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Abstract

We establish a semi-group solution concept for morphological differen-
tial equations, such as the mean curvature flow equation. The proposed
method consists in generating flows from generalized minimizers of non-
convex energy functionals. We use relaxation and convexification to define
generalized minimizers. The main part of this work consists in verification
of the solution concept by comparing analytical, rotationally invariant so-
lutions of the mean curvature flow equation and iterative minimizer of a
non-convex energy functional.

1 Introduction

Semi-group theory is a powerful concept for proving existence of solutions of
gradient flow equations

∂tu ∈ −∂R(u) ,
u(0) = u0 ,

(1)

where R : X → [0,+∞] is a sequentially lower semi-continuous, convex energy
functional on a Hilbert Space X. In (1) we use the notation that ∂ with a
subscript denotes the derivative of a function with respect to the subscript and
without subscript ∂ denotes a subdifferential.

Standard results on gradient flows state that equation (1) has a solution u
whenever u0 ∈ D(R), and that u(t), t > 0, can be computed as limit of the
sequence u(n)

t/n defined by

u
(n)
t/n :=

(
Id + t

n ∂R
)−n

u0

as n → ∞ (cf. [3, 5, 6, 14, 16]). Equivalently, one can consider the iteration
u

(0)
t/n := u0 and

u
(k)
t/n := arg min

{1
2
‖u− u(k−1)

t/n ‖2 +
t

n
R(u) : u ∈ U

}
, k = 1, . . . , n . (2)
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Then, again, the equality u(t) = limn→∞ u
(n)
t/n holds.

In [2], this idea has been extended to gradient flows on metric spaces (X, d)
by considering the iterative minimization of the functional

F(τ, ũ;u) := d(u, ũ)2 + τR(u)

instead. Again, the limit of the iteration solves a gradient flow equation.
Let us now consider a more general form for both the energy functional

and the distance measure. For τ > 0 and ũ ∈ X let F(τ, ũ; ·) be a family of
functionals defined by

F(τ, ũ;u) = S(ũ;u) + τR(u),

where S : X ×X → [0,+∞] and R : X → [0,+∞] are (not necessarily convex)
functionals on X. Since we waive the convexity of S andR, we are no longer able
to characterize minimizers of F based on the subgradients of S(u) and R(u).
Moreover, using direct methods (see [11, 7]), we can only assume existence of
generalized minimizers. Nevertheless we can apply the semi-group concept and
define an iterative method analogously to (2): We define the sequence {u(k)

τ }k∈N0

by u(0)
τ := u0 and

u(k)
τ ∈

{
u ∈ X : u is a generalized minimizer of F(τ, u(k−1)

τ ; ·)
}
. (3)

Here, the generalized minimizers are defined via the relaxation of F . Again, the
sequence {u(n)

t/n} at least formally defines a flow on X.
In Section 3 we apply this concept to a particular functional for which the

associated formal gradient flow equation resembles the mean curvature flow
equation (see [10]). In the remaining parts of the paper we show that this
relation is not just formal. We provide a rigorous proof that for rotationally
symmetric, continuous, and initial data with monotonous rotational part the
mean curvature flow is in fact generated by this non-convex functional. This
example suggests that our non-convex semi-group concept is a reasonable solu-
tion concept for geometrical PDEs.

2 Evolution by Non-convex Functionals

Let X be a topological space, and letR : X → [0,+∞] and S : X×X → [0,+∞].
Assume that for every u0 ∈ X there exists u ∈ X such that S(u0;u) +R(u) 6=
+∞. For τ > 0 and u0 ∈ X we define the functional F(u0, τ ; ·) : X → [0,+∞]
setting

F(τ, u0;u) := S(u0;u) + τR(u) .

We want to define a flow as limit for n→∞ of the sequence {u(n)
t/n} defined

by the iteration u
(n)
0 := u0 and

u
(k)
t/n := arg min

{
F(t/n, u(k−1)

t/n ;u) : u ∈ U
}
, k = 1, . . . , n .

Since a minimizer need not exist for arbitrary non-convex functionals R and S,
it is necessary to work with generalized minimizers instead, which are defined
as minimizers of relaxed functionals.
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For the following definition of relaxation recall that a functional F on the
topological space X is called sequentially coercive, if all of its sublevel sets are
sequentially precompact. Moreover, it is called proper, if there exists some u ∈ X
with F(u) <∞. Finally, the functional F is sequentially lower semi-continuous
if

lim inf
k
F(u(k)) ≥ F(u) whenever u(k) → u .

Definition 1. Let F : X → [0,+∞] be sequentially coercive and proper on the
topological space X. Assume moreover that F is bounded from below. We
define the relaxation of F as

FR := sup
{
J : X → [0,+∞] : J ≤ F is sequentially lower semi-continuous

}
.

�

The following facts easily follow from the definition of FR:

• Since F is bounded from below, there exists a constant functional J0 = c
below F , Since the constant functional is sequentially lower semi-contin-
uous, FR is well defined.

• The functional FR : X → [0,+∞] is sequentially lower semi-continuous
(cf. [12, Lemma 1.5]). Since the functional FR is sequentially coercive
and proper, it therefore attains a minimum (cf. [12, Lemma 1.4]).

Moreover, every minimizer of the relaxed functional FR can be considered
a generalized minimizer of the original functional F .

Proposition 2. Every minimizer u of FR is a generalized minimizer of F .
That is, either u is a minimizer of F or there exists a sequence (u(k)) converging
to u such that F(u(k))→ infv∈X F(v).

More generally, we have the characterization of the relaxed functional

FR(u) = min
{

lim inf
k
F(u(k)) : u(k) → u

}
for every u ∈ X.

Proof. Cf. [4, Prop. 1.31]. �

We are now ready to introduce our concept of semi-groups generated by
non-convex energy functionals and similarity terms.

Definition 3. Let R : X → [0,+∞] and S : X ×X → [0,+∞]. For τ > 0 and
ũ ∈ X define the functional F(τ, ũ; ·) : X → [0,+∞] by

F(τ, ũ;u) := S(ũ;u) + τR(u) .

Assume that F(τ, ũ; ·) is sequentially coercive for every τ > 0 and ũ ∈ X.
For every τ > 0 we define the piecewise constant approximation uτ : R≥0 →

X by uτ (0) = u0 and

uτ (t) ∈ arg minFR
(
τ, u((k − 1)τ); ·

)
, (k − 1)τ < t ≤ kτ , k ∈ N .

We define the flow generated by F by

U(t) :=
{
u(t) : there exist τ` → 0 with u(t) = lim

`→∞
uτ`(t)

}
. (4)

�
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We note that for some time t the set U(t) can be empty, in which case no
solution of the evolution process exists at the time t.

3 MCM and Semi-Group Theory - Analytical
Justification

The main motivation for the considerations above is the mean curvature flow
equation

∂tu = |∇u| ∇ ·
(
∇u
|∇u|

)
on Rm × (0,∞) ,

u(0) = u0 on Rm ,
(5)

and its relation to the evolution defined by a non-convex similarity term and
the total variation as energy functional.

This NCBV functional (non-convex bounded variation) on X := L1(Rm) is
defined for u ∈W 1,1(Rm) as

F(τ, ũ;u) :=
∫

Rm

(
(u− ũ)2

2|∇u|
+ τ |∇u|

)
dx (6)

and F(τ, ũ;u) = +∞ for u 6∈ W 1,1(Rm). Since in general, minimization of F
with respect to the last variable u is considered, we will omit the dependence
on τ and ũ whenever possible and write F(u) := F(τ, ũ;u) instead.

The following computations, which are purely formal and by no means math-
ematically rigorous, provide the link between iterative minimization of F and
the mean curvature flow.

Formally, the gradient of the functional F is

∂F(u) =
u− ũ
|∇u|

+∇ ·
((

(u− ũ)2

2|∇u|2
− τ
)
∇u
|∇u|

)
. (7)

Therefore, a minimizer u of F is expected to satisfy the optimality condition

u− ũ
τ
∈ |∇u| ∇ ·

((
1− (u− ũ)2

2τ |∇u|2

)
∇u
|∇u|

)
. (8)

Now denote ∆τu := (u− ũ)/τ . Then (8) reads as

∆τu ∈ |∇u|∇ ·
((

1− τ (∆τu)2

2|∇u|2

)
∇u
|∇u|

)
.

Interpreting ∆τu as finite difference approximation of ∂tu, a formal passage to
the limit τ → 0 yields the mean curvature flow equation.

We will now show that the flow generated by the functional (6) in fact
approximates the solution of the mean curvature equation, if the initial data u0

is absolutely continuous, compactly supported, rotationally invariant, and its
radial part is strictly monotonous on its support.

In order to prove this result, we start with the solution of the mean curvature
equation (5) for rotationally invariant initial data u0 ∈ C1(Rm). In this case
there exists a function v0 ∈ C1(R≥0) such that

u0(x) = v0(|x|) for every x ∈ Rm . (9)
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In this setting, the solution u of the mean curvature equation is rotationally
invariant. Therefore, there also exists a function v : R≥0 ×R≥0 → R such that

u(x, t) = v(|x|, t) , (x, t) ∈ Rm × R≥0 . (10)

Thus, the mean curvature equation reduces to the linear partial differential
equation

∂tv(r, t) =
m− 1
r

∂rv(r, t) , v(r, 0) = v0(r) . (11)

Since the solution of this initial value problem is constant along the charac-
teristic curves t 7→ (r(t), t) defined by ∂tr = −(m− 1)/r, we obtain the solution

v(r, t) = v0

(√
r2 + 2(m− 1)t

)
, (r, t) ∈ R≥0 × R≥0 .

We now calculate a solution of the flow generated by the NCBV functional.
First, we will determine the relaxation FR of the functional F in BV(Rm), the
space of functions u ∈ L1(Rm) of bounded variation.

Recall to that end that the distributional gradient Du of a function u ∈
BV (Rm) can be decomposed into

Du = ∇uLm +Dsu,

where Dsu denotes the singular part of the signed measure Du. For further
details see e.g. [1, 8].

In the following, we denote by L∞c (Rm) the space of essentially bounded
functions ũ ∈ L∞(Rm) with compact support, and by BVc(Rm) the space of all
compactly supported functions ũ ∈ BV(Rm).

Theorem 4. Let ũ ∈ L∞c (Rm) and τ > 0. Then the relaxation FR of F with
respect to the L1-norm on BV(Rm) coincides with its convexification Fc defined
by

Fc(u) :=


∫

Rm
f
(
|u− ũ|, |∇u|; τ

)
dx+ τ |Dsu|(Rm) , if u ∈ BV (Rm) ,

+∞ , if u 6∈ BV (Rm) ,
(12)

with

f(ξ, η; τ) =


ξ2

2η
+ τη, if

√
2τ η > ξ ,

√
2τ ξ, if

√
2τ η ≤ ξ .

(13)

Moreover, the functional F has a generalized minimizer uτ ∈ BV(Rm)∩L∞(Rm)
and

ess inf ũ ≤ uτ ≤ ess sup ũ .

In addition, supp(uτ ) is contained in the closed convex hull of supp(ũ) and
|Duτ |(Rm) ≤ |Dũ|(Rm).

Proof. See Section 4. �

Corollary 5. Let u0 ∈ BV(Rm) ∩ L∞c (Rm) and τ > 0. The the flow generated
by the NCBV-functional (6) is well–defined.
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Proof. Theorem 4 shows that for every sequence (τ`) of time steps the cor-
responding piecewise constant approximations uτ` form a bounded sequence in
BV(Rm) and therefore have a weakly∗ convergent (with respect to the BV(Rm)-
topology) subsequence. From the same theorem it also follows that supp(uτ`) is
contained in the closed convex hull of Ω := supp(u0). Using that the embedding
from BV(Ω) into L1(Ω) is compact (see [1, Cor. 3.49]) it follows that uτ` are
convergent with respect to L1(Rm). �

The next step is to restrict the problem of minimizing the functional FR
over all functions u ∈ BVc(Rm) to a minimization problem over the rotationally
invariant functions only. Before we can do this, we need to show that the
minimization of the relaxed function FR preserves the rotational invariance of
the initial data u0.

Proposition 6. Let τ ∈ R>0 and ũ ∈ L∞c (Rm) an SO(m)-invariant function.
Then the functional FR(τ, ũ; ·) has an SO(m)-invariant minimizer uτ .

If, in addition, every SO(m)-invariant minimizer uτ of FR(τ, ũ; ·) satisfies
the condition

Lm
(
{x ∈ supp(uτ ) :

√
2τ |∇uτ (x)| ≤ |uτ (x)− ũ(x)|}

)
= 0 , (14)

then all the minimizers of FR(τ, ũ; ·) are SO(m)-invariant.

Proof. See Section 5. �

Proposition 6 shows that for a given rotationally invariant function ũ : Rm →
R there exists a rotationally invariant minimizer of the relaxed NCBV functional
FR(τ, ũ; ·). In analogy to (9) and (10) we define the radial components of the
rotationally invariant functions u and ũ by v(|x|) = u(x) and ṽ(|x|) = ũ(x).
The relaxed NCBV functional then simplifies to

FR(τ, ũ;u) = mωmG(τ, ṽ; v) ,

where G(τ, ṽ; ·) : B̂Vc → [0,+∞] is defined as

G(τ, ṽ; v) :=
∫ ∞

0

f
(
|v(r)− ṽ(r)|, |∂rvτ (r)|; τ

)
rm−1dr + τ

∫ ∞
0

rm−1d|Dsv|(r) ,

and ωm = Lm(B1) denotes the volume of the m-dimensional unit ball. Here
B̂Vc denotes the set of all functions v : R≥0 → R which are the radial part of
an SO(m)-invariant function u ∈ BVc(Rm), i.e.,

B̂Vc =
{
v : R≥0 → R : there exists u ∈ BVc(Rm) s.t. u(x) = v(|x|) , x ∈ Rm

}
.

The following theorem states that the iterative minimization procedure in-
troduced in Definition 3 for the functional G and with a strictly monotonous
initial function v0 ∈ L∞c (R≥0) converges to the solution of the mean curvature
flow equation.

Theorem 7. Let v0 : R≥0 → R be an absolutely continuous function with
supp(v0) = [0, R] for some R > 0, which is strictly monotonous on [0, R]. For
k ∈ N let v(0)

τ := v0 and

v(k)
τ ∈ arg min

{
G(τ, v(k−1)

τ ; v) : v ∈ B̂Vc

}
.

6
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Then
lim
n→∞

v
(n)
t/n(r) = v0

(√
r2 + 2(m− 1)t

)
locally uniformly for (r, t) ∈ R>0 × R>0.

Moreover, we have for all k ∈ N and τ ∈ R>0 the inequality

|v(k)
τ (r)− v(k−1)

τ (r)| <
√

2τ |∂rv(k)
τ (r)| for almost every r ∈ (0, R). (15)

Proof. See Section 8. �

In particular, the property (15) of Theorem 7 shows that every rotationally
invariant minimizer of FR fulfills the condition (14) of Proposition 6. There-
fore, all minimizers of FR are rotationally invariant and Theorem 7 completely
describes the flow generated by the NCBV functional F .

Corollary 8. The mean curvature flow is equivalent to the flow generated by
the NCBV functional in case the initial data is rotationally invariant, absolutely
continuous, and its radial component is strictly monotonous on its support.

4 Proof of Theorem 4

In this section we prove Theorem 4, which states that the relaxation of the
NCBV functional coincides with its convexification and that minimization of
FR does neither increase the norm nor the support of the input data u0. This
generalizes the results of [12, 13], where the relaxation has been computed on
BV(Ω) for open and bounded subsets Ω of Rm with Lipschitz boundary.

Proof (of Thm. 4). For proving that the relaxed and convexified functional co-
incide, i.e., that the equality FR = Fc holds, we have to show that Fc is lower
semi-continuous and that for every u ∈ BV (Rm) and ε > 0 there exists a func-
tion uε with ‖uε− u‖2 < ε and F(uε) ≤ Fc(u) + ε. To that end it is convenient
to define for every open and bounded set Ω ⊂ Rm and u ∈ L1(Rm) the localized
functionals

F(u; Ω) :=
∫

Ω

(u− ũ)2

2|∇u|
+ τ |∇u|dx ,

Fc(u; Ω) :=
∫

Ω

f
(
|u− ũ|, |∇u|; τ

)
dx+ τ |Dsu|(Ω) .

Here |Dsu|(Ω) denotes the singular part of the Radon measure |Du| on Ω.
Using [13, Thm. 2], we obtain that Fc(·,Ω) is sequentially lower semi-

continuous whenever Ω ⊂ Rm is open and bounded with Lipschitz boundary.
Since Fc(·) = Fc(·,Rm) is the supremum of all these functionals, it follows that
also Fc is sequentially lower semi-continuous.

Let r > 1 such that supp(ũ) ⊂ Br. Assume that u ∈ BV(Rm) and that
supp(u) ⊂ Br. Using [13, Thm. 2], it follows that for every ε > 0 there exists a
function vε ∈W 1,1(Br+1) such that

‖vε − u‖L1(Br+1) ≤ ε and F(vε, Br+1) ≤ Fc(u,Br+1) + ε . (16)

A closer inspection of the proof of [13, Thm. 2] reveals that vε can be chosen to
be an element of W 1,∞(Br+1).
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Let R be a minimizer of the function s 7→
∫
∂Bs
|vε|dHm−1 in [r, r + 1] and

let
C > max

{
‖vε‖∞, ‖∇vε‖∞

}
. (17)

Define

ûε(x) :=



vε(x) if |x| ≤ R ,

vε

(Rx
|x|

)
− C (|x| −R) sgn

(
vε

(Rx
|x|

)) if
∣∣∣vε(Rx|x| )∣∣∣ ≥ C(|x| −R)

and |x| ≥ R ,
0 else ,

(18)
and Ωε := BR ∪ supp(ûε). Then

C ≤ |∇ûε| ≤ 2C on Ωε \BR. (19)

Using the inequality (R+ r)m ≤ 2mRm−1r+Rm for r ∈ [0, R] and (17), we
obtain

Lm(Ωε \BR) =
∫
Sm−1

∫ R+|vε(Rx)|/C

R

tm−1 dtdHm−1(x)

=
1
m

∫
Sm−1

((
R+

|vε(Rx)|
C

)m
−Rm

)
dHm−1(x)

≤ 2m

Cm

∫
Sm−1

∣∣vε(Rx)
∣∣Rm−1 dHm−1(x)

≤ 2m

Cm

∫
∂BR

∣∣vε(x)
∣∣dHm−1(x) .

As a consequence, the minimality of
∫
∂BR
|vε|dHm−1 implies that

Lm(Ωε \BR) ≤ 2m

Cm

∫
∂BR

∣∣vε(x)
∣∣dHm−1(x)

≤ 2m

Cm

∫ r+1

r

∫
∂Bt

∣∣vε(x)
∣∣dHm−1(x) dt

=
2m

Cm
‖vε‖L1(Br+1\Br)

≤ 2mε
Cm

.

Using (17) and (19) and that supp(ũ) ⊂ Br ⊂ BR, we obtain that

F(ûε; Ωε \BR) =
∫

Ωε\BR

û2
ε

2|∇ûε|
+ τ |∇ûε|dx

≤
(
2τC + C/2

)
Lm(Ωε \BR)

≤ ε(2τ + 1/2)
2m

m
.

Since ûε is absolutely continuous, it follows with (16) that

F(ûε; Ωε) ≤ F(ûε;BR) + F(ûε; Ω \BR)
≤ F(vε;BR) +Kε ≤ Fc(u; Ωε) + (K + 1)ε ,

8



where K := (2τ + 1/2) 2m

m .
Taking into account the definition (18) of ûε, we obtain that

‖ûε − u‖L1(Ωε) = ‖vε − u‖L1(BR) + ‖ûε‖L1(Br+1\BR)

≤ ε+
∫ r+1

R

∫
∂Bt

|ûε|dtdHm−1

≤ ε+
∫ r+1

r

∫
∂Bt

|vε|dtdHm−1

= ε+ ‖vε‖L1(Br+1\Br) ≤ 2ε .

Now let Uk ⊂ Rm \ Ωε, k ∈ N, be disjoint, open, bounded, and Lipschitz
bounded sets such that Lm

(
Rm \

(
Ωε∪

⋃
k Uk

))
= 0. Since supp(u) and supp(ũ)

are contained in Br, which is a subset of Ωε, it follows that Fc(u;Uk) = 0.
Therefore there exists for every k ∈ N a function ûk ∈ W 1,∞(Rm) with

supp(uk) ⊂ Uk such that ‖ûk‖L1(Uk) < ε/2k and F(ûk;Uk) < ε/2k. Setting

uε(x) :=

{
ûε(x) if x ∈ Ωε ,
ûk(x) if x ∈ Uk, k ∈ N ,

it follows that ‖uε − u‖L1(Rm) < 3ε and F(uε) ≤ Fc(u) + (K + 2)ε. Since ε > 0
was arbitrary and K independent of ε, this shows that Fc(u) ≥ FR(u) whenever
u ∈ L1(Rm) is compactly supported.

Now let u ∈ L1(Rm) be arbitrary. Then Fc(u) = limk→∞ Fc(uχBk), where
χBk denotes the characteristic function of Bk. Consequently,

FR(u) ≤ lim inf
k→∞

FR(uχBk) ≤ lim inf
k→∞

Fc(uχBk) = Fc(u) ,

which shows that FR(u) = Fc(u) for every u ∈ L1(Rm).

Now let u ∈ BV (Rm). Denote by B the closed convex hull of supp(ũ) and
define uB := uχB . Then

|Du|
(
(Rm \B) ∪ ∂B

)
≥
∫
∂B

|u| dHm−1 = |DuB |
(
(Rm \B) ∪ ∂B

)
.

As a consequence, Fc(uB) ≤ Fc(u) with equality holding if and only if uB =
u. Similarly, defining û(x) := max

{
min{u(x), sup ũ}, inf ũ

}
, one can show

that Fc(û) ≤ Fc(u), and again, equality holds if and only if û = u (cf. [12,
Lemma 4.12]). This shows that minimizing Fc on L1(Rm) is equivalent to min-
imizing Fc on the compact set

S :=
{
u ∈ L1(Rm) : inf ũ ≤ u ≤ sup ũ, supp(u) ⊂ B

}
.

Since Fc is lower semi-continuous, the existence of a minimizer uτ , which is
contained in S, follows.

From (12) and (13) it follows that

τ |Duτ |(Rm) ≤ Fc(uτ ) ≤ Fc(ũ) = τ |Dũ|(Rm) . �

9
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5 Proof of Proposition 6

Proposition 6 states that, given an SO(m)-invariant function ũ, the functional
FR(τ, ũ; ·) has an SO(m)-invariant minimizer. In addition, it provides a criterion
to determine whether every minimizer is SO(m)-invariant.

Proof (of Proposition 6). Theorem 4 implies the existence of a minimizer uτ ∈
BVc(Rm) of FR(τ, ũ; ·). We then define the SO(m)-invariant function ūτ ∈
BVc(Rm) by

ūτ (x) =
∫

O(m)

uτ (Rx)dµ(R),

where µ denotes the Haar-measure on the orthogonal group O(m) of all real,
orthogonal m×m-matrices, normalized to fulfill µ(O(m)) = 1.

For the distributional gradient Dūτ of ūτ , we find with ψR(y) := Rφ(R−1y)∫
Rm

φ(x) · dDūτ (x) = −
∫

Rm
ūτ (x)∇ · φ(x)dx

= −
∫

O(m)

∫
Rm

uτ (Rx)∇ · φ(x)dxdµ(R)

= −
∫

O(m)

∫
Rm

uτ (y)∇ · ψR(y)dy dµ(R)

for every function φ ∈ C∞c (Rm; Rm). Therefore, using the definition of the
distributional gradient of uτ , we get∫

Rm
φ(x) · dDūτ (x) =

∫
O(m)

∫
Rm

Rφ(R−1y) · dDuτ (y)dµ(R) (20)

=
∫

O(m)

∫
Rm

φ(x) ·R−1dDuτ (Rx)dµ(R).

For the measure |Dūτ |, we thus have for all measurable sets A ⊂ Rm the in-
equality

|Dūτ |(A) ≤
∫

O(m)

|Duτ |(RA)dµ(R). (21)

We next define the function

F : BV(Rm; [0,∞))×M(Rm)× R>0 → R ∪ {∞},

F (ξ, σ; τ) :=
∫

Rm
f(ξ(x), σa(x); τ)dx+ σs(Rm).

Here, BV(Rm; [0,∞)) is the set of all functions ξ : Rm → [0,∞) with bounded
variation andM(Rm) denotes the space of finite Radon measures on Rm. More-
over, σ = σaL(m) + σs is the Lebesgue decomposition of the measure σ into its
absolutely continuous and its singular part.

Defining the measure ντ (A) :=
∫

O(m)
|Duτ |(RA)dµ(R), we get with the

inequality (21) and the fact that the function f is monotonically increasing in
its second argument that

F (ξ, |Dūτ |; τ) ≤ F (ξ, ντ ; τ), (22)
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where the inequality is strict if |Dsūτ |(Rm) < νsτ (Rm) or

L(m)({x ∈ Rm :
√

2τ |∇ūτ (x)| > ξ(x) and |∇ūτ (x)| < νaτ (x)}) 6= 0. (23)

With the estimate (22) and the monotonicity of f in its first argument, we
thus find

FR(τ, ũ; ūτ ) = F (|ūτ − ũ|, |Dūτ |; τ)
≤ F (|ūτ − ũ|, ντ ; τ) (24)

≤ F
(∫

O(m)

|uτ ◦R− ũ ◦R|dµ(R), ντ ; τ
)
.

Now, since the function f(·, ·; τ) is convex, we see that the functional F (·, ·; τ)
is convex as well. We may therefore apply Jensen’s inequality to get

FR(τ, ũ; ūτ ) ≤
∫

O(m)

F (|uτ ◦R− ũ ◦R|, |Duτ | ◦R; τ)dµ(R),

and since F (ξ ◦R, σ ◦R; τ) = F (ξ, σ; τ) for every R ∈ O(m), we finally have

FR(τ, ũ; ūτ ) ≤ F (|uτ − ũ|, |Duτ |; τ) = FR(τ, ũ;uτ ).

If we further know that

Lm({x ∈ Rm |
√

2τ |∇ūτ (x)| ≤ |ūτ (x)− ũ(x)|}) = 0,

then, according to (23), the inequality (24) is strict if |Dūτ |(Rm) < ντ (Rm).
It therefore only remains to show that the equality |Dūτ |(Rm) = |Duτ |(Rm)
implies that uτ is SO(m)-invariant.

So, let |Dūτ |(Rm) = |Duτ |(Rm). In a first step, we will show that the
Radon–Nikodým derivative dDuτ

d|Duτ | (x) is orthogonal to the sphere. Introducing
the function

φ̄(x) =
∫

O(m)

Rφ(R−1x)dµ(R),

we see from equation (20) that |Dūτ |(Rm) can be written as

|Dūτ |(Rm) = sup
φ̄∈C

∫
Rm

φ̄(x) · dDuτ (x),

where C denotes the set of all functions φ̄ ∈ C∞c (Rm; Rm) with ‖φ̄‖∞ ≤ 1 and
φ̄(Rx) = Rφ̄(x) for every x ∈ Rm and every R ∈ O(m).

The symmetry property φ̄(Rx) = Rφ̄(x) implies that φ̄(x) = ε(x)|φ(x)| x|x| ,
ε(x) ∈ {−1, 1}, and therefore

|Dūτ |(Rm) ≤
∫

Rm

∣∣∣∣ x|x| · dDuτ
d|Duτ |

(x)
∣∣∣∣ d|Duτ |(x).

The condition |Dūτ |(Rm) = |Duτ |(Rm) thus demands that∣∣∣∣ x|x| · dDuτ
d|Duτ |

(x)
∣∣∣∣ = 1 for |Duτ |-almost every x ∈ Rm, (25)
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that is, dDuτ
d|Duτ | (x) is orthogonal to the sphere.

Now note that for |Duτ |-almost every x ∈ Rm the vector dDuτ
d|Duτ | (x) equals

the inner normal to the boundary of the level sets Ωt :=
{
y ∈ Rm : uτ (y) ≥ t

}
,

u−τ (x) ≤ t ≤ u+
τ (x) (cf. [9, Thm. 4.5.9, (17), (25)]). Using the coarea formula, it

follows that the same equality holds for Hm−1-almost every x ∈ ∂Ωt for almost
every t ∈ R. Consequently, (25) implies that almost all normals to level sets of
uτ point in direction orthogonal to spheres centered at zero. This, however, is
only possible, if the boundary of each level set of uτ is the union of spheres, in
other words, if uτ is constant on each sphere ∂Br. �

6 Properties of Rotationally Invariant Minimiz-
ers

In order to investigate the iterative minimization procedure of Definition 3 for
the functional G, we will collect some properties of the minimizers vτ ∈ B̂Vc of
the functional G(τ, ṽ; ·).

Assumption 9. ṽ : R≥0 → R is continuous and satisfies ṽ ∈ B̂Vc, supp(ṽ) =
[0, R], and it is not locally constant on (0, R), i.e.,

L1
(
{r ∈ (0, R) : ∂rṽ(r) = 0}

)
= 0 .

Before we come to the minimizers, let us first mention a few properties of
the function f found in the integrand of G. For its partial derivatives, we find
directly from its definition (13) that

∂ξf(ξ, η; τ) =


ξ

η
, if

√
2τ η > ξ ,

√
2τ , if

√
2τ η ≤ ξ ,

(26)

∂ηf(ξ, η; τ) =

τ −
ξ2

2η2
, if

√
2τ η > ξ ,

0 , if
√

2τ η ≤ ξ .
(27)

Thus, f(·, ·; τ) ∈ C1
(
R2
≥0 \ {(0, 0)}

)
and we have

∂ηf(ξ, η; τ) ∈ [0, τ ] for every (ξ, η) ∈ R2
≥0 \ {(0, 0)} (28)

and
∂ηf(ξ, 0; τ) = 0 for every ξ > 0 . (29)

In particular, we have the estimates∥∥∂ξf(·, ·; τ)
∥∥
∞ ≤

√
2τ and

∥∥∂ηf(·, ·; τ)
∥∥
∞ ≤ τ .

Let now vτ ∈ B̂Vc be a minimizer of the functional G(τ, ṽ; ·). We define the
sets

Ωτ :=
{
r ∈ (0, R) : |vτ (r)− ṽ(r)| <

√
2τ |∂rvτ (r)|

}
,

Στ :=
{
r ∈ (0, R) : |vτ (r)− ṽ(r)| ≥

√
2τ |∂rvτ (r)|

}
.

(30)
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In the sequel we will rewrite the Euler–Lagrange equations for the functional
G(τ, ṽ; ·) in terms of the function

gτ : (0, R)→ R ,

gτ (r) :=


vτ (r)− ṽ(r)
∂rvτ (r)

, if r ∈ Ωτ ,
√

2τ , if r ∈ Στ .

(31)

To this end, we remark that we can express the partial derivatives of the
integrand of G with the function gτ only. For r ∈ (0, R) we namely have the
relations

∂ξf
(
|vτ (r)− ṽ(r)|, |∂rvτ (r)|; τ

)
= |gτ (r)| ,

∂ηf
(
|vτ (r)− ṽ(r)|, |∂rvτ (r)|; τ

)
= τ − g2

τ (r)
2

.
(32)

Moreover, from the defintion (31), we see that the function gτ is bounded.
Indeed,

gτ (r) ∈ (−
√

2τ ,
√

2τ ] for every r ∈ (0, R). (33)

Lemma 10. The functions gτ and vτ satisfy the following conditions:

1. The function g2
τ is locally absolutely continuous on (0, R] and solves the

differential equation

r ∂r(g2
τ )(r) = 2(m− 1)τ − 2r gτ (r)− (m− 1) g2

τ (r) (34)

almost everywhere on Ωτ .

2. The function r 7→ sgn
(
∂rvτ (r)

)
is locally constant on Ωτ .

3. The function r 7→ gτ (r) sgn
(
vτ (r)− ṽ(r)

)
is continuous on Ωτ .

4. The function gτ satisfies gτ (r) 6= 0 for every r ∈ (0, R).

5. The function gτ is locally absolutely continuous on every subset of (0, R)
where it is continuous.

Here, all the properties of the functions are only valid with the right choice
of representative. We especially want to stress that therefore Item 3 does not
exclude points in Ωτ where vτ = ṽ.

Proof. Since, by assumption, the function ṽ is not locally constant on its sup-
port, we find that

L1
(
{r ∈ (0, R) : ∂rvτ (r) = 0 and vτ (r) = ṽ(r)}

)
= L1

(
{r ∈ (0, R) : ∂rṽ(r) = 0 and vτ (r) = ṽ(r)}

)
= 0 .

Therefore, the condition that the variational derivative of G in direction of a
function φ ∈ C1

c ([0, R)) at the minimizer vτ of G(τ, ṽ; ·) vanishes reads as

0 = lim
t→0

G(τ, ṽ; vτ + tφ)− G(τ, ṽ; vτ )
t

=
∫ R

0

∂ξf
(
|vτ (r)− ṽ(r)|, |∂rvτ (r)|; τ

)
sgn
(
vτ (r)− ṽ(r)

)
rm−1φ(r) dr

+
∫ R

0

∂ηf
(
|vτ (r)− ṽ(r)|, |∂rvτ (r)|; τ

)
sgn
(
∂rvτ (r)

)
rm−1∂rφ(r) dr .

(35)
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We now choose for 0 < r0 < R the function φ = φε = χ(0,r0) ∗ ρε, where
ρε(r) := ε−mρ(r/ε) and ρ is some mollifier. We refer to [8] for the basic definition
of a mollifier and its properties.

Passing to the limit ε→ 0, it follows that∫ r0

0

∂ξf
(
|vτ (r)− ṽ(r)|, |∂rvτ (r)|; τ

)
sgn
(
vτ (r)− ṽ(r)

)
rm−1 dr

= ∂ηf
(
|vτ (r0)− ṽ(r0)|, |∂rvτ (r0)|; τ

)
sgn
(
∂rvτ (r0)

)
rm−1
0 (36)

for almost every r0 ∈ (0, R).
Since the integrand of the left hand side of (36) is the integral of a bounded

function, it follows that the function

r 7→ ∂ηf
(
|vτ (r)− ṽ(r)|, |∂rvτ (r)|; τ

)
sgn
(
∂rvτ (r)

)
(37)

is locally absolutely continuous on (0, R).
Because of the properties (28) and (29) of the function ∂ηf , the local absolute

continuity of the function (37) also implies the local absolute continuity of the
function

r 7→ ∂ηf
(
|vτ (r)− ṽ(r)|, |∂rvτ (r)|; τ

)
= τ − g2

τ (r)
2

on (0, R). Thus, g2
τ is locally absolutely continuous on (0, R), and therefore, in

particular, continuous and differentiable almost everywhere on (0, R).
Moreover, since by definition of the set Ωτ the function τ − g2

τ/2 does not
become zero on Ωτ , the continuity of the map (37) implies that the function
r 7→ sgn

(
∂rvτ (r)

)
is locally constant on Ωτ . Therefore, the function Ωτ →(√

−2τ ,
√

2τ
)
,

r 7→ gτ (r) sgn
(
vτ (r)− ṽ(r)

)
= |gτ (r)| sgn

(
∂rvτ (r)

)
is continuous on Ωτ .

Differentiating equation (36), we find that

rm−1gτ (r) = ∂r

(
τrm−1 − rm−1gτ (r)2

2

)
for almost every r ∈ Ωτ ,

which evaluates to the differential equation (34). This finishes the proof of the
first three items.

To prove Item 4, we note that the right hand side of (34) is strictly positive
for

gτ,−(r) := − r

m− 1
−

√
r2

(m− 1)2
+ 2τ < gτ (r)

< − r

m− 1
+

√
r2

(m− 1)2
+ 2τ =: gτ,+(r) .

(38)

Consequently, the derivative of the non-negative function g2
τ is strictly positive

on a neighbourhood of every point r0 ∈ Ωτ with gτ (r0) = 0, which is impossible.
If therefore gτ is continuous on some compact interval I ⊂ (0, R), then either

gτ =
√
g2
τ or gτ = −

√
g2
τ on I. But since the square root is a locally Lipschitz

continuous function on R>0, this implies that gτ is absolutely continuous on I,
proving Item 5. �
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Since the function gτ only captures the absolutely continuous part of the
distributional derivative Dvτ , we would still need to deal with the singular
part Dsvτ . But it turns out that the minimizer vτ is in fact locally absolutely
continuous and so the singular part is zero.

Lemma 11. The function vτ is locally absolutely continuous, that is, the sin-
gular part of Dvτ satisfies |Dsvτ |(R>0) = 0.

Proof. Since vτ is a minimizer of the convex functional G(τ, ṽ; ·), the one-sided
variational derivative

δφG(τ, ṽ; vτ ) := lim
t→0+

G(τ, ṽ; vτ + tφ)− G(τ, ṽ; vτ )
t

exists and is non-negative for all variations φ ∈ B̂Vc.
Let us now assume that |Dsvτ |

(
(0, R)

)
6= 0. Then there exists r0 ∈ (0, R)

such that
|Dsvτ |

(
[r0 − ε, r0]

)
6= 0 for every ε ∈ (0, r0) .

We further choose for ε ∈
(
0,min{r0, R−r0}

)
a function φ ∈ B̂Vc with φ|[r0,∞) ∈

C1
(
[r0,∞)

)
and

φ(r) = 0 for r ∈ R≥0 \ (r0 − ε, r0 + ε),

φ(r) = −Dsvτ
(
[r0 − ε, r]

)
for r ∈ (r0 − ε, r0] .

Then in particular ∂rφ(r) = 0 for r 6∈ [r0, r0 + ε] and

Dφ
(
[r0 − ε, r]

)
= Dsφ

(
[r0 − ε, r]

)
= −Dsvτ

(
[r0 − ε, r]

)
(39)

for r ∈ [r0 − ε, r0]. Thus we find that

δφG(τ, ṽ; vτ )

=
∫ r0+ε

r0−ε
∂ξf
(
|vτ (r)− ṽ(r)|, |∂rvτ (r)|; τ

)
sgn
(
vτ (r)− ṽ(r)

)
rm−1φ(r) dr

+
∫ r0+ε

r0

∂ηf
(
|vτ (r)− ṽ(r)|, |∂rvτ (r)|; τ

)
sgn
(
∂rvτ (r)

)
rm−1∂rφ(r) dr

− τ
∫

[r0−ε,r0]

rm−1 d|Dsφ|(r) . (40)

Now define the function ψ ∈ C1
c ([0, R)) setting ψ(r) = φ(r) for r > r0 and

ψ(r) = φ(r0) for r ≤ r0. Since vτ is a minimizer of G(τ, ṽ; ·), it follows that the
Euler–Lagrange equation (35) holds for ψ and therefore∫ r0+ε

r0

∂ηf
(
|vτ (r)− ṽ(r)|, |∂rvτ (r)|; τ

)
sgn
(
∂rvτ (r)

)
rm−1∂rφ(r) dr

= −
∫ r0+ε

0

∂ξf
(
|vτ (r)− ṽ(r)|, |∂rvτ (r)|; τ

)
sgn
(
vτ (r)− ṽ(r)

)
rm−1ψ(r) dr

= −
∫ r0+ε

r0

∂ξf
(
|vτ (r)− ṽ(r)|, |∂rvτ (r)|; τ

)
sgn
(
vτ (r)− ṽ(r)

)
rm−1φ(r) dr

− φ(r0)
∫ r0

0

∂ξf
(
|vτ (r)− ṽ(r)|, |∂rvτ (r)|; τ

)
sgn
(
vτ (r)− ṽ(r)

)
rm−1 dr .
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Therefore (40) and (36) imply that

δφG(τ, ṽ; vτ )

=
∫ r0

r0−ε
∂ξf
(
|vτ (r)− ṽ(r)|, |∂rvτ (r)|; τ

)
sgn
(
vτ (r)− ṽ(r)

)
rm−1φ(r) dr

− ∂ηf
(
|vτ (r0)− ṽ(r0)|, |∂rvτ (r0)|; τ

)
sgn
(
∂rvτ (r0)

)
rm−1
0 φ(r0)

− τ
∫

[r0−ε,r0]

rm−1 d|Dsφ|(r) . (41)

From (39) we obtain that

|Dsφ|
(
[r0 − ε, r0]

)
= |Dφ|

(
[r0 − ε, r0]

)
≥ C := sup

{
|φ(r)| : r ∈ [r0 − ε, r0]

}
.

Using the relation (32) between gτ and the partial derivatives of f , the
inequality (41) therefore implies that

δφG(τ, ṽ; vτ ) ≤
∫ r0

r0−ε
|gτ (r)| |φ(r)|rm−1 dr +

(
τ − g2

τ (r0)
2

)
rm−1
0 |φ(r0)|

− Cτ(r0 − ε)m−1

≤ C
(√

2τ rm−1
0 ε+ τ

(
rm−1
0 − (r0 − ε)m−1

)
− rm−1

0

2
g2
τ (r0)

)
,

which becomes negative for sufficiently small ε. Thus the function vτ is abso-
lutely continuous on the interval (0, R).

Theorem 4 implies that vτ (r) = 0 for r > R. It therefore only remains to
show that vτ is continuous at the point R. So assume that limr→R− vτ (r) =
∆ 6= 0. Using the continuity of ṽ, we would then find some ε > 0 such that(
vτ (r) − ṽ(r)

)
sgn(∆) > 0 for all r ∈ (R − ε,R). The variational derivative in

the direction of φ = − sgn(∆)χ(R−ε,R) ∈ B̂Vc would then be

δφG(τ, ṽ; vτ ) = −
∫ R

R−ε
∂ξf
(
|vτ (r)− ṽ(r)|, |∂rvτ (r)|; τ

)
rm−1 dr

− τ
(
Rm−1 − (R− ε

)m−1) ,

which is negative and thus contradicts the minimality of vτ . �

These results now allow us to calculate the minimizer vτ by first solving the
differential equation (34) for the function gτ and then calculating vτ from the
differential equation gτ (r)∂rvτ (r) = vτ (r)− ṽ(r) on Ωτ . One remaining problem
in this approach is that the function gτ does not need to be continuous, though.
Therefore, the solution of the differential equation (34) depends on the position
of the discontinuities of gτ . The next section will thus be dedicated to the
behavior of this function.

7 Behavior of a Rotational Invariant Minimizer

Let again vτ ∈ B̂Vc be a minimizer of the functional G(τ, ṽ; ·), where we still
make the Assumption 9 for ṽ. To analyze the behavior of vτ ∈ B̂Vc, we will
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proceed as indicated at the end of the previous section, namely by investigating
the function gτ defined by (31).

We have seen in Lemma 10 that gτ is locally absolutely continuous on every
set where it is continuous. We therefore may solve the differential equation (34)
on every interval where we know gτ to be continuous.

As a first step, we have to derive estimates for the set of discontinuities of
gτ . Lemma 10 states that gτ sgn(vτ − ṽ) is continuous on the set where g2

τ 6= 2τ .
Therefore, gτ can only have discontinuities at points r ∈ (0, R) where either
g2
τ (r) = 2τ or vτ (r) = ṽ(r).

Lemma 12. Assume that I ⊂ [0, R] is an interval such that either vτ (r) ≥ ṽ(r)
for all r ∈ I or vτ (r) ≤ ṽ(r) for all r ∈ I. Then the set (Στ ∪ {0}) ∩ I consists
of at most one element.

Proof. We perform the proof in the case that ṽ(r) ≤ vτ (r) for all r ∈ I. The
other case can be proven analogously.

Since the minimizer vτ satisfies the Euler–Lagrange equation (36) and
∂ηf

(
|vτ (r0) − ṽ(r0)|, |∂rvτ (r0)|; τ) = 0 for r0 ∈ Στ , we see that the equation∫ r0

0

|gτ (r)|rm−1 sgn
(
vτ (r)− ṽ(r)

)
dr = 0 (42)

is a necessary condition for r0 to be contained in Στ ∪ {0}. By Item 4 in
Lemma 10, the function gτ (r) is not equal to zero and since vτ (r) = ṽ(r) is for
∂rvτ (r) 6= 0 only possible if gτ (r) = 0, we know that ṽ < vτ almost everywhere.

Thus, the integrand in (42) is positive almost everywhere on I. Therefore,
there exists at most one element r0 ∈ I for which (42) holds. �

Lemma 13. Assume that I ⊂ [0, R] is an interval such that ṽ is strictly mo-
notonous and absolutely continuous on I. Then there exists at most one point
r0 ∈ I with vτ (r0) = ṽ(r0).

Proof. Assume that r0 ∈ I satisfies vτ (r0) = ṽ(r0). We know from Lemma 12
that the set Στ is countable. Therefore, by the definition of the function gτ , the
minimizer vτ solves the initial value problem

gτ (r) ∂rvτ (r) = vτ (r)− ṽ(r) for almost every r ∈ I , and vτ (r0) = ṽ(r0) .

This differential equation can be solved explicitly, and we find

vτ (r) = ṽ(r)−
∫ r

r0

exp
(∫ r

s

1
gτ (y)

dy
)
∂rṽ(s) ds .

Since ṽ is strictly monotonous on I, this shows that vτ (r) 6= ṽ(r) for every
r ∈ I \ {r0}. �

Before we now analyze the behavior of the absolutely continuous parts of the
function gτ , we formulate a statement concerning the estimation of the solution
of an ordinary differential equation.

Lemma 14. Let ε > 0 and a < c < b ∈ R. Assume that F : (a, b) × R → R is
continuous and that y, z : (a, b)→ R are absolutely continuous functions with

∂ry(r) ≤ F
(
r, y(r)

)
− ε and ∂rz(r) ≥ F

(
r, z(r)

)
, for almost every r ∈ (a, b) .

17



If y(c) ≤ z(c), then y(r) ≤ z(r) for all r ∈ (c, b). Conversely, if y(c) ≥ z(c),
then y(r) ≥ z(r) for all r ∈ (a, c).

Proof. We first consider the case where y(c) ≤ z(c). Let us assume the existence
of r1 ∈ (c, b) such that y(r1) > z(r1) and define

r0 := max
{
r ∈ [c, r1] : y(r) ≤ z(r)

}
.

Then, in particular, y(r0) = z(r0) and y(r) > z(r) for every r ∈ (r0, r1].
Because of the continuity of the functions F , y, and z, there exists r2 > r0

such that

∂ry(r) ≤ F
(
r, y(r0)

)
− ε/2 ≤ ∂rz(r) for every r ∈ (r0, r2) .

Consequently, it follows that for every r ∈ (r0, r2)

y(r) = y(r0) +
∫ r

r0

∂ry(s) ds ≤ z(r0) +
∫ r

r0

∂rz(r) ds = z(r) ,

which contradicts our choice of the point r0. Therefore, y(r) ≤ z(r) for every
r ∈ (c, b).

In the case where y(c) ≥ z(c), we apply the first part of the assertion to the
functions ỹ(r) = −y(−r), z̃(r) = −z(−r), and F̃ (r, y) = F (−r,−y). �

With the help of Lemma 14, we will in the following construct upper and
lower bounds for the function gτ .

Lemma 15. For every r ∈ (0, R), we have
∣∣gτ (r)

∣∣ ≥ gτ,+(r), where gτ,+(r) is
defined as in (38).

In particular,∣∣gτ (r)
∣∣ ≥ (m− 1) τ

r + (m− 1)
√
τ/
√

2
for every r ∈ (0, R) . (43)

Proof. Since L1(Στ ) = 0 and (0, R) = Ωτ ∪ Στ , it follows from Lemma 10 that
gτ satisfies for almost all r ∈ (0, R) the differential equation

∂r
(
g2
τ

)
(r) = Fτ

(
r, gτ (r)

)
where Fτ (r, g) =

m− 1
r

(
2τ − g2

)
− 2g . (44)

We remark that (38) implies that Fτ (r, g) is negative for g ∈
(
gτ,+(r),

√
2τ
]

and
positive, in particular, for g ∈

(
−
√

2τ , gτ,+(r)
)
.

Let us now assume that gτ (r0) < gτ,+(r0) for some r0 ∈ (0, R). Since

∂r
(
g2
τ,+

)
(r) < 0 = Fτ

(
r, |gτ,+(r)|

)
and ∂r

(
g2
τ

)
(r) ≥ Fτ

(
r, |gτ (r)|

)
, (45)

we may apply Lemma 14 to find that |gτ (r)| ≤ gτ,+(r) for all r ∈ (0, r0). In
particular, the function |gτ | is monotonically increasing on (0, r0). This, together
with (45) and the monotonicity of Fτ with respect to the second component gives

∂r
(
g2
τ

)
(r) ≥ m− 1

r

(
2τ − g2

τ (r0)
)
− 2|gτ (r0)| > 0 for almost every r ∈ (0, r0) .

This inequality, however, would imply that limr→0 g
2
τ (r) = −∞, which is im-

possible. �
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Lemma 16. Assume that gτ is continuous on the interval [a, b] for some a,
b ∈ (0, R), and assume that gτ (a) < 0. Then b− a ≤

√
2τ − |gτ (a)|.

Proof. Since, by assumption, gτ is continuous on [a, b], and therefore absolutely
continuous by Lemma 10, the differential equation (34) simplifies to

∂rgτ (r) =
m− 1

2r gτ (r)
(
2τ − g2

τ (r)
)
− 1 for every r ∈ (a, b) . (46)

Since gτ (a) < 0 and, by Lemma 10, gτ (r) 6= 0 for all r ∈ (0, R), the continuity
of gτ on [a, b] implies that gτ (r) < 0 for all r ∈ [a, b]. Using that the right hand
side of (46) is smaller or equal −1 for gτ (r) < 0, it follows that

∂rgτ (r) ≤ −1 for every r ∈ (a, b) ,

and therefore

gτ (r) ≤ gτ (a)− r + a for every r ∈ (a, b) . (47)

Since gτ (r) ∈
(
−
√

2τ , 0
)

for every r ∈ [a, b] (which follows from (33) and the
fact that gτ (r) is negative), the inequality (47) gives b − a ≤

√
2τ + gτ (a) =√

2τ − |gτ (a)|. �

Lemma 17. Assume that gτ is continuous on the interval [a, b] for some a, b ∈
(0, R), and satisfies gτ (a) > 0. Moreover, for ε ∈ (0, 1) let

gτ,ε(r) :=
τ(m− 1)
r(1− ε)

for every r ∈ (0, R) . (48)

Then,
gτ (r) ≤ gτ,ε(r) for every r ∈

(
a+
√

2τ/ε, b
)
. (49)

Proof. On
Γτ :=

{
r ∈ (a, b) : gτ (r) ≥ gτ,ε(r)

}
,

the solution gτ of the differential equation (34) satisfies

∂rgτ (r) ≤ −ε− τ (m− 1)2

2r2 (1− ε)
≤ −ε for every r ∈ Γτ . (50)

Let (c, d) ⊂ Γτ , then by integration of (50) and using (33), which implies that
gτ (r) ∈

(
0,
√

2τ
]
, it follows that

0 < gτ (d) ≤ gτ (c)− ε(d− c) ≤ 2τ − ε(d− c) .

Therefore, an interval in Γτ can have at most length
√

2τ/ε.
We further remark that the function gτ,ε(r) satisfies

∂r(g2
τ,ε)(r) > Fτ

(
r, gτ,ε(r)

)
for every r ∈ (0, R) ,

where Fτ is defined as in (44). From (34) we know that ∂r(g2
τ )(r) = Fτ

(
r, gτ (r)

)
for almost every r ∈ (a, b). Lemma 14 therefore implies that gτ (r) ≤ gτ,ε(r) for
every r ∈ (r0, b) in case gτ (r0) ≤ gτ,ε(r0) holds for some r0 ∈ (a, b). �
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8 Proof of Theorem 7

If the initial function v0 : R≥0 → R is continuous and strictly monotonous on its
support [0, R], the results of Section 6 and 7 are sufficient to prove Theorem 7.

We define for τ > 0 the sequence by v(0)
τ = v0 and

v(k)
τ ∈ arg min

{
G(τ, v(k−1)

τ ; v) : v ∈ B̂Vc

}
, k ∈ N .

The goal is to show that limn→∞ v
(n)
t/n(r) = v0

(√
r2 + 2(m− 1)t

)
for every

(r, t) ∈ R2
>0. That is, it approximates the solution of the rotationally invariant

mean curvature equation (11).

Proof (of Theorem 7). Because of Lemma 11, the functions v(k)
τ , k ∈ N, τ > 0,

are absolutely continuous.
We now show by induction that for every τ > 0 all the functions v

(k)
τ

are strictly monotonous on [0, R]. Thus, let us assume that v(k−1)
τ is strictly

monotonous on [0, R].
Since v

(k−1)
τ (R) = v

(k)
τ (R) = 0, Lemma 13 applied to the interval [0, R]

implies that v(k)
τ (r) 6= v

(k−1)
τ (r) for every r ∈ [0, R). Since the functions v(k)

τ

and v
(k−1)
τ are continuous and pointwise different in (0, R), one of them has to

strictly lie above the other, i.e.,

sgn(v(k)
τ − v(k−1)

τ ) = constant . (51)

From Lemma 12 applied to the interval [0, R], it then follows that

Σk,τ := {r ∈ (0, R) :
∣∣v(k)
τ (r)− v(k−1)

τ (r)
∣∣ ≥ √2τ

∣∣∂rv(k)
τ (r)

∣∣} = ∅ .

Thus from Lemma 10 (where gτ is replaced by gk,τ ), we get that the function

gk,τ (r) :=
v

(k)
τ (r)− v(k−1)

τ (r)

∂rv
(k)
τ (r)

, r ∈ (0, R) , (52)

is continuous and different from zero. In particular, the last two properties
imply that gk,τ does not change sign in (0, R). Now, assume that gk,τ < 0 on
(0, R), then from Lemma 16, it follows that R ≤

√
2τ − lim supr→0|gk,τ (r)| = 0

by Lemma 15. Thus, we have gk,τ > 0 on (0, R).
Therefore, the function

r 7→ sgn
(
∂rv

(k)
τ (r)

)
= sgn

(
v(k)
τ (r)− v(k−1)

τ (r)
)

is constant and different from zero on (0, R) (cf. (51)). This shows that v(k)
τ is

strictly monotonous.
Moreover, the functions gτ,k, k ∈ N, are absolutely continuous on (0, R) and

solve the differential equation (34) which is independent of the functions vk,τ .
Therefore gτ,k = gτ where gτ denotes the absolutely continuous solution of (34).

For ε > 0 let r > rε,τ := m−1
2ε

√
2τ . Using the positivity of gτ and (43) and

(49) in Lemma 15 and Lemma 17, respectively, it follows that∣∣∣ τ

gτ (r)
− r

m− 1

∣∣∣ < r

m− 1
ε . (53)
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We define the strictly increasing function

Gε,τ : (0, R)→ R , Gε,τ (r) =
∫ r

rε,τ

τ

gτ (y)
dy .

From the defintion (52) of gk,τ , we find the initial value problem

∂rv
(k)
τ (r) =

1
gτ (r)

(
v(k)
τ (r)− v(k−1)

τ (r)
)
, v(k)

τ (R) = 0 ,

for the minimizer v(k)
τ . It follows by variation of constants that

v(k)
τ (r) =

∫ ∞
r

1
gτ (s)

exp
(
−
∫ s

r

1
gτ (y)

dy
)
v(k−1)
τ (s) ds .

Substituting therein s = G−1
ε,τ

(
wk +Gε,τ (r)

)
, we find

v(k)
τ (r) =

∫ ∞
0

1
τ

exp
(
−wk
τ

)
v(k−1)
τ

(
G−1
ε,τ

(
wk +Gε,τ (r)

))
dwk .

Using this formula iteratively, we finally get

v(k)
τ (r) =

∫
Rk>0

1
τk

exp
(
−1
τ

k∑
j=1

wj

)
v0

(
G−1
ε,τ

(∑k
j=1wj +Gε,τ (r)

)) k∏
j=1

dwj .

Substituting now z` =
∑`
j=1 wj , 1 ≤ ` ≤ k, and integrating out the variables z`

with ` < k, we are left with (setting z = zk)

v(k)
τ (r) =

∫ ∞
0

zk−1

τk(k − 1)!
exp
(
− z
τ

)
v0

(
G−1
ε,τ

(
z +Gε,τ (r)

))
dz .

Choosing τ = t/n and ε = 4
√
τ , it follows from (53) that

lim
n→∞

G−1
ε,τ

(
z +Gε,τ (r)

)
=
√

2(m− 1)z + r2

locally uniformly for (z, r) ∈ R>0×
(
0,∞

)
. Now we find with Stirling’s formula

lim
n→∞

n!
(n/e)n

√
2πn

= 1

that for every r ∈
(
rε,τ ,∞

)
lim
n→∞

v
(n)
t/n(r) = lim

n→∞

√
n

2π

∫ ∞
0

e−(n−1)(z−1−log z)e1−zv0

(√
2(m− 1)tz + r2

)
dz .

The function z − 1− log z in the exponent herein is now positive on R>0 \ {1}
and has the Taylor expansion

z − 1− log z =
(z − 1)2

2
+
∞∑
`=3

(1− z)`

`

around its minimum point 1. In the limit n → ∞, only the lowest order term
will contribute and so we can write

lim
n→∞

v
(n)
t/n(r) = lim

n→∞

√
n

2π

∫ ∞
0

e−(n−1)
(z−1)2

2 e1−zv0

(√
2(m− 1)tz + r2

)
dz .
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Because the functions
√

n
2π e−(n−1)

(z−1)2

2 converge for n→∞ to the δ-distribu-
tion at the point 1, it follows that

lim
n→∞

v
(n)
t/n(r) = v0

(√
2(m− 1)t+ r2

)
.

This completes the proof. �

9 Conclusion

We have introduced a concept of gradient flows generated by non-convex en-
ergy terms and distance measures. As in standard semi-group theory, the flow
is defined by iterative minimization of a functional composed by the distance
measure and the scaled energy. Since the existence of minimizers, however,
is strongly related to convexity, it is necessary to use generalized minimizers
instead, which are defined by relaxation.

The main motivation for considering non-convex flows are geometric PDEs,
which cannot be treated by a standard semi-group theory. We have shown
that our theory applies to mean curvature motion with special initial data.
From the calculations in this paper it seems that the identity also holds for
more complex rotationally invariant data; however, the identity could not be
established rigorously. We have demonstrated that our notion of solution can
serve as a solution concept of the mean curvature motion for arbitrary integrable
initial data, for which, up to now, no solution concept exists.
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