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Abstract

We present a convex regularization of the local volatility surface identification problem

in the Black-Scholes model for prices of European call options. Based on the prop-

erties of the parameter-to-solution mapping, which assigns option prices to given

volatilities, we show stability and convergence of the regularized solutions in terms

of the Bregman distance with respect to a convex regularization functional.

We improve convergence rates available in the literature for the volatility iden-

tification problem. Furthermore, we connect convex regularization functionals with

convex risk measures through Fenchel conjugation. Finally, in the present context,

we relate convex regularization with the notion of exponential families in Statistics.
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1 Introduction

In financial markets a number of contracts are negotiated in such a way that their values

are derived from other underlying assets or equities. Such derivative contracts play a

fundamental role in risk management and corporate strategies. Their presence became so

widespread that currently, the volume of many derivative markets surpasses the value of

the corresponding underlying markets.

The development of mathematical methods for pricing derivatives has been a major

reason for the expansion of derivative markets. Such theoretical achievement was recog-

nized by the Nobel prize in Economics award to R. Merton and M. Scholes. The corre-

sponding methods involve the solution of the Black-Scholes partial differential equation,

which in turn depends on the risk-free interest rate prevalent in the market, the dividend

rate, and the volatility of the underlying asset. There are many models to describe the

volatility. Among those, one that is very popular with practitioners is to assume that such

volatilities are functions of the form σ = σ(t, S), where t is the time and S is the asset

price. It is usually referred to as Dupire’s local volatility model [1] and σ is called the

volatility surface.

This paper is concerned with theoretical aspects of the practical problem of determining

the volatility from market observed prices of European call options. This is a nonlinear

ill-posed problem whose solution calls for regularization techniques. We propose Tikhonov

regularization by means of a convex regularizing functional as an extension to the quadratic

regularization that has been used previously in the inverse problem literature [2, 3, 4].

We address the regularization problem from the perspective of convex analysis methods

and Bregman distances. On the theoretical side, our result is that this yields better conver-

gence rates and allows for convergence in spaces different from those in the quadratic

regularization setting. In fact, in some cases, the convergence of certain convex regulariza-

tion expressions implies convergence in the L1-norm. Besides those results, our approach

connects with central topics in different areas of current research. Such topics include expo-

nential families of probability distributions, which is an important subject in Statistics,

and convex risk measures in Risk Management and Quantitative Finance [5, 6].

The connection between Bregman distances and exponential families is well established

in some contexts [7, 8], albeit in the present context our motivation in Section 5 is heuristic.

From the financial intuition, it can be understood as follows: Each volatility surface leads

to a corresponding risk neutral measure whose expectation of the payoff are the observed

derivative prices. Thus, if we are given the problem of inferring the volatility surface
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from market observed option prices, the use of Bregman distances leads to the choice of

certain exponential families of probability distributions. The latter, can be thought of as

optimal (in an appropriate sense) a posteriori distributions for the class of models under

consideration. Indeed, under some circumstances, exponential families are connected to

minimal entropy measures. This hints to yet another connection with the now classical

work developed by Avellaneda et al. See [9] and references therein. The passage of the

regularized volatility to the market probability measures allows us to also connect the

results to convex risk measures. In fact, in Section 4, we exhibit procedures to produce

such risk measures which depend on the regularization functional. This in turn relates to

Malliavin calculus results and the determination of the so-called greeks of option prices

[10].

The Setting and the Inverse Problem: We consider a complete financial market,

where cash can be borrowed at a constant interest rate r, and a risky stock of value

S = S(t) that yields a continuously compounded dividend at a constant rate q, satisfying

the diffusion price process

dS(t) = S(t)(ν(t, S(t))dt+ σ(t, S(t))dW (t)) , t > 0 , S(0) = S0 , (1)

where W (t) denotes the standard Wiener process [11]. The parameters ν and σ are called

drift rate and the volatility of the underlying asset, respectively.

A European call option with maturity date T and strike K, on the underlying asset S,

consists of the right, but not the obligation, to buy, at a price K, a unit of S at time T .

In the context of complete and arbitrage-free markets, the theoretical fair price, for the

European call on S, has the probabilistic representation

U(0, S0;T,K, r, q, σ2) = exp(−rT )E0,S0

Q (S(T )−K)+ , (2)

where E0,S0

Q is the expected value with respect to the risk-neutral probability measure Q
given that, at t = 0, we have S(0) = S0. Here, as usual, we define

(S −K)+ := max{S −K, 0} .

The interpretation of Equation (2) is that for each realization ω of the market, the payoff

(S(T, ω) − K)+ should be brought to its present value e−rT (S(T, ω) − K)+ by means of

discounting by the interest rate r. Then, we average over all the possible realizations with
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respect to the risk neutral measure Q. The risk neutral measure differs from the so-called

subjective one in the sense that it is the one for which the discounted process S(t)/ert is a

martingale. For more details see [12].

In this framework the fair price for an European call option is given by the solution to

the Black-Scholes equation [13]

Ut +
1

2
σ2(t, S)S2USS + (r − q)SUS − rU = 0 , t < T , (3)

with final condition

U(t = T, S) = (S −K)+ . (4)

An important consequence of the Black-Scholes-Merton theory is that the drift rate ν in

Equation (1) does not enter into (3). Indeed, this is at the root of the concept of the

risk-neutral measure Q.

In the case where σ is a deterministic function of time only, explicit formulas for the

price U are well known. See the seminal paper [13]. In this context, a careful analysis of

the theoretical volatility calibration problem was carried out in [14, 15].

We note that the option price U depends also on the maturity T and strike K. It

satisfies the, by now classical, Dupire forward equation [1]

− UT +
1

2
σ2(T,K)K2UKK − (r − q)KUK − qU = 0 , T > 0 , (5)

with the initial value

U(T = 0, K) = (S0 −K)+, for K > 0 . (6)

Dupire’s equation is the starting point of our inverse problem analysis. As usual, the divi-

dend and interest rates are known during the option life. However, the crucial parameter

in the initial value problem determined by (5) and (6) is the volatility.

Thus, the nonlinear inverse problem of option pricing under consideration is the identi-

fication (or calibration) of a local volatility surface σ(T,K) by observations of the solutions

U(t, S;T,K, r, q, σ) = U t,S
∗ (T,K) (7)

of (5) and (6) to match quoted market prices U t,S
∗ (T,K). Each observation is linked to the

solution of (5) and (6) with different values of T and K.
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Organization of the Article: In Section 2 we define and review some facts about

the inverse problem under consideration as well as the Tikhonov regularization theory

with convex regularization functionals. Properties of the forward operator that guarantee

the well-posedness and regularization analysis of the proposed Tikhonov functional for

the inverse problem under consideration are described at Section 3. Subsection 3.1 is

dedicated to the analysis of the source condition assumptions needed to obtain convergence

rates. Subsection 3.2 describes the assumption on the regularizing functional such that the

convergence rates previously developed are satisfied. In Section 4, we relate the convex

penalization on the Tikhonov functional and the respective source condition with convex

risk measures. In Section 5 we motivate the general regularization theory with convex

penalization by making use of a statistical point of view. We conclude in Section 6 with

some final comments and directions for further investigations.

2 Convex regularization for calibration

We start our analysis by reformulating the inverse problem in more convenient variables.

More precisely, we perform the usual change of variables

K = S0e
y , τ = T − t , b = q − r , u(τ, y) = eqτU t,S(T,K) (8)

and

a(τ, y) =
1

2
σ2(T − τ ;S0e

y) , (9)

in (5) and (6). This yields the Dupire equation with forward variables (τ, y)

− uτ + a(τ, y)(uyy − uy) + buy = 0 (10)

and initial condition

u(0, y) = S0(1− ey)+ (11)

Existence and uniqueness results for the solution of the parabolic equation (10) and (11)

in Sobolev spaces can be found in [2, 4, 16].

Volatility calibration in extended Black - Scholes models has been investigated by many

authors. See [17, 18, 9, 19, 2, 4, 20, 15] as some references. The stable identification of

local volatility surfaces in the Black - Scholes equation from market prices using standard

Tikhonov regularization with ‖·‖2
H1(Ω) penalization was investigated by Crépey [2] and
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later by Egger & Engl [4]. In [15] the inverse problem of identification of a time-dependent

volatility function of a European call option with a fixed strike K > 0 was considered. In

[20], Hofmann et al. analyzed the same financial problem of [15] with general source condi-

tions for the regularization functional f(·) = ‖·‖2
L2(0,T ). In [2, 4, 20, 15], the ill-posedness of

the inverse problem is proved, convergence and convergence rates of a regularized solution

are derived.

The idea of convex regularization for inverse problems has been suggested by different

authors. An early reference on Bregman distance regularization is [21]. See also [22, 20, 23]

and references therein.

In the initial part of this work, we consider the following admissible class of calibration

parameters:

Definition 1. Let 0 ≤ ε be fixed. We denote by U := H1+ε(Ω) with the standard H1+ε–

inner product 〈·, ·〉.
Moreover, let a > a > 0 and let a0 be a function defined on Ω = (0, T )×R that satisfies

a ≤ a0 ≤ a with ∇a0 ∈ (L2(Ω))2. We define the admissible parameter class by

D(F ) := {a ∈ a0 + U : a ≤ a ≤ a}. (12)

We emphasize that by definition D(F ) is a convex set.

We apply convex regularization as discussed in [22, 20, 23] to solve the ill-posed operator

equation

F (a) = u(a), (13)

where F : D(F ) ⊂ U → V is the parameter-to-solution operator between Hilbert spaces

U and V := L2(Ω). Here u(a) is the solution of (10) and (11).

The novelty of the present article vis-a-vis [2, 4, 20, 15] is that we consider a regulariza-

tion method for solving the calibration problem for a general class of convex functionals f .

For given convex f the proposed methods consists in minimizing the Tikhonov functional

Fβ,uδ(a) := ||F (a)− uδ||2L2(Ω) + βf(a) (14)

over D(F ), where, β > 0 is the regularization parameter.

In this paper we only make the following assumptions on f :

Assumption 2. Let ε ≥ 0 be fixed. f : D(f) ⊂ U −→ [0,∞] is a convex, proper and

sequentially weakly lower semi-continuous functional with domain D(f) containing D(F ).
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In practical situations, the price U t,S(T,K) is only known for a discrete set of maturities

and strikes. Since we are interested in continuous observations of the price U t,S(T,K), this

leads to an interpolation or an approximation that introduces noisy data uδ, whose level δ

is assumed to be known a priori and satisfies the inequality

||ū− uδ||L2(Ω) ≤ δ , (15)

where ū is the data associated to the actual value â ∈ D(F ).

An important tool in the studies of Tikhonov type regularization [22, 20, 24, 23] is the

Bregman distance with respect to f .

Definition 3. Let f as in Assumption 2. For given a ∈ D(f), let ∂f(a) ⊂ U denote the

subdifferential of the functional f at a, which we define and denote by

D(∂f) = {ã : ∂f(ã) 6= ∅}

the domain of the subdifferential [25]. The Bregman distance with respect to ζ ∈ ∂f(a1) is

defined on D(f)×D(∂f) by

Dζ(a2, a1) = f(a2)− f(a1)− 〈ζ, a2 − a1〉 .

Concerning the definition of the subdifferential and the Bregman distance, we emphasize

that the subdifferential is a subset of the dual of U . However, in Hilbert spaces there exists

an isomorphism between the space U and its dual U∗. This justifies Definition 3 where

∂f(a) is considered a subset of U and the Bregman distance, which is considered with

respect to the U -inner product.

Notation 4. Throughout this paper we use the following notation: I ⊂ R denotes an open

(possibly unbounded) interval and 1 ≤ p <∞. We assume that T > 0 and use the notation

Ω := (0, T )× I. Moreover, W 1,2
p (Ω) denotes the space of functions u(·, ·) satisfying

||u||W 1,2
p (Ω) := ||u||Lp(Ω) + ||ut||Lp(Ω) + ||uy||Lp(Ω) + ||uyy||Lp(Ω) <∞ .

We now summarize the convergence-rate results to the proposed problem available in

the literature. In all the examples, the regularization parameter is chosen by β = β(δ) ∼ δ.

(i) Egger and Engl [4] applied the standard results for nonlinear Tikhonov regularization
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in a Hilbert space setting, and obtained convergence rates of

∥∥aδβ − a†∥∥ = O(
√
δ) and

∥∥F (aδβ)− uδ
∥∥ = O(δ) (16)

to aδβ, a
† ∈ D(F ) ⊂ H1(Ω) under the assumption of the source condition

a0 − a† = F ′(a†)∗w

with ‖w‖ sufficiently small. Moreover, the above convergence rates are proved for

time-independent volatilities in a more regular set and with a variational source

condition. See [4, Theorem 4.1].

(ii) Focusing on the time dependent case only, Hofmann and Krämer [15] studied the

maximum entropy regularization functional f(·) in the setting of D(F ) ⊂ L1[0, T ]

and data in L2[0, T ]. Under the source condition log(a†/â) = F ′(a†)∗w, the rates of

‖aδβ − a†‖L1[0,T ] = O(
√
δ) (17)

were obtained assuming the nonlinear estimate

‖F (a)− F (a†)− F ′(a− a†)‖L2[0,T ] ≤ C‖a− a†‖L1[0,T ]. (18)

We will return to maximum entropy regularization in Section 5 and, more generally,

to Bregman distance regularization in Section 3.2.

(iii) Hofmann et al. [20] improved the convergence rates of [15] for the regularization

functional f(·) = ‖ · ‖L2[0,T ]. We note that in [20, 15] the volatility parameter is

considered to be time-dependent only.

One of the goals of the present work is to generalize the above mentioned convergence

rate results for local volatility estimation by using recent abstract convergence results for

Tikhonov regularization [26]. Thus, we make the following abstract assumptions:

Assumption 5.

1. The Banach spaces U and V are endowed with topologies τU and τV that are weaker

than the norm topologies. In our context, we later take U = H1+ε(Ω), V = L2(Ω),

and endow those spaces with their weak topologies.
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2. The norm ‖·‖V is sequentially lower semi-continuous with respect to τV . In our case

V is a Hilbert space and thus the assumption holds.

3. The functional f : D(f) ⊆ U → [0,∞] is convex and sequentially lower semi-

continuous with respect to τU and D := D(F ) ∩ D(f) 6= ∅. In the context of this

paper we have D(F ) 6= ∅ and D(F ) ⊆ D(f) and thus the assumption is satisfied.

4. Let Fβ,ū the Tikhonov functional defined in (14). Then,

Mβ(M) := levelM(Fβ,ū) = {a : Fβ,ū(a) ≤M}

is sequentially pre-compact and closed with respect to τU . The restrictions of F to

Mβ(M) are sequentially continuous with respect to the topologies τU and τV .

The first three conditions of Assumption 5 are satisfied for our particular problem. In

Section 3 we shall analyze the last condition of Assumption 5. The general result of [26]

then implies well-posedness, stability, convergence. These results are summarized below.

Theorem 6 (Existence, Stability, Convergence). Suppose that F , f , D, U , and V satisfy

Assumption 5. Furthermore, assume that β > 0 and uδ ∈ V . Then, we have that

• There exists a minimizer of Fβ,uδ .

• If (uk) is a sequence converging to u in V with respect to the norm topology, then

every sequence (ak) with

ak ∈ argmin
{
Fβ,uk(a) : a ∈ D

}
has a subsequence which converges with respect to τU . The limit of every τU -convergent

subsequence (ak′) of (ak) is a minimizer ã of Fβ,u, and
(
f(ak′)

)
converges to f(ã).

• If there exists a solution of (13) in D, then there exists an f -minimizing solution of

(13).

• Assume that (13) has a solution in D (which implies the existence of an f -minimizing

solution) and that β : (0,∞)→ (0,∞) satisfies

β(δ)→ 0 and
δ2

β(δ)
→ 0 , as δ → 0 . (19)
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Moreover, assume that the sequence (δk) converges to 0, and that uk := uδk satisfies

‖ū− uk‖ ≤ δk.

Set βk := β(δk). Then, every sequence (ak) of elements minimizing Fβk,uk , has a

subsequence (ak′) that converges with respect to τU . The limit a† of any τU conver-

gent subsequence (ak′) is an f -minimizing solution of (13), and f(ak) → f(a†). In

addition, if the f -minimizing solution a† is unique, then ak → a† with respect to τU .

Convergence rate results will be based on the following theorem which requires further

assumptions.

Assumption 7. Besides Assumption 5, we assume that

1. There exists an f -minimizing solution a† of (13), which is an element of the Bregman

domain DB(f).

2. There exist β1 ∈ [0, 1), β2 ≥ 0, and ζ† ∈ ∂f(a†) such that

〈ζ†, a† − a〉 ≤ β1Dζ†(a, a
†) + β2

∥∥F (a)− F (a†)
∥∥
V
, (20)

for a ∈Mβmax(ρ), where βmax, ρ > 0 satisfy the relation ρ > βmaxf(a†).

Under this assumption we have the following:

Theorem 8 (Convergence rates [26]). Let F , f , D, U , and V satisfy Assumption 7.

Moreover, let β : (0,∞)→ (0,∞) satisfy β(δ) ∼ δ. Then

Dζ†(a
δ
β, a

†) = O(δ) ,
∥∥F (aδβ)− uδ

∥∥
V

= O(δ) ,

and there exists c > 0, such that f(aδβ) ≤ f(a†) + δ/c for every δ with β(δ) ≤ βmax.

The following proposition reveals that the technical conditions in Assumption 5 can be

obtained from rather classical ones:

Proposition 9. Let F , f , D, U , and V satisfy Assumption 5. Assume that there exists

an f -minimizing solution a† of (13), and that F is Gâteaux differentiable at a†.

Moreover, assume that there exist γ ≥ 0 and ω† ∈ V ∗ with γ
∥∥ω†∥∥ < 1, such that

ζ† := F ′(a†)∗ω† ∈ ∂f(a†) (21)



Convex Regularization of Local Volatility Models. 11

and there exists βmax > 0 satisfying ρ > βmaxf(a†) such that

∥∥F (a)− F (a†)− F ′(a†)(a− a†)
∥∥ ≤ γ Dζ†(a, a

†) , for a ∈Mβmax(ρ) . (22)

Then, Assumption 7 holds.

We emphasize that U = H1+ε(Ω) is a Hilbert space and thus we can use the inner

product on U and the adjoint operator F ′(a†) instead of the duality pairing of F ′(a†),

F ′(a†)#, respectively, as in [26].

The next section is devoted to verifying the assumptions of the previous results. In

particular, well-posedness, stability, and convergence require the verification of Item 4 of

Assumption 5. The convergence rates, in particular, require us to investigate (20), or

alternatively (21) and (22), respectively.

3 Properties of the forward operator and ill-posedness

of the inverse problem

In this section we verify Item 4 of Assumption 5. This allows us to apply the Theorem 6 in

order to guarantee well-posedness, stability, and convergence of the regularized solutions

of the Tikhonov functional (14). We use the following definition of compactness:

Definition 10. F : D(F ) ⊂ U → V is compact if for every bounded sequence (xk) in D(F )

(F (xk)) has a convergent subsequence.

In particular the composition of a compact linear operator and a sequentially continuous

non-linear operator is compact.

Theorem 11. Let ε ≥ 0. Then F : D(F ) ⊂ U → V is continuous and compact. Moreover,

F is sequentially weakly continuous and weakly closed.

Proof. The proof follows from [4, Theorem 2.1] or [2, Proposition 4.4 and 5.1], where it is

proven that F : D(F ) ⊂ U → W 1,2
p (Ω) satisfies the property for all 2 ≤ p < p̄ with an

appropriate p̄ > 2. The result then follows by using that the embedding from W 1,2
p (Ω) into

L2(Ω) is bounded.

The compactness and weak closedness of the operator F , concluded in Theorem 11,

imply the local ill-posedness of the inverse problem of identification of the local volatility



Convex Regularization of Local Volatility Models. 12

surface σ(T,K). In fact, for any U -bounded sequence {an}n∈N in D(F ), that has no

strong convergent subsequences, we can extract an U -weakly-convergent subsequence, say

{ank}k∈N. Since D(F ) is weakly closed with respect to the H1-norm, the weak limit of

{ank}k∈N belongs to D(F ). Thus, since F is compact, {F (ank)} has a convergent subse-

quence. So, similar option prices may correspond to completely different volatilities.

Remark 12. Theorem 11 and the continuity of the embedding of W 1,2
p (Ω) in L2(Ω) ensures

that Item 4 of Assumption 5 holds. Therefore, Theorem 6 is applicable for the functional

Fβ,uδ defined in (14).

By one-sided directional derivative we mean the following:

Definition 13. Let F : D(F ) ⊂ U → V be an operator between U and V .

1. The operator F admits a one-sided directional derivative F ′(a;h) ∈ V at a ∈ D(F )

in the direction h ∈ U , if a+ th ∈ D(F ) and

F ′(a;h) = lim
t→0+

F (a+ th)− F (a)

t
. (23)

2. If F ′(a;h) is a bounded linear operator with respect to h, we shall write F ′(a;h) :=

F ′(a)h.

The next lemma guarantees the existence of the one-sided directional derivative of F

for a ∈ D(F ) in the directions h such that a+ h ∈ D(F ).

Lemma 14. Assume that ε ≥ 0 and consider the operator of Theorem 11 with D(F ) ⊂
H1+ε. Then, F is differentiable at a ∈ D(F ) in the direction h such that a + h ∈ D(F ).

The derivative F ′(a) is extendable to a bounded linear operator on U . Moreover, F ′(a)

satisfies the Lipschitz condition

‖F ′(a)− F ′(a+ h)‖L(H1+ε;L2(Ω)) ≤ c‖h‖U , (24)

for a+ h ∈ D(F ).

Proof. Let a ∈ D(F ) and the direction h ∈ U be such that a + h ∈ D(F ). For simplicity

of exposition, let us assume that b = 0 in (10) and (11). By the linearity of equation (10)

the directional derivative u′ · h in the direction h satisfies

−(u′ · h)τ + a((u′ · h)yy − (u′ · h)y) = −h(uyy − uy) (25)
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with homogeneous initial conditions. From [4, Proposition A.1] there exists a single solution

u′ · h ∈ W 1,2
p (Ω) of (25), for 2 ≤ p < p̄.

Using regularities estimates to parabolic problems (see for example [27]) we have

‖u′ · h‖W 1,2
p (Ω) ≤ c‖h(uyy − uy)‖Lp(Ω) (26)

≤ c‖h‖Lp2 (Ω)‖(uyy − uy)‖Lp1 (Ω) ,

where p1 ∈ (p, p̄) and p2 satisfies 1/p = 1/p1 + 1/p2. Note that, p2 = p1p
p1−p . From [4,

Corollary A.1] it follows that ‖uyy − uy‖Lp1 (Ω) ≤ C for all a ∈ D(F ). Moreover, from the

Sobolev Embedding Theorem [28, Theorem 4.12, case B, pg 85] it follows that there exists

a constant c > 0 such that ‖h‖Lp2 (Ω) ≤ c‖h‖U , for all h ∈ U . From (26)

‖u′ · h‖W 1,2
p (Ω) ≤ C‖h‖U . (27)

Thus, the derivative u′(a) = F ′(a) can be extended as a bounded linear operator to U . The

next step is to obtain the Lipschitz condition (24). To do this, denote by ũ(ã) the solution

of (10) and (11) with a replaced by ã = a+h and h ∈ U . Setting v := (F ′(ã)−F ′(a)) · q =

(ũ′ − u′) · q with q ∈ U . Then, from the linearity of (10), v is a solution of

(v)τ + a((v)y − (v)yy)

=q((ũ− u)yy − (ũ− u)y) + (ã− a)((ũ′ · q)yy − (ũ′ · q)y) .

Using an estimates analogous to (27) we find

‖v‖W 1,2
p (Ω) ≤ (c̃‖q‖U‖ũ− u‖W 1,2

p̄ (Ω) + c̄‖ã− a‖U‖ũ′ · q‖W 1,2
p̄ (Ω))

≤ C‖q‖U‖ã− a‖U .

Taking the sup over all q ∈ U satisfying ‖q‖U ≤ 1, on both sides of the above inequalities

we have the Lipschitz condition (24).

As observed in [4, Remark 4.1], D(F ) has no interior points when equipped with the

H1(Ω) norm. Because of that, F ′(a) is not necessarily differentiable in every direction

h ∈ H1(Ω). In other words, F ′(a) is not Gateaux differentiable. This will not affect the

convergence analysis that follows. In fact, for such analysis we only need that the operator

F attains a one-sided directional derivative at a† in the directions a− a† for all a ∈ D(F ).

The sufficient condition for this to happen is D(F ) to be starlike with respect to a†. That
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is, for every a ∈ D(F ) there exists t0 > 0 such that

a† + t(a− a†) = ta+ (1− t)a† ∈ D(F ) ∀0 ≤ t ≤ t0 .

As D(F ) is convex, the requirement above follows. Moreover, the bounded linear operator

F ′(a†) has properties that mimic the Gâteaux derivative.

In particular, there exists an adjoint operator

F ′(a†)∗ : V −→ U

defined by

〈F ′(a†)∗v, a〉L2 = 〈v, F ′(a†)a〉H1+ε , a ∈ U , v ∈ V .

We emphasize that Theorem 11 holds true if we restrict our attention to

D(F ) := {a ∈ a0 + U : a ≤ a ≤ a}. (28)

and a convex, weakly lower semi-continuous functional f on U with D(F ) ⊆ D(f). More-

over, for ε > 0, by the Sobolev embedding theorem, each function of D(F ) ⊂ U is an

interior point, for which Fréchet-differentiability holds, as Lemma 14 shows.

Using this assumption we are able to characterize the sets R(F ′(a†)) and R(F ′(a†)∗)

as L2(Ω) subsets.

Lemma 15. Let ε > 0. For a ∈ D(F ) the Frèchet derivative of F is injective.

Proof. Let h ∈ N (F ′(a)) ⊂ U . Because of equation (25) we have that

h · (uyy − uy) = 0 , (29)

where u is the solution of (10) and (11). However, G(τ, y) = (uyy−uy) is the distributional

solution of the initial value problem

∂τG(τ, y) =
1

2
(∂2
yy − ∂y)(a(t, y)G(τ, y)) + bG(τ, y) (30)

G(0, y) = δ(y) ,

where δ(y) is the Dirac’s delta. In others words, G(τ, y) is the Green’s function of the

Cauchy problem (30). Hence, G(τ, y) > 0 for every y and τ > 0 (See [16, Theorem 9.3.1

pg 271]). Thus, it follows from (29) that h = 0 a.e.
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Lemma 16. The operator F ′(a†)∗ has a trivial kernel.

Proof. As before, we take b = 0 for simplicity. Denote by

Lu := −∂τ + a(∂yy − ∂y)

and by Guyy−uy , the parabolic partial differential operator on the left hand side of Equa-

tion (25) with homogeneous boundary condition and the multiplication operator by the

function uyy − uy, respectively. Hence, the solution of (25) has a functional form u′(a) :=

F ′(a) =
(
Lu
)−1

Guyy−uy , where by
(
Lu
)−1

we mean the left-inverse of the operator Lu with

vanishing boundary and initial conditions.

From the definition of F ′(a†)∗ : V −→ U , we have

〈F ′(a†)h, z〉V = 〈h, ϕ〉U , ∀h ∈ U , ∀z ∈ V

and F ′(a†)∗z = ϕ. Now, let z ∈ N (F ′(a†)∗). Then,

0 = 〈F ′(a†)h, z〉V = 〈
(
Lu
)−1

Guyy−uyh, z〉V = 〈Guyy−uyh,
((
Lu
)−1)∗

z〉V

= 〈Guyy−uyh, g〉V =

∫
Ω

(uyy − uy)h g dτ dy ∀h ∈ U .

where g is a solution of the adjoint equation

gτ + (a†g)yy + (a†g)y = z ,

with homogeneous final and boundary conditions. Since z ∈ V = L2(Ω), g ∈ U . See [27].

In particular ∫
Ω

(uyy − uy)h gdτ dy = 0 ,

holds true for h = g. Since Guyy−uy > 0 (see the end of the proof of Lemma 15) it follows

that g = 0. Consequently, z = 0 and N (F ′(a†)∗) = {0}.

Remark 17. The range of F ′(a†)∗ is dense in U . Indeed,

U = R(F ′(a†)∗)
H1+ε

⊕N (F (a†))

and the claim follows from Lemma 15.
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3.1 Attainment of source conditions

The convergence result of Theorem 8 is directly connected to the existence of a source

function w that satisfies the source condition (21).

Theorem 18. Let ε > 0. Assume that â ∈ D(F ) ⊂ U is a minimizer of (14) with uδ

substituted by ũ. Then, there exists w̃ := λ(ũ− F (â)) such that

ζ = λF ′(â)∗w̃ ∈ ∂f(â)

In particular, if â = a†, then (21) holds.

Proof. The existence of F ′(â) follows from Lemma 14. Since â is a minimizer of (14), we

must have that [25]

0 ∈ ∂(‖F (â)− ũ‖2
L2(Ω) + βf(â)) ⊂ ∂(‖F (â)− ũ‖2

L2(Ω)) + β∂f(â)) . (31)

Then, if we set λ =: 2/β, it follows from (31) that

λF ′(â)∗(ũ− F (â)) ∈ ∂f(â) . (32)

It turns out that, for the specific problem under consideration, we are not able to

characterize the source condition (21). However, we can guarantee (20). See section 3.2.

The first step in order to guarantee (20) is the following simple Lemma:

Lemma 19. Let ζ† ∈ ∂f(a†). Then, there exists a function w† ∈ V and a function r ∈ U
such that

ζ† = F ′(a†)∗w† + r (33)

holds. Furthermore, ‖r‖U can to be taken arbitrarily small.

Proof. Indeed, Lemma 15 implies that R(F ′(a†)∗) is dense in U .

3.2 Convergence rates

In this subsection we exhibit a class of functionals such that we are able to prove that

condition (20) holds provided the variational source condition (33) is satisfied. For that
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we shall make use of the following concept:

Definition 20. Let 1 ≤ q <∞ and Ũ be a subset of U . The Bregman distance Dζ(·, ã) of

f : U → R∪{+∞} at ã ∈ DB(f) and ζ ∈ ∂f is said to be q-coercive with constant c > 0 if

Dζ(a, ã) ≥ c‖a− ã‖q
Ũ

, ∀a ∈ D(f). (34)

In the next lemma we prove that the existence of an approximated source condition as

(33) and f satisfying Definition 20 is sufficient for convergence rates:

Lemma 21. Let ζ† ∈ ∂f(a†) satisfy (33) with w† and r such that

c
(
C‖w†‖V + ‖r‖L2(Ω)

)
:= β1 ∈ [0, 1),

and the Bregman distance with respect to f is 1 − coercive with Ũ := U . Then, equation

(20) holds. In particular, the convergence rates of Theorem 8 hold.

Proof. Using the continuously Sobolev embedding theorem [28], Equations (33) and (27),

we have that

|〈ζ†, a− a†〉| ≤ |〈ζ† − r, a− a†〉+ 〈r, a− a†〉|

≤ |〈w†, F ′(a†)(a− a†)〉|+ ‖r‖U ‖a− a†‖U
≤ ‖w†‖V ‖F ′(a†)(a− a†)‖V + ‖r‖U ‖a− a†‖U
≤
(
C‖w†‖V + ‖r‖U

)
‖a− a†‖U .

From the assumption that f satisfies Definition 20 and the definition of β1 we have

|〈ζ†, a− a†〉| ≤
(
C‖w†‖V + ‖r‖U

)
‖a− a†‖U

≤ β1Dζ†(a, a
†) ≤ β1Dζ†(a, a

†) + β2

∥∥F (a)− F (a†)
∥∥
V
.

The convergence rates now follow from Theorem 8.

Under the assumption of Lemma 21 if in addition f is q-coercive a convergence rate in

the norm holds: ∥∥aδβ − a†∥∥U ≤ Dζ†(a
δ
β, a

†) = O(δ) . (35)

In the sequel we present possible choices for q-coercive Bregman distance.
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Example 22 (q-coercive Bregman distance). Let Ũ be a Hilbert space and D(f) ⊂ Ũ and

f(a) := q−1
∥∥a− a†∥∥q

Ũ
. Then, the Bregman distance associated to f is q-coercive. See [29]

and references in there.

Example 23. Let 1 < q ≤ 2 and ε > 0. We consider the functional

f(a) =
∞∑
n=1

| < a, φn > |q ,

where {φn} is an orthonormal basis in H1+ε(Ω). The functional is convex, proper and

sequentially weakly lower semi-continuous. Moreover, the Bregman distance of the func-

tional f satisfies

f(a)− f(a†)− 〈∂f(a†), a− a†〉 ≥ C
∞∑
n=1

|〈a− a†, φn〉|2 = C‖a− a†‖2
U .

Hence, f is 2-coercive. Therefore, according to Lemma 21 and equation (35) the rate of

O(δ) holds for the H1+ε-norm.

This method is usually considered in the case of sparsity regularization [30]. The case

p = 1, which refers to the original sparsity regularization is not taken into account here,

since we aim at convergence rates in the Hilbert space norm.

4 Relation with convex risk measures

In this section we relate the convex regularization functional f and the recently developed

theory of coherent (convex) risk measures [5, 31, 32, 33] by assuming that the source

condition in (21) is satisfied.

In financial practice, a number of ways have been proposed to assess the risk of a given

portfolio or investment choice [6]. Perhaps the most well-known is the so-called value at

risk (VaR). It is defined as follows: For a given portfolio, probability level and time period,

the VaR is defined as the threshold value such that the probability of loss on the portfolio

over the given time period exceeds this value is the given probability level. A minute’s

thought indicates that the higher the VaR the higher the risk, and, in principle, the more

undesirable such investment would be. It turns out that the VaR has a serious pitfall,

namely, it does not encourage diversification. This is related to the fact that it is not in

general a convex function of the portfolio choice.
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Several authors have developed a theory of desirable properties for risk measures. See

[6] and references therein. One of the most popular is the concept of a convex risk measure.

It represents a quantitative assessment of the risk involved by the investor’s preference on

a financial position. Usually a position is described by the resulting discounted net worth

at the end of a given period. Thus, it is represented by a random variable in a suitable

probability space. More precisely, we denote by X a convex set of real valued random

variables over all possible scenarios. Following [5, 31, 32, 33] we shall now introduce the

definition of convex risk measure and postpone to the next paragraph a brief explanation

of its meaning.

Definition 24. A map ρ : X −→ R will be called a convex measure of risk if it satisfies

the following conditions:

• Convexity.

• Non-increasing monotonicity, i.e., if the random variable ν2 is dominated by the

random variable ν1 a.e., then ρ(ν2) ≥ ρ(ν1).

• Translation invariance, i.e., if m ∈ R is a deterministic variable in the sense that it

takes the value m a.e., then

ρ(ν +m) = ρ(ν)−m. (36)

We now digress to give an intuitive interpretation of the different requirements above.

The condition of convexity is related to risk aversion and it is important in diversifying

risk. See [6] for details. The translation invariance condition, is natural since adding a

deterministic quantity to a portfolio must decrease its risk of that amount. The mono-

tonicity says that if two portfolios ν1 and ν2 are such that for almost all events the return

of ν1 is greater than, or equal to, the return of ν2, then the risk associated to ν1 is smaller

than the corresponding risk associated to ν2.

In this section we present a possible connection between such convex risk measures

and the interpretation of source condition (21). The main point is that we present a

construction that allows us to associate the convex regularization functional f involved in

the source condition to a convex risk measure. This circle of ideas is novel, to the best of

our knowledge, and deserves careful further investigations.

The first assumption is that Ω is a bounded set. This is the same to assuming that the

strikes K are bounded below and above by some positive constants. Moreover, we define
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the functional f(a) = +∞ if a /∈ D(F ). Using the assumption of existence of a source

function w† ∈ L2(Ω) that satisfies (21) and the definition of ∂f(a†) we have that

f(a)− 〈w†, F ′(a†)a〉 ≥ f(a†)− 〈w†, F ′(a†)a†〉 , (37)

∀a ∈ U and ∀w† s.t.F ′(a†)∗w† ∈ ∂f(a†) .

Let us set g(−F ′(a†)a) := 〈w,−F ′(a†)a〉. The existence of w† satisfying (37) implies that

it is the Lagrangian multiplier of

L : D(F )× L2(Ω) −→ R

(a, w)→ f(a) + g(−F ′(a†)a) ,

i.e., it satisfies

L(a†, w) ≤ L(a†, w†) ≤ L(a, w†) .

However, it is not clear whether we have more than one w† ∈ R(F ′(a†)) satisfying (37).

Indeed, it depends on the choice of f . For example, if f is differentiable on a†, then ∂f(a†)

is a single element. Then, from Lemma 16 it follows that w† satisfies Equation (21) and

therefore it is unique.

We define a family of separately convex functions (meaning that for a fixed w it is

convex in a and vice versa) by

L2(Ω) 3 w 7−→ hw :D(F ) −→ R ∪ {+∞}

a 7−→ L(a, w) = f(a) + g(−F ′(a†)a) . (38)

Observe that hw(a) is a family of functions of the variable a depending on the parameter

w.

Remark 25. A particular property of hw† is that

hw†(a)− hw†(a†) = L(a, w†)− L(a†, w†) = Dζ†(a, a
†) .

However, this property holds only in the special case when w† satisfies (37).

Remark 26. Note, that the source condition (21) together with the existence of an f -

minimum norm solution for (13) is equivalent to the Karush-Kuhn-Tucker condition in

convex optimization [34].
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Now, from the theory of Fenchel conjugation [35, 36] we obtain a unique Fenchel conju-

gate function of hw given by

ĥ∗w :L2(Ω) −→ R

v 7−→ g∗(v) + f ∗(−F ′(a†)∗v) . (39)

If it happens that

g∗(v) =

0 if v = w

+∞ otherwise ,

then we would have difficulties in the above definition of ĥ∗w. Hence, we focus on the related

function h∗w defined as

h∗w : X ⊂ L2(Ω) −→ R

v 7−→ h∗w(v) := f ∗(−F ′(a†)∗v) , (40)

where X := {v ∈ L2(Ω) : f ∗(−F ′(a†)∗v) is finite}.
We note that since {0} = N (F ′(a†)∗), then h∗w(0) = f ∗(0) = 0.

Lemma 27. The functional h∗w satisfies the convexity and monotonicity axioms.

Proof. The convexity follows directly from the properties of the Fenchel conjugate function

[36, Theorem 2.3.1]. To prove the monotonicity: let v1, v2 ∈ X satisfy v1 ≥ v2. From the

definition of the Fenchel conjugate we have h∗w(v) = f ∗(−F ′(a†)∗v) ≥ 〈a,−F ′(a†)∗v〉−f(a).

Positivity of F ′(a†)a (see [2, Theorem 4.2]) implies that

0 ≤ 〈F ′(a†)a, v1 − v2〉 = 〈F ′(a†)a, v1〉+ f(a)− (〈F ′(a†)a, v2〉+ f(a))

≤ −h∗w(v1) + h∗w(v2) .

In the sequel we give a construction of a convex risk measure ρ in the present context.

This will be achieved using the properties of h∗w and an interesting probabilistic represen-

tation of v ∈ X coming from Malliavin Calculus [10].

We start by relating our notation with that of [10]. Equation (10) is associated to the
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diffusion process {yt : 0 ≤ t ≤ T} that satisfies the dynamics

dyt =

(
r − q − σ(t, yt)

2

2

)
dt+ σ(t, yt)dWt , yt0 = y0 , (41)

in the risk neutral probability measure Q.

We recall that the process (41) is the diffusion (1) in a logarithmic variables where

σ 7−→ a ∈ D(F ) by (9).

For the sake of simplicity, we assume that the process (41) has no dividend and interest

rates, i.e., b = 0.

Following [10], denote by {Yt : 0 ≤ t ≤ T} the first variation process associated to

{yt : 0 ≤ t ≤ T} and defined by the stochastic differential equation

dYt = (σ2(Yt))
′Ytdt+ σ′(Yt)dWt Yt0 = 1 .

Remark 28. We now identify σ† 7−→
√

2a† and σ̃ 7−→
√

2ã given by (9) with a†, ã ∈ D(F ).

Then, for sufficiently small ε > 0, the diffusion coefficient σ† + εσ̃ satisfies the uniform

ellipticity condition

∃η > 0 : ζT (σ† + εσ̃)T (x)(σ† + εσ̃)(x)ζ ≥ η|ζ|2,

for all ζ ∈ R2 and for all x ∈ Ω.

We introduce the auxiliary set

Γ :=

{
Θ ∈ L2[0, T ] |

∫ T

0

Θ(t)dt = 1

}
,

which contains for example the constant function Θ(t) = 1/T .

Our first result is a representation lemma.

Lemma 29. Let v ∈ R(F ′(a†)). Then, there exists a random variable πa† such that

v = Ey0

Q [Φ(yt)πa† ] , (42)

where Q is the risk neutral probability measure.

Proof. Let

β̃Θ = Θ(t)(β(T )− β(0))χ0≤t≤T
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where {β(t) : 0 ≤ t ≤ T} is the process given in [10, Lemma 3.1].

Since σ† + εσ̃ satisfies the uniform ellipticity condition (see Remark 28) we have from

[10, Proposition 3.3] that the Gâteaux derivative at σ† in the direction σ̃ is given by

Ey0

Q [Φ(yt)D
∗
t ((σ

†)−1(yt)Ytβ̃Θ(T ))]

where D∗t ((σ
†)−1(yt)Ytβ̃Θ(T )) is the Skorohod integral [37] of the possibly anticipative

process

{(σ†)−1(yt)Ytβ̃Θ(T ) : 0 ≤ t ≤ T} ,

for any Θ ∈ Γ.

We remark that the linearity of D∗t with respect to σ̃ arises through the process βt. See

Proposition 3.3 of [10].

Lemma 30. The constants do not belong to R(F ′(a†)).

Proof. If 1 ∈ R(F ′(a†)), then there exist h ∈ D(F ′(a†)) such that F ′(a†)h = 1. Thus, 1

would satisfy (25), i.e.,

0 = 1τ + a†(1yy − 1y) = h(uyy − uy) .

Using the same argument in the proof of Lemma 15 we have that (uyy−uy) cannot vanish

in a set of positive measure. Thus h = 0 a.e. This is a contradiction with the fact that

F ′(a†)h = 1 since F ′(a†) is linear.

At this point, we have two interesting sets of random variables for our convex risk

measure construction. Firstly,

X := {ν +m : ν = Φ(yt) and m ∈ C}

and secondly,

X1 := {πa† +m : πa† = D∗t ((σ
†)−1(yt)Ytβ̃Θ(T )) and m ∈ C} ,

where C is the set of all constants.

Remark 31. It follows from Lemma 29 that we have a representation of X by X and

X1 given by the weighted expectation Ey0

Q [·] with weight D∗t ((σ
†)−1(yt)Ytβ̃Θ(T )) and Φ(yt)
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respectively. We remark that the terminology weight here is used in a loose sense, since

indeed D∗t ((σ
†)−1(yt)Ytβ̃Θ(T )) may take negative values.

The following lemma plays a central part in our analysis below.

Lemma 32. If ν ≡ 1, then

Ey0

Q [νD∗t ((σ
†)−1(yt)Ytβ̃Θ(T ))] = 0 .

Proof. This follows directly by the duality between the Skorohod integral and the Malliavin

derivative [37], and the fact that Dt1 = 0.

We are now ready to state the mains results of this section.

Proposition 33. [First alternative for a convex risk measure] The functional

ρ :X −→ R ν 7−→ ρ(ν) := h∗w(Ey0

Q [ν · πa† ])− Ey0

Q [ν] (43)

satisfies the convex risk measure axioms.

Proof. By the linearity of the expectation operator and the properties of the functional h∗w

in Lemma 27, the convexity and monotonicity axioms follows.

In order to prove the translation axiom, we write

ρ̃ :X −→ R ν 7−→ ρ̃(ν) := h∗w(Ey0

Q [(ν − Ey0

Q [ν]) · πa† ])− Ey0

Q [ν] .

Let ν +m ∈ X . By the linearity of the expected value

ρ̃(ν +m) = h∗w(Ey0

Q [(ν +m− Ey0

Q [ν +m]) · πa† ])− Ey0

Q [ν +m]

= h∗w(Ey0

Q [(ν − Ey0

Q [ν]) · πa† ])− Ey0

Q [ν]−m = ρ̃(ν)−m.

Hence ρ̃ satisfies the translation axiom.

Now we show that ρ̃ = ρ. Indeed, by definition, X = D(ρ̃) = D(ρ). Let us take now

ν ∈ X . Then, by definition of expectation Ey0

Q [ν] = c where c is a constant. It follows from

Lemma 32 that

ρ̃(ν) = h∗w(Ey0

Q [(ν − Ey0

Q [ν]) · πa† ])− Ey0

Q [ν]

= h∗w(Ey0

Q [ν · πa† ]− Ey0

Q [c · πa† ])− Ey0

Q [ν] = ρ(ν) for all ν ∈ X .
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Thus ρ̃ = ρ.

Proposition 34. [Second alternative for a convex measure of risk] The functional

ρ1 :X1 −→ R π 7−→ ρ1(π) := h∗w(Ey0

Q [ν · π]) , (44)

satisfies the convex risk measure axioms.

Proof. Using the same argument of Proposition 33, the convexity and monotonicity axioms

follow.

In order to prove the translation axiom, we write

ρ̃1 :X1 −→ R π 7−→ ρ̃1(π) := h∗w(Ey0

Q [ν · (π − Ey0

Q [π])])− Ey0

Q [π] .

Then, for π +m ∈ X1, by the linearity of the expectation operator we have that

ρ̃1(π +m) = h∗w(Ey0

Q [ν · (π +m− Ey0

Q [π +m])])− Ey0

Q [π +m]

= h∗w(Ey0

Q [ν · (π − Ey0

Q [π])])− Ey0

Q [π]−m = ρ̃1(π)−m.

Hence, ρ̃1 satisfies the translation axiom.

By definition, X1 = D(ρ̃1) = D(ρ1). Let us take π ∈ X1. From Lemma 32 we conclude

that Ey0

Q [π] = Ey0

Q [1 · π] = 0.

Thus, ρ̃1(π) = ρ(π) for all π ∈ X1 .

We note that the choice of σ† enters in a crucial and nonlinear way in the convex

risk measure. Furthermore, the source condition (21) allows us to construct convex risk

measures in the spaces of random variables associated to the diffusion process (41).

4.1 Example of a convex risk measure associated with the Boltzmann-

Shannon entropy

We now illustrate the construction of the convex risk measure by considering the process

(41) under constant volatility with vanishing interest and dividend rates. For this particular

case, the representation (42) (or the vega in financial terms) is given by the formula (see

[10])
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Ey0

Q

[
Φ

(
y exp

(
σ†Wτ −

(σ†)2

2
τ

))
·
(
W 2
τ

σ†τ
−Wτ −

1

σ†

)]
=

∫
Ω

dz dτ p(z, τ)Φ

(
y exp

(
σ†z − (σ†)2

2
τ

))
·
(
z2

σ†τ
− z − 1

σ†

)
, (45)

where p(z, τ) = e−
z2

2τ /
√

2πτ is the Gaussian probability density function.

Let us take v ∈ X and compute F ′(a†)∗v. By Fubini’s Theorem

〈F ′(a†)a, v〉

=
∫

Ω

dτ ′ dyv(τ ′, y)
∫

Ω

dτ dzp(z, τ)Φ
(
y exp

(
σ†z − (σ†)2

2
τ

))
·
(
z2

σ†τ
− z − 1

σ†

)
=
∫

Ω

dτ dzp(z, τ)
(
z2

σ†τ
− z − 1

σ†

)∫
Ω

dτ ′ dyv(τ ′, y)Φ
(
y exp

(
σ†z − (σ†)2

2
τ

))
Thus,

−F ′(a†)∗v =

(
z2

σ†τ
− z − 1

σ†

)
〈−v,Φ(·)〉 . (46)

We now consider the regularization functional f as the Boltzmann-Shannon entropy

f(a) =

∫
Ω

a log(a) dx , a ∈ D(F ) ,

whose Fenchel conjugate is given by

f ∗(µ) =

∫
Ω

eµ−1 dx̃ .

Since we are in a Gaussian model, applying [7, Lemma 11] and (46) to the definition of ρ

with ν = Φ
(
y exp

(
σ†(z)− (σ†)2τ/2

))
we get

ρ(ν) = − log

(
Ey0

Q

[
exp

(
z2

σ†τ
− z − 1

σ†

)
〈−v, ν〉

])
− Ey0

Q [ν] . (47)
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5 Exponential Families

In this section, we will motivate the use of Bregman distances for regularization from a

statistical perspective and then connect it to the general theory developed earlier.

The Darmois-Koopman-Pitman theorem states that under certain regularity conditions

on the probability density, a necessary and sufficient condition for the existence of a suffi-

cient statistic of fixed dimension is that the probability density belongs to the exponential

family [38]. We start with the definition of an exponential family in dimension 1, which is

used later on to define appropriate priors.

Definition 35 (Regular Exponential Family). Let ψ : R → R ∪ {+∞} be convex and

p0 : R→ R+ by continuous. The family of probability distribution functions pψ,θ : R→ R+

defined by

pψ,θ(s) := exp(s · θ − ψ(θ))p0(s)

is called a regular exponential family. In this context the function ψ is called log-partition

or circulant function. The expectation number a(θ) is defined by

a(θ) :=

∫
R
spψ,θ(s) ds .

This definition calls for an example, namely:

Example 36. We consider the exponential family of normal distributions on R with known

variance $2 = 1. The density is

pψ,θ(s) =
1√
2π

exp

(
−(s− θ)2

2

)
, s > 0.

This is a one parameter exponential family with

p0(s) =
1√
2π

exp

(
−s

2

2

)
and ψ(θ) =

θ2

2
,

The expectation number is

a(θ) =
1√
2π

∫
R
s exp

(
−(s− θ)2

2

)
ds

=
1√
2π

∫
R
(s− θ) exp

(
−(s− θ)2

2

)
ds+

θ√
2π

∫
R

exp

(
−s

2

2

)
ds

= 0 + θ .
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We have the following result from [8] which relates exponential families with Bregman

distances.

Theorem 37 (Banerjee et al. [8]). Let ψ∗ denote the Fenchel transform of ψ, which we

assume to be differentiable. Then, the Bregman distance with respect to ψ∗ is given by

Dψ∗(â, ã) = ψ∗(â)− ψ∗(ã)− ψ∗′(ã)(â− ã) .

If we assume that a(θ) ∈ int(dom(ψ∗)), then

pψ,θ(a) = exp
(
−Dψ∗ (a, a(θ))

)
exp

(
ψ∗(a)

)
p0(a) . (48)

We now present some interesting Exponential Families and respective Fenchel conju-

gate.

Example 38 (Exponential Families and their Fenchel conjugates). For a Gaussian distri-

bution ψ(θ) = $2

2
θ2, then ψ∗(a) = a2

2$2 . For Poisson distribution ψ(θ) = exp(θ) we have

ψ∗(a) = a log(a)− a.

We shall now motivate Bregman distance regularization as a log-maximum a-posteriori

estimator for an exponential family. For the time being and for motivation purposes, we

consider a discrete statistical setting. As usual, we consider (X ,F ,P) a probability space.

We let ~x := (xi)i be a sequence of elements in X and ~a = (ai)i, where ai = a(xi) ∈ R.

We assume that the conditional probability density for observable data uδi := uδ(xi) from

ui := F (a)(xi) are normally and identically distributed with mean zero and variance $2.

That is, the probability of observing uδi given ui is given by

p(uδi |ui) =
1

$
√

2π
exp

(
−|u

δ
i − ui|2

2$2

)
.

Now, for a ∈ R>0 denote θ := θ(a). With this notation, for some prior â, the a priori

distribution is defined by

p(a) := pψ,θ(â) = exp (âθ − ψ(θ))p0(â) .

In order to clarify this formula, recall that θ depends on a and this is the only a dependence,

which shows up on the right hand side.
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This in turn, according to Theorem 37, can be rewritten as

p(a) = exp (−Dψ∗(â, a)) exp(ψ∗(â))p0(â) .

The advantage of this representation is that it does not involve any parametrization of

the exponential family (that is, with respect to θ). In this context the Log-maximum

estimation then consists in minimizing the functional

~a 7−→
∑
i

(
− log(p(uδi |ui))− log(p(ai))

)
,

which is equivalent to minimizing the functional

~a 7−→
∑
i

(ui − uδi )2 + β
∑
i

Dψ∗(âi, ai) ,

where β = 2$2. Note that the Bregman distance is in general not symmetric, and we

minimize with respect to the second component of the Bregman distance.

In summary, we have shown that Bregman distance regularization can be considered

a log maximum a-posteriori estimator for the expectation number, in our case for the

expected volatility.

In this model, we shall introduce some regularization techniques. For notational simplicity

we formulate them in an infinite dimensional framework. Hereafter, we shall assume

again that Ω is a bounded subdomain of R2. With this framework, we remark that

D(F ) ⊂ U ∩ L∞>0(Ω) ⊂ L1(Ω), where L∞>0(Ω) is the set of functions that are (essentially)

bounded from below and above by some positive constants.

Example 39. According to Example 38, if we use the exponential family associated to

Poisson distributions, we obtain Kullback-Leibler regularization, consisting in minimization

of

a 7−→ Fβ,uδ(a) :=
∥∥F (a)− uδ

∥∥2

L2(Ω)
+ βKL(â, a) , (49)

where

KL(â, a) =

∫
Ω

a log(â/a)− (â− a) dx .

We note that the Kullback-Leibler distance is the Bregman distance associated to the

Boltzmann-Shannon entropy

G(a) :=

∫
Ω

a log(a) dx . (50)
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We also note that the standard Kullback-Leibler regularization [39], and more generally,

the Bregman distance regularization, is in general considered with respect to the first

component. However, the modelling with exponential families results in Bregman distances

with respect to the second component.

Remark 40. The domains of G, D(G), and of the subgradient of G, D(∂G), are L∞≥0(Ω)

(the set of bounded non-negative functions) and L∞>0(Ω), respectively.

The Kullback-Leibler distance, which is the Bregman distance of the Boltzmann-Shannon

entropy, is defined the Bregman domain on DB(G), that is a subset of L∞>0. Moreover,

the Kullback-Leibler distance is lower semi-continuous with respect to the L1-norm [39].

Based on this property we extend the Kullback-Leibler distance, to take value +∞ if either

a /∈ D(G) or b /∈ DB(G).

Note that there are exceptional cases, when the integral∫
Ω

a log(a/â)− (a− â) dx

is actually finite, but KL(a, â) = ∞. This can be seen by taking for instance a ∈ L1
>0(Ω)

which is not in L∞(Ω) and â = Ca, where C is a constant. The reason here, is that a is

not an element of the subgradient of the Boltzmann-Shannon entropy.

This follows directly from the definition of the domains of the convex functionals and

subgradients.

To prove that minimization of Fβ,uδ in (49) is well–posed we have to choose appropriate

spaces and topologies first. We choose τŨ , τṼ the weak topologies on L1(Ω) and L2(Ω),

respectively

Lemma 41. Let Ω be a bounded subset of R2 with Lipschitz boundary. Moreover, assume

that F is continuous with respect to the weak topologies on L1(Ω) and L2(Ω), respectively.

1. Let a, b ∈ D(G). Then

‖a− b‖2
L1(Ω) ≤

(
2

3
‖a‖L1(Ω) +

4

3
‖b‖L1(Ω)

)
KL(a, b) . (51)

Here, we set 0 · (+∞) = 0.

2. With the generalization of the Kullback-Leibler distance. For sequences (ak)k and

(bk)k in L1(Ω), such that one of them is bounded:

If KL(ak, bk)→ 0, then ‖ak − bk‖L1(Ω) → 0.



Convex Regularization of Local Volatility Models. 31

3. Let 0 6= â ∈ DB(G), then the sets

Mβ,uδ(M) := {a ∈ DB(G) : Fβ,uδ(a) ≤M}

are τŨ sequentially compact.

Proof. For the proofs of Item 1 and Item 2 see [39]. To prove Item 3, we use (51). Let

(ak)
∞
k=1 be a sequence in Mβ,uδ(M), then according to (51), it is uniformly bounded in

L1(Ω). Furthermore, according to [39] the KL functional satisfies

KL(â, ã) ≤ lim inf KL(â, ak)

Now, since F is continuous with respect to weak topologies on L1(Ω) and L2(Ω), it follows

that ∥∥F (ã)− uδ
∥∥2

L2(Ω)
+ βKL(â, ã) ≤M .

Using standard results on variational regularization (see for instance [26]), we have:

Theorem 42. There exists a minimizer of Fβ,uδ in (49). The minimizers are stable and

convergent for β(δ)→ 0 and δ2/β(δ)→ 0. Stable means that argminFβ,uδk → argminFβ,u0

for δk → 0 and that argminFβ(δk),uδk converges to a solution of (13) with minimal energy.

Remark 43. Note that, to D(F ) ⊂ U we have D(F ) ⊂ DB(G). Moreover, from Theorem 11,

F : D(F ) ⊂ U → W 1,2
2 (Ω) is weakly continuous. If Ω is bounded, we have D(F ) ⊂

U ⊂ L2(Ω) ⊂ L1(Ω) and W 1,2
2 (Ω) ⊂ L2(Ω), with continuous embedding. It follows that

F : D(F ) ⊂ L1(Ω) → L2(Ω) is weakly continuous, i.e., satisfies the assumptions on the

Lemma 41.

An important consequence of (51) and Theorem 8 is that

∥∥aδβ − a†∥∥L1(Ω)
= O(

√
δ) . (52)

Now, let δk be a sequence converging to zero and ak = aδkβk the respective minimizers of the

Tikhonov functional (14). Take bk = a† for all k ∈ N. Then, from Lemma 41 Item 2 we

have ∥∥ak − a†∥∥L1(Ω)
→ 0 , as δk → 0 .
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6 Conclusions and future directions

In this work, we have established existence and convergence results for a convex Tikhonov

regularization of the inverse problem associated to the calibration of the local volatility

surface from Black-Scholes prices.

The main novelty is the use of a regularization term that only requires convexity prop-

erties and weak lower-semicontinuity. Thus, the present regularization applies to a large

class of regularization functionals. In particular, in Section 5 we connect with the statistical

viewpoint through the concept of Exponential Families. This is turn, allows the derivation

of a Kullback-Leibler regularization of the calibration problem.

We establish for Bregman distances better convergence rates than those available in the

literature to the calibration problem. This analysis also allows us to obtain convergence of

the regularized solution with respect to the noise level in L1(Ω) by means of a Kullback-

Leibler regularization functional. See Equation (52). Another advantage of the current

approach is the requirement of weaker conditions than those previously required in the

literature. Namely, we only require (34).

The convergence results also hold true if we measure the misfit at the Tikhonov func-

tional (14) in W 1,2
p (Ω). The intuition behind the use of the W 1,2

p (Ω) norm is that we have

continuous dependence of the Tikhonov functional with respect to information not only

about the prices but also with respect to the sensitivities uτ , uyy, and uy. Those are the

so called Greeks. On the other hand, we need more information on the measurement data

uδ.

We prove the existence of approximate source condition of the form (33) for the regu-

larization problem under consideration. In particular, if the regularization functional is

f(·) = ‖·‖2
H1+ε(Ω), then the source condition (21) coincides with the representation that

remained an open problem in [2, 4].

A heuristic financial interpretation of the source condition (21) is that we have a restric-

tion that allows us to quantify the risk associated to a given volatility level. By this we

mean that upon computing the corresponding Black-Scholes solution as a function of the

volatility, we are quantifying how much risk one has in the space of random variables asso-

ciated to such volatility. This is done with the help of the source condition (21). Indeed,

we constructed a functional that, through the Fenchel duality, defines different convex risk

measures. The availability of such risk measures permits quantifying the risk associated

to random variables and portfolios of the underlying model. We remark that convex risk

measures are a sub-class of the coherent risk measures. A natural continuation of the
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present work would be to explore further such connection to risk measures [31, 32].

Another direction of future research would be the numerical implementation of the

present results with actual market data. An implementation for the case of the standard

quadratic Tikhonov regularization can be found in [4, 40].
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[33] H. Föllmer and A. Schied. Robust preferences and convex measures of risk. In Advances

in finance and stochastics, pages 39–56. Springer, Berlin, 2002.

[34] I. Ekeland and R. Temam. Convex Analysis and Variational Problems. North-Holland,

Amsterdam, 1976.

[35] R. T. Rockafellar. Conjugate duality and optimization. Society for Industrial and

Applied Mathematics, Philadelphia, Pa., 1974. Lectures given at the Johns Hopkins

University, Baltimore, Md., June, 1973, Conference Board of the Mathematical

Sciences Regional Conference Series in Applied Mathematics, No. 16.
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