|)2 → min (20)

with uniformly distributed sample points xj , j = 1, . . . , N , on
the zero level set, where N >> n.

The initial T-spline g is chosen as an approximation to the
signed distance function of its zero level set. During the evo-
lution, g will gradually loose this property, which is character-
ized by |∇g| = 1. Most existing level set evolutions use a re-
initialization step to restore the signed distance property, e.g., by
using a Fast Marching technique [30]. Following ideas similar
to [9, 17, 33], we avoid the re-initialization by introducing a dis-
tance field constraint.

More precisely, we add the constraint term

S0 =

∫

Ω

(
∂ |∇g(x, τ)|

∂τ
+ |∇g(x, τ)| − 1)2dx → min (21)

as a penalty function, which penalizes the deviation of g from a
signed distance function. Again, we use numerical integration
(but now with sample points distributed in Ω, and not just on the
zero level set) in order to derive a discretized version S of this
constraint term.

For each step of the T-spline evolution the time derivatives
ċ(τ) are computed by minimizing the weighted linear combina-
tion

F (ċ) = E(ċ) + w S(ċ) → min, (22)

with a certain positive weight w. Similar to the parametric case,
this results in a sparse symmetric positive definite linear system
defining an evolution of the curve. Once again we use explicit
Euler steps in order track the evolution path. More details, in-
cluding information concerning the choice of the weight w, the
discretization of the signed distance constraint term, and the se-
lection of the T–spline grid, have been presented in [33]. An ex-
ample for the adaptive choice of the T-spline grid will be given
later (Example 7).

2.5 Dual evolution

On the hand, a parametric spline representation of the curve is
needed, e.g., in Computer Aided Design. On the other hand, the
evolving parametric curves have some difficulties to deal with
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before splitting after splitting

Figure 6: Adapting the topology by dual evolution of
an implicitly defined (grey) and a parametric curve
(black).

changes of the topology, i.e., with targets which consisting of
more than one component.

On the other hand, an implicit representation is clearly not a
standard representation. Moreover, it may produce additional
branches during the evolution. However, as a major advantage,
it is able to adapt its topology to the target in a natural way. This
is one of the main reasons for the increased popularity of the
level–set method.

Consequently, it is a natural idea to combine the two evolution
processes for the two representations. We propose the following
algorithm for what we call “dual evolution”:

Algorithm 1

1. Initialization: Pre-compute the evolution speed function
and choose initial position of both curves.

2. Evolution: Apply the evolution of the implicit and paramet-
ric curves for one time step.

3. Synchronization: Detect and deal with occurring problems,
such as additional branches and topology changes, and en-
sure that the two representations stay close. See section 3.

4. Termination: Check whether the stopping criterion is satis-
fied, cf. Remark 4. Continue with step 2 (no) or 5 (yes).

5. Refinement of the parametric curve, see Remark 4.

Example 3 We continue the previous example. Fig. 6, left,
shows again the self intersection. Now we use the dual evolu-
tion, which combines a parametric spline curve (black) and an
implicitly defined one (grey). By combining these two repre-
sentations, we may now adapt the topology of the spline curve
and split it into two components (right). At the same time, the
implicitly defined curve develops two phantom branches.

3 The synchronization step

The section is devoted to the synchronization step of the algo-
rithm for dual evolution. Firstly we discuss the detection of

possible topological changes (splitting events), secondly the syn-
chronization in the case of no changes, and finally the adaptation
of the parametric curve in the case of topological changes.

3.1 Detection of topological changes

We describe and compare three different approaches.

Method 1: Self–intersections on the parametric curve

This method does not use any information from the implicitly de-
fined curve. Instead, it simply tries to detect self–intersections of
the parametric curve via sampling. More precisely, we approxi-
mate the parametric curve by an inscribed polygon and check for
self–intersections.

Method 2: Comparing normals

After each evolution step one may compare the unit normal
vectors of the parametric curve ~nf and of the implicitly de-
fined curve ~ng. More precisely, we may define a unit normal
~ng = ∇g/|∇g| for almost all points in the domain (except for
points with vanishing gradients), not only for points on the zero
level set Γ.

In our experiments, we observed that the following two events
are closely related:

(1) The implicit curve has changed its topology.

(2) There exists a parameter value uj such that

~nf (uj)
T ~ng (fj)) ≤ 0. (23)

This observation allows us to detect self–intersections without
explicitly computing them. If N sample points are used, then the
complexity is O(N).

This observation is justified by the following simple result (see
Fig. 7 for an illustration).

Lemma 1 Consider a subdomain S ⊆ Ω with boundary ∂S,
such that the function g has no extrema1 in this domain. We
assume that the boundary ∂S consists of segments of the para-
metric curve f , where all normals ~nf are either pointing away or
pointing towards S. In addition, we assume that the value of the
inner product

∇gT ~nf (24)

is not equal to zero everywhere on ∂S. Then the sign of this inner
product (24) changes on ∂S.

1Here, a point p is said lo be a maximum (and similar for a minimum) of g

on S if g(p) ≥ g(x) and g(p) > g(x′) holds for all x ∈ S and x
′ ∈ ∂S.
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S

∂S

Figure 7: The assumptions of Lemma 1.

Proof: If there were no such sign changes, then value of
g would always increase (or decrease) when one crosses the
boundary ∂S. This is in contradiction to the assumption that
g has no local extrema in S. �

Remark 5 The assumption concerning the non–vanishing inner
product is needed, e.g., in order to exclude the case of a constant
function g.

Note that the assumption concerning the non–existence of lo-
cal extrema is likely to be satisfied by the domain enclosed by
two branches of a self–intersecting curve, such as the black curve
in Fig. 3. On the one hand, the global distribution of the normals
of the parametric curve entails that they point either towards S

or away from S. On the other hand, the function defining g the
curve Γ is likely to have a saddle point, but not an extremal point,
in this region.

Remark 6 In practice we replace the right–hand side in (23)
with a small positive constant ε, in order to make the criterion
more sensitive.

Method 3: Distance check

Finally we may check whether the parametric curve f and the
implicitly defined curve Γ are “sufficiently close” to each other.
More precisely, for each point f(u) of the parametric curve we
try to find the corresponding point on Γ, by intersecting the nor-
mal with Γ,

g(f(u) + λ(u) ~nf (u)) = 0. (25)

By differentiation we obtain a differential equation for λ,

λ′ = −
∇gT (f ′ + λ~n′)

∇gT ~n
(26)

Using a predictor–corrector method we trace the parametric
curve and the corresponding points on the implicitly defined
curve. If the corrector (a Newton method for root finding along
the normal) changes the predicted value of λ too much, or even
fails to find a corresponding point, or if the distance between the
point f(u) and its corresponding point on Γ exceeds a certain
threshold, then we report that a change of topology is likely.

Remark 7 In order to speed up the computation one may in-
stead simply check whether the the sign of g changes in a tubular
ε–neighborhood around the parametric curve. If the zero level
is close to the parametric curve, then the sign changes in this
neighborhood.

Comparison

The three methods have been implemented and tested. The first
method (Section 3.1) is rather time–consuming, in particular if a
large number of sampled points is used. Furthermore, this condi-
tion does not guarantee that the topology of the implicit curve has
changed as well. Moreover, topological changes are detected rel-
atively late, as will be demonstrated by Example 4. On the other
hand not using the implicit curve helps in some cases where the
T-spline has a very flat structure. In this case, the other two meth-
ods have problems.

The third method detects the changes as soon as possible, but
with more computational effort. The second method can be seen
as a compromise. Methods 2 and 3 have problems if the implicit
curve is very flat, since then the function g does not represent the
curve very well.

Note that it is not a very serious problem if the methods are too
sensitive, i.e., if they report topological changes if no such events
have actually taken place. As we will see later, the method for
adapting the topology (see Section 3.3) will adapt the topology of
the parametric curve to the current shape of the implicitly defined
one, and it will identify cases where no change of topology took
place.

We apply the three methods to an example:

Example 4 Fig. 8 shows the dual evolution of a curve which
experiences a change of its topology. The implicitly defined
curve is shown in grey and the corresponding parametric curve
in black.

The third method (distance check) is the first one to detect
the topological change in the first time step (top right). Four
time steps later, the second method (comparing normals) reports
the change (bottom left). Finally, after three more time steps,
the parametric curve develops a self–intersection, which is duly
reported by the first method (bottom right).

3.2 Synchronization without topological changes

If no change of the topology has been reported, then we try to
make sure that the two representations of the curve stay close to
each other. Two possibilities exist:

Fitting the implicitly defined curve to the parametric one

In most cases, we fit the implicitly defined curve to the paramet-
ric one, by solving a least-squares problem

N∑

j=1

e−λφ(yj) (g(yj) − φ(yj))
2 → min . (27)

6



1 Bs curves( 27 ctrl pts ), 76 Ts ctrl pts.

Initial position

2 Bs curves( 37 ctrl pts ), 76 Ts ctrl pts.

Step 1: Method 3 detects the
change

2 Bs curves( 37 ctrl pts ), 76 Ts ctrl pts.

Step 4: Method 2 detects the
change.

1 Bs curves( 27 ctrl pts ), 76 Ts ctrl pts.

Step 7; Method 1 detects the
change.

Figure 8: Detection of topological changes.

The sample points yj are uniformly distributed in the domain Ω

of g. The function φ is the signed distance field of the parametric
spline curve (again obtained using graphics hardware) and λ is a
user–defined parameter.

We chose this approach because it allows us to eliminate ad-
ditional branches of the implicit representation and it guarantee
that the two representations of the curve stay close to each other.

Example 5 Fig. 9 shows an example.

Fitting the parametric curve to the implicitly defined one

In some cases, e.g., if additional constrains acting on the im-
plicitly defined curve are used (see Section 4), the implicitly de-
fined curve takes the leading role. For a sequence of uniformly
distributed sample points on the parametric curve we create the
closest points on Γ. Then we solve again a linear–least–squares
problem, in order to fit the parametric curve to them.

3.3 Synchronization with topological changes

If a change of topology has been reported, we have to create a
new parametric curve with the the correct topology. We use the
implicit curve to guide this process. More precisely, if pi is a
point which has been identified by one of the three methods in
Section 3.1, then we apply the following algorithm.

before synchronization after synchronization v

Figure 9: Synchronization without topological changes.

Algorithm 2

1. Create a circle C with a predefined radius (which should be
chosen as the expected feature size) around pi.

2. Compute the set P of intersections between C and the para-
metric curve f . Compute the set I set of intersections
between C and the implicitly defined curve Γ. In order
to compute I , the circle C is represented as a parametric
quadratic spline curve. On the other hand, in order to com-
pute P , its parametric representation is used. In both cases
this leads to root–finding problems in one variable.

3. Check if |I | = |P |. For each x ∈ I find the nearest y ∈ P .
This should define a one–to–one correspondence between
the points of P and I . If this fails, we increase the radius of
the circle C and continue with step 2.

4. Trace the implicitly defined curve within C between its in-
tersection points in I and use this information to create new
parametric spline curves between the corresponding points
of P .

Some steps of the algorithm will now be discussed in more detail:
In step 2, if |P | = |I | then for every x ∈ P there exists a point

y ∈ I which is close to x, due to the synchronization step in
algorithm 1. Otherwise, if |P | 6= |I | we may increase the radius
of C. Alternatively, one may filter out the unused points in I

later.

Remark 8 Clearly, it is essential to identify the correct radius
of the circle C. If the radius is too small, then we may not find
all informations we need. One the other hand, if we choose the
radius too large, then we may loose some parts of the target.
There will be no perfect fully automatic solution to this problem.
In the algorithm we use a binary search strategy to determine the
radius.

In order to trace the implicitly defined curve within C (step 4),
we use a predictor–corrector method with a curvature–dependent
step–size control. This tracing should establish pairs of intersec-
tion points. If this fails, then we increase the accuracy of the
tracing method (i.e., we decrease the step size).
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1 Bs curves( 48 ctrl pts ), 260 Ts ctrl pts.

Before splitting

2 Bs curves( 58 ctrl pts ), 260 Ts ctrl pts.

The splitting step

3 Bs curves( 54 ctrl pts ), 260 Ts ctrl pts.

After splitting Final position

Figure 10: Synchronization with topological
changes. The target is defined by a smooth curve.

In order to create the new parametric spline curve (step 4),
we split it at its intersections with the circle C and fill in new
segments. The control points of the new segments are obtained
by uniformly distributing points on the corresponding segments
of the implicit curve. Alternatively, one might try to fit another
B-spline curve to the traced segment, but the result of the simpler
method are sufficient.

Remark 9 With this method we can theoretically deal with an
arbitrary number of branches during each event. While it is very
unlikely that one curve splits in more than two branches, it can
easily happen that several branches get close to each other. See
the following example.

Example 6 Fig. 10 shows a complicated example which can be
handled by our method. A curve evolves towards a target which
consists of four pieces. In one step, the parametric curve has to
split into four components.

We conclude this section by another example.

Example 7 Fig. 11 shows some steps of the evolution process
towards a target defined by two point clouds. In addition to the
data and the curves, the figures visualize the T-spline grid, which
is refined in the vicinity of the data.

In this example, the parametric curve starts with 14 control
points in the beginning and increases this number to 17 after the
splitting step. The T-spline is defined by 160 coefficients. One
step of the evolution of the parametric curve needs less than 1
milliseconds, and one step of the evolution of the implicitly de-
fined curve requires about 60 milliseconds. Most of the compu-
tation time is needed for the synchronization: 300 milliseconds
without splitting, and 700 milliseconds with splitting.

Before splitting The splitting step

After splitting Final position

Figure 11: Synchronization with topological changes.
The target is defined by a point cloud.

4 Range constraints

The implicitly defined curve decomposes the domain into an
inner region, where g(x) ≤ 0, and an exterior region, where
g(x) ≥ 0. Based on this observation one may add range con-
straints to the the framework of dual evolution. More precisely,
if the domain bounded by the final curve should contain a certain
set of points {xi}i=0,...,N0

, and it should not contain another set
of points {yj}j=0,...,N1

, then we have to ensure that the evolving
implicitly defined curve satisfies

g(xi) ≤ 0, and g(yj) ≥ 0, (28)

respectively.
In the first case, this can be achieved by adding a penalty term

to the objective function (22) which implies that the time deriva-
tive satisfies ġ(xi) < 0 if the function value g(xi) is positive.
(The second case can be dealt with similarly.) We propose to use

C(ċ) =

N0∑

j=1

(ġ(xj , τ) + g(xj , τ) + δ)2 αε(g(xj , τ)) (29)

where δ is chosen by the user (see below for examples). The
‘activator’ function α controls the influence of this term,

αε(g) =





1 g > −ε

0 g < −2ε

C2 − blend in between
(30)

where ε is a used–defined positive constant. Again, the optimiza-
tion problem

F̂ (ċ) = E(ċ) + w1 S(ċ) + w2 C(ċ) → min . (31)

leads to a sparse linear system of equations with a symmetric
positive definite matrix, which can be dealt with efficiently.

The constraint term acts only on the implicitly defined curve,
but not on the parametric one. However, the parametric curve
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1 Bs curves( 12 ctrl pts ), 25 Ts ctrl pts. 1 Bs curves( 12 ctrl pts ), 25 Ts ctrl pts.

Figure 12: Approximation with (right) and without
(left) range constraints.

‘inherits’ the constraint through the synchronization, provided
that the second synchronization method (guided by the implicitly
defined curve) is used.

Depending on the choice of δ, the evolution stops at a certain
offset of the given shape. We will demonstrate this by several
examples. In all examples, the points on the target are simulta-
neously used to define the constraints. More precisely, we look
for approximating curves which are circumscribed or inscribed
to the given data.

Example 8 In Fig. 12, the target is defined by a noisy point
cloud taken from a circle. We show the approximation with-
out constraints (left) and the approximation (right) obtained by
adding the constraint term (29) with δ = −0.5.

Example 9 We consider the two branches of the curve defined
by the implicit equation

((x −
3

4
)2 + y2) ((x +

3

4
)2 + y2) = 0.316. (32)

Fig. 13 shows the dual evolution for a target defined by this
curve. Depending on the choice of δ, we obtain offsets of the
algebraic curve.

Example 10 In this final example (see Fig. 14) we consider a
target which consists of three parts. Evolution without constraits
produces three curves lying within the data set. For δ = −0.5 we
obtain curves which represent outer boundaries of the data set.

Remark 10 In the case of parametric curves, several approaches
to range constraints exist. For instance, a tension–based tech-
nique to constrained interpolation by parametric spline curves
is described in [18], the use of tight piecewise linear enclosures
have been proposed in [22], and certain optimization techniques
are explored in [11].

5 Concluding remarks

We formulated the novel framework of dual evolution, by simul-
taneously considering evolution processes for parametric spline

1 Bs curves( 16 ctrl pts ), 279 Ts ctrl pts.

initial position

1 Bs curves( 16 ctrl pts ), 279 Ts ctrl pts.

δ = 0

1 Bs curves( 16 ctrl pts ), 279 Ts ctrl pts.

δ = −0.05

1 Bs curves( 16 ctrl pts ), 279 Ts ctrl pts.

δ = +0.05

Figure 13: Dual evolution with range constraints for
a target defined by an algebraic curve.

curves and implicitly defined curves. As the main advantage of
this framework, it combines the advantages of both representa-
tions. On the one hand, the implicit representation is used to
guide the topology of the parametric curve and to formulate ad-
ditional constraints, such as range constraints. On the other hand,
the parametric representation helps to detect and to eliminate un-
wanted branches of the implicitly defined curves in the synchro-
nization step. Clearly, the parametric representation is preferred
in many applications, e.g., in Computer Aided Design.

As a matter of future research, we plan to investigate other
constraints, such as convexity. The convexity of implicitly de-
fined curves can be guaranteed via convexity of the underlying
scalar field, and computationally efficient criteria for the convex-
ity of spline functions exist [14]. Their application within the
framework of dual evolution seems to be promising.

Currently we study the extension of the results to surfaces,
where we need to define evolution processes and to discuss the
interaction of the two representations. The evolution of T–spline
Level sets in 3D has already been discussed in [33]. However,
the choice of a suitable surface representation is still open, and
we are considering triangular meshes, manifold splines, or geo-
metrically continuous spline surfaces.
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[1] Aigner, M., Šı́r, Z., and Jüttler, B., Least–Squares Approximation by

Pythagorean Hodograph Spline curves via an Evolution Process, Geomet-
ric Modelling and Processing, M.-S. Kim and K. Shimada (eds.), Springer
LNCS 4077, 2006, 45–58.
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