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We consider the problem of solving a linear inverse problem, formulated as
solving an operator equation

(1) Lx = y,

where L : X → Y is a bounded linear operator between (infinite dimensional) real
Hilbert spaces X and Y. If the range of L is not closed, Equation 1 is ill-posed
and regularization has to be employed for a stable solution.

In this talk we consider dynamical regularization methods: That is, we approx-
imate the minimum norm solution x† of Equation 1 by the solution of a dynamical
system at an appropriate time. An established example of such a dynamical reg-
ularization method is Showalter’s method [6], which consists in calculating the
solution of the Cauchy problem

(2)
ξ′(t) = −L∗Lξ(t) + L∗y for all t ∈ (0,∞),

ξ(0) = 0.

More recently, second order dynamical systems have been investigated for optimiz-
ing general convex functionals, see [7, 4, 1, 2]. One motivation for these dynamic
equations has been to consider them as time continuous limits of Nesterov’s algo-
rithm [5] to explain its fast convergence.

We consider dynamical systems for solving linear ill-posed operator equations
by focusing on the particular convex functionals

(3) J (x) =
1

2
‖Lx− y‖2.

Specifically, we develop a regularization theory to analyse N -th order dynamical
method of the form

(4)
ξ(N)(t) +

N−1∑
k=1

ak(t)ξ(k)(t) = −L∗Lξ(t) + L∗y for all t ∈ (0,∞),

ξ(k)(0) = 0 for all k = 0, . . . , N − 1,

where N ∈ N and ak : (0,∞) → R, k = 1, . . . , N − 1, are continuous functions.
When N = 1 this is Showalter’s method. When N = 2, and a1 is constant and
positive the method is called heavy ball dynamical method (HBD). And for N = 2
and a1 = b

t , b > 0, the analogous method as considered in [7, 4, 1, 2], we call it
the vanishing viscosity flow (VVF).

In [3] we proved the following convergence rates result and compared it with
the literature, see Table 1.
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Method (t→∞) J (ξ(t))−minJ ‖ξ(t)− x†‖2

VVD (convex)

o(t−2) (b > 3),

O(t−2) (b = 3),

O(t−2b/3) (b < 3)

–

VVD (IP)
o(t−2) (b > 2),

o(t−b) (b ≤ 2)
o(1)

Showalter o(t−1) o(1)

HBD o(t−1) o(1)

Table 1. Convergence Rates without Source Conditions. Con-
vergence for VVD from [7, 4, 1, 2] for minimizing general convex
functionals J , and results from [3] (IP) for the convex function-
als from Equation 3. Analogous results for Showalter and HBD.
Results in bold face are from [3].

Method (t→∞) J (ξ(t))−minJ ‖ξ(t)− x†‖2

VVD (IP) [Max Rate] O(t−2µ−2) [O(t−b+ε)] O(t−2µ) [O(t−b+ε)]

Showalter O(t−µ−1) O(t−µ)

HBD O(t−µ−1) O(t−µ)

Table 2. Convergence rates with source conditions. In the case
of VVD, the parameters are restricted to 0 < µ < b

2 −1 (and thus

b > 2) for J (ξ(t))−minJ and 0 < µ < b
2 for ‖ξ(t)− x†‖2, which

leads to the given maximal rates (for arbitrarily small ε > 0). For
general convex problems, source conditions, Equation 5, are not
known to provide improved convergence rates.

Note that the results from convex analysis (VVD (convex) in Table 1) prove
convergence rates of the residuum and not of the solution. The results of (IP) show
an improvement of the convergence rates for general convex problems. Actually
these results support a conjecture of [7]: “However, from a different perspective,
this example suggests that O(t−b) convergence rate can be expected ...”

Moreover, we showed that under classical source conditions even convergence
rates for ‖ξ(t)−x†‖2 can be proven. In this case we require source conditions like:
There exists some w ∈ X such that

(5) x† = (L∗L)
µ
2w.

We summarize some results from [3] on regularized dynamical systems when the
solution x† satisfies some source condition in Table 2.
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