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Abstract

In this paper we propose an efficient algorithm for topology adapta-
tion of evolving surface meshes in 3D. This system has two novel features:
First, a spatial hashing technique is used to detect self-colliding trian-
gles of the evolving mesh. Secondly, for the topology adaptation itself,
we use formulas which are derived from homology. In view of this the
advantages of our algorithm are that it does not require global mesh re-
parameterizations and the topology adaptation can be performed in a
stable way via a rather coarse mesh.

We apply our algorithm to segmentation of three dimensional synthetic
and ultrasound data.

Keywords: deformable model, triangular mesh, topology adaptation, segmenta-
tion, homology

1 Introduction

Since the pioneering work [23] deformable contours have been used successfully
in various areas of applications, such as image processing, medical imaging, cloth
modeling and game development.

It is common to differ between explicit and implicit deformable contours
– that are parametric and level set models. The later have been introduced
in [17] and further achievements (especially on the theoretical side) have been
made in [3]. One advantage of implicit methods is that topology adaptations are
handled automatically during the evolution process. Nevertheless, for practical
applications explicit models are often preferred since they can be implemented
more efficiently. The reason for this is that an evolving parametric surface is a
two dimensional manifold, while the evolving level set is three dimensional.

In this work we develop an explicit method which allows for topological
adaptive segmentation. Such methods have already been subject to extensive
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research. To our knowledge, explicit contour models with topological adaptive-
ness have been considered first in [12] and [20]. There, deformable contours are
represented as tensorial spline products [12] and sets of dynamic particles [20],
respectively. The basic snake model, introduced in [14], has been complemented
with topology adaptivity in [15] utilizing a supplemental Freudenthal triangula-
tion. With this additional simplicial structure a re-parametrization is performed
periodically after a fixed finite number of iterations of the snake evolution. In
each Freudenthal triangle mesh self-collisions are checked for and topology is
adapted where collisions have been detected. Similar ideas have been presented
in [5]. Basically, the algorithms of [15, 5] consist of three steps. First a grid
is aligned on the two dimensional image domain containing the object to be
segmented. Secondly, intersections of the contour edges with the grid edges
are computed and stored as grid vertices. From the grid vertices new contour
edges are computed, which are edges connecting the grid vertices. Thirdly, self-
intersections of the re-parameterized contour are detected and the topology of
the contour is adapted in all simplices composed of the grid edges. In [2] it is
suggested to evolve a polygonal contour where the vertices are restricted to lie
on a supplemental rectangular grid of the image domain. An advantage of this
approach is that no re-parameterizations have to be performed and topology
adaptations are along the lines of [15]. On the other hand, if the underlying
grid is fine, small time stepping is required and thus the evolution becomes nu-
merically expensive. In [7] a mesh transformation algorithm is proposed which
discards overlapping mesh parts and performs a re-triangulation afterwards.
This method only works if the mesh satisfies geometrical properties, which are
controlled by a distance field evolution. According to [22, Sec. 4] distance field
computations are numerically very expensive. A speed up of the algorithm of [7]
has been obtained in [9, 10, 8] by relaxing the (global) geometrical constraints
by local conditions.

Our proposed algorithm is designed for segmentation of multiple connected
surfaces in 3D and consists of the following steps:

Concept 1 (Segmentation concept).

1. An active contour model is used to evolve a mesh until self-intersections
are detected. Detection is performed by a spatial hashing algorithm de-
scribed in Section 2. This algorithm is motivated from [21].

2. Neighboring vertices of colliding parts of the mesh M are removed to get
an opened mesh Mb whose boundary consists of a number of simple closed
polygons. The algorithm is described in Section 4.

3. The opened mesh Mb is completed by a handle, which consists of a mesh K,
that is topologically equivalent (i.e. homeomorphic) to a sphere with holes.
The completed mesh Mc consists of the union of Mb and K. The topology
adaption is illustrated in Figures 1. To make the completion algorithm
efficient we use a precomputed database of topologically equivalent meshes
for the handles. The database is structured by the number of connected
polygons and the numbers of faces, respectively.

4. Afterwards the active contour evolution is further continued.
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Figure 1: Top Left: Opened mesh Mb. Top Right: Handle K. Bottom: Closed
mesh Mc.

In this paper we focus on algorithms for detection of self intersections and
topology adaptations. Active contour models are not discussed here further, we
refer to [4] for a standard reference on this topic.

2 (Self-)Collision Detection

For collision detection of the evolving surfaces we use a spatial hashing algorithm
which is motivated from [21]. However, in comparison, our proposed algorithm
has several additional features. For instance, for implementation it does not
require complicated data structures and the running time is linear with respect
to the number of vertices and the chosen hash table size.

We are given a triangular mesh M = (V,E, F ) in a bounded region Ω ⊂ R3.
The proposed hashing algorithm consists of the following two steps:

Concept 2 (Collision Detection Algorithm by Spatial Hashing).

1. For all mesh vertices v, hash functions h1(v) and h2(v) are computed by
a subdivision of Ω into axes aligned bounding boxes.

2. Let j = 1, 2. For all hash values i let V j
i = {vertices with hj(v) = i},

the sets of vertices with hash value i. In this step it is checked whether
triangles containing vertices of V 1

i or V 2
i intersect.

In the following we present some details of the spatial hashing algorithm. In
the first step, for a definition of the hash functions, we use large prime numbers
pi, i = 1, 2, 3, choose a hash table size htblSize. Moreover, we denote by the
real parameter l the size of the axes aligned bounding boxes (see Figure 2). By
dae we denote the smallest integer greater than a, and bac denotes the greatest
integer smaller than a. The two hash functions hj : V → {0, . . . ,htblSize},
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Figure 2: Left: Two systems of axes aligned bounding boxes of size l are shown.
The intersection of the two triangles can only be detected by the boxes in dashed
lines Right: Running times of the collision detection algorithm for triangular
meshes of 10k vertices with different hash table sizes are given

j = 1, 2, are given by

h1(vx, vy, vz) = bvx/lc p1 + bvy/lc p2 + bvz/lc p3 mod (htblSize + 1) ,

h2(vx, vy, vz) = dvx/le p1 + dvy/le p2 + dvz/le p3 mod (htblSize + 1) .

Note, that for each two vertices v1, v2 ∈ V with ‖v1 − v2‖ < l/2, at least one of
the following two equations holds:

h1(v1) = h1(v2) , h2(v1) = h2(v2) .

We use vertices with euclidean distance smaller than l/2 as indicators for
intersecting triangles. For an optimal choice of the box size l we use the following
theorem. For a proof of the theorem we refer to the Appendix.

Theorem 3. Assume that the length of every edge of a mesh M = (V,E, F )
is bounded by s. Moreover, we assume that the triangles T = (T1, T2, T3) and
S = (S1, S2, S3) of the mesh intersect. Then there exist i, j such that

‖Ti − Sj‖ <

√
2
3
s.

Here and in the following we identify the triangle with the triple of edge points.

According to the theorem we choose l > 2
√

2/3s, because this choice guarantees,
that at least two vertices of intersecting mesh triangles are mapped to the same
hash key, and thus in the sequel an intersection test is performed. For our
applications we have chosen the hash table size to be twice the number of
mesh vertices. This choice is based on numerical experiments with meshes of
approximately 10k vertices and 20k triangles, respectively. The hash table sizes
have been varied (see Figure 2). From this table we see that the running time
for the collision detection is monotonously decreasing in hash table sizes smaller
than twice the number of mesh vertices, and remains nearly constant for greater
hash table sizes. Therefore, from a point of memory usage the suggested choice
is optimal.

In the second step we iterate through the hash keys and check for each pair
of non-neighboring vertices with the same hash key if they are contained in
triangles which intersect. This is done with a fast triangle-triangle intersection
test, see [16].
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3 The Handle Database

In this section we show how to generate a data base of simplices which allows
for completion of an opened mesh Mb to a closed mesh Mc. A set of such
simplices will be called a handle. Here we make use of concepts from topology
(see e.g. [6, 13, 19] for background material). We are mainly concerned with
combinatorics and use simplicial complexes in a coordinate free abstract sense
as in [19, p.141].

To start with, we make a basic definition of handles:

Definition 4. We call a simplicial complex C = (C0, C1, C2) a cap, if there
exist m ∈ N, a0, . . . , am ∈ Z, a0 < . . . < am such that:

C0 = {a0, . . . , am} ,

C1 = {{a0, a1} , . . . , {a0, am} , {a1, a2} , {a2, a3} , . . . , {am−1, am} , {am, a1}} ,

C2 = {{a0, a1, a2} , {a0, a2, a3} , . . . , {a0, am−1, am} , {a0, am, a1}} .

The orientation of the complex is given by (a0, a1, a2), (a0, a2, a3), . . .,
(a0, am−1, am), (a0, am, a1). a0 is called the vertex center.

Let C1, . . . , Ck be caps. A simplicial complex K = (K0,K1,K2) is called
handle if the geometric realization (see [19, p.142])

∣∣∣⋃k
i=1 Ci ∪K

∣∣∣ of

k⋃
i=1

Ci ∪K :=

(
k⋃

i=1

Ci
0 ∪K0,

k⋃
i=1

Ci
1 ∪K1,

k⋃
i=1

Ci
2 ∪K2

)
is homeomorphic to a 2-sphere (in signs

∣∣∣⋃k
i=1 Ci ∪K

∣∣∣ ≈ S2) and for all j ∈
{1, . . . , k}, the inclusion

Cj ↪→
k⋃

i=1

Ci ∪K

is orientation preserving. We recall that homeomorphisms are defined to respect
topological properties. A cap is visualized in Figure 3.

The following theorem characterizes topological properties of a handle and
states that the a mesh M after opening at k locations and closing by a handle
(this is the mesh Mc) constitutes a surface which has k − 1 tunnels more than
M , that is the genus is increased by k − 1.

Theorem 5. Let M = (V,E, F ) be a simplicial complex. Furthermore, let Mb

be the simplicial subcomplex ([19, p.144]) of M obtained by removing k connected
components from M such that the geometric realization of Mb is a surface with
boundary consisting of k simple closed polygons (see also Figure 1, top left). Let
C1, . . . , Ck be caps such that its boundaries consist of the boundary polygons of
Mb (see also Figure 3). Moreover, let K be a handle for C1, . . . , Ck, so that
|
⋃k

i=1 Ci ∪K| ≈ S2. Then

|Mb ∪K| ≈ Tk−1+g(M), (1)

where Tk−1+g(M) is the closed, orientable surface of genus k − 1 + g(M) and
g(M) is the genus of M .
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Figure 3: Left: A cap. Right: A simple closed boundary polygon of Mb.

This theorem can be proven by standard methods of algebraic topology.
Topological equivalent 2-spheres can be characterized by simplicial homology

(see e.g. [19, p.144] for background on this topic).

Theorem 6. Let M = (V,E, F ) be a simplicial complex such that every edge
e ∈ E is a face of some f ∈ F . If the homology conditions

• H0(M) ∼= Z

• H1(M) = 0

• H2(M) ∼= Z, generated by
∑

f∈F

εff with εf ∈ {−1, 1}

hold, then the geometric realization of M is homeomorphic to S2.

This theorem is similar to the well-known Whitehead Theorem (see [6, p.346])
which states that spaces with isomorphic homotopy groups are homotopy equiv-
alent. Theorem 6 can be proven again by standard methods of algebraic topol-
ogy.

Based on these basic definitions and Theorem 6 we can present an algo-
rithm for computation of handles which contain given simple closed polygons
as boundary polygons. With each simple closed polygon we can associate a cap
by adding a center vertex and connecting the center with the vertices by edges.
Therefore, we concentrate now on computation of handles given disjoint caps.

Let us assume that we have given k disjoint caps Ci, i = 1, . . . , k with
numbers of vertices mi, i = 1, . . . , k, respectively.

We use the notation ms =
k∑

i=1

mi and denote by vc, ec, fc the numbers of

vertices, edges, and faces of the mesh
⋃k

i=1 Ci∪K. Let us assume that
⋃k

i=1 Ci∪
K is homeomorphic to a sphere – that is the case if K is a handle. Then, from
the Euler formula (see [19, p.146]) we know that vc − ec + fc = 2. Moreover, by
induction on the number of triangles, we can show that 2ec = 3fc, and therefore
fc = 2vc − 4. If k caps are connected by a handle, the number of vertices of the
arising sphere is vc = ms + k, and therefore

fc = 2ms + 2k − 4.

Since the caps Ci contain ms faces altogether, ms + 2k − 4 faces have to be
added to the faces of the set

{
Ci : i = 1, . . . , k

}
to obtain a sphere. We differ

between two different kinds of faces to be added (see Figure 4):
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Figure 4: Different types of faces.

• When a face to be added has two vertices in common with some Ci, i =
1, . . . , k, then it is called of Type 1.

• Else it is called of Type 2. That is the case if the face has at most one
vertex in common with every Ci.

There exist ms faces of Type 1 and 2k − 4 faces of Type 2.
Based on these considerations we are able to generate the handle database,

which associates tuples consisting of the number of connected polygons k and the
numbers of vertices mi, i = 1, . . . , k, a set of handles, respectively. Without loss
of generality we always assume in the sequel that mi+1 ≥ mi, i = 1, . . . , k − 1.
For given k and mi, i = 1, . . . , k, a handle of the database is determined as
follows:

1. For each boundary edge of a cap choose a vertex in a different cap. The face
determined by the edge and the chosen vertex is one of the ms triangles
of Type 1.

2. Locate two edges which share a common vertex such that all three vertices
are contained in different caps. This determines the 2k − 4 triangles of
Type 2.

3. Check if the simplicial complex made of the caps and the added faces is a
sphere, that is, it satisfies the conditions of Theorem 6. Computationally,
one can check the homology criterion using the PARI software [18].

Given caps Ci, i = 1, . . . , k with mi vertices, respectively, it is useful for our
purposes to associate a sequential enumeration to the vertices. To this end we
use the notation µl =

∑l
i=1 mi. Vertices between µl−1 +1 and µl (where we set

µ0 := 0) correspond to the vertices in the cap Cl.
For i ∈ {1, . . . , µk}, we set

i⊕ 1 =
{

µj−1 + 1 if i = µj for some j ∈ {1, . . . , k}
i + 1 otherwise.

Therefore, i⊕ 1 is the subsequent vertex of i in the cap Ci.

Example 7. In this example we calculate the number of different elements of
the handle database for some test cases of small k.

k = 2: Because we have 2k− 4 = 0, only faces of Type 1 occur. For a function

f : {1, . . . ,m1} → {m1 + 1, . . . ,m1 + m2} ,

7



k = 3:

m1 m2 m3 handles generators

3 3 4 72 1

3 4 5 120 2

4 4 6 192 2

k = 4:

m1 m2 m3 m4 handles generators

3 3 4 4 576 1

Table 1: The numbers of possible handles in the database, and the number of

generators taking into account group actions.

which we assume to be monotonously decreasing and surjective we define

g : {m1 + 1, . . . ,m1 + m2} → {1, . . . ,m1} .

j 7→ max {i : f(i) = j}
Note that f maps vertices of the first cap onto vertices of the second and
g is a right inverse. These two functions define a handle with the face set

{(1, 2, f(1)), . . . , (m1 − 1,m1, f(m1 − 1)), (m1, 1, f(m1)),
(m1 + 1,m1 + 2, g(m1 + 1)), . . . ,
(m1 + m2 − 1,m1 + m2, g(m1 + m2 − 1)),

(m1 + m2,m1 + 1, g(m1 + m2))} .

For k = 3, 4 and some tuples of edge numbers the numbers of possible handles
have been summarized in Table 1.

We consider symmetric group actions on the set of handlesK = K(k;m1, . . . ,mk)
for k caps of sizes m1, . . . ,mk, respectively. For the theory of group actions, see
[11, p.25]. By a group action on a set S, the set S is partitioned into disjoint
orbits S1, . . . , Sn (see [11, p.28]), and a set of generators of S is a choice of
elements si ∈ Si, i = 1 . . . , n. We identify generators of K which completely
determine K modulo group actions.

Rotations: The topology of the caps remains unchanged if a rotation of the
vertex numbers of a cap is performed. More precisely, let

ωR,i(l) =
{

l ⊕ 1 µi < l ≤ µi+1

l otherwise, ,

ΩR = ΩR,1 × . . .× ΩR,k ,

ΩR,i = subgroup of Σµk
generated by ωR,i ,

Σµk
denotes the symmetric group on the set {1, . . . , µk} .
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Figure 5: A rotation.

Figure 6: An exchange

We obtain a group action of ΩR on K by applying ΩR to every vertex of
every simplex of a handle K. A representant is Rotations are illustrated
in Figure 5.

Exchanges: The order of two caps, consisting of the same number of vertices,
can be exchanged. If

ωE,i,j(l) =

 l − µj + µi µj < l < µj+1

l + µj − µi µi < l < µi+1

l otherwise

and ΩE,i,j = {id, ωE,i,j} the group of exchanges of cap i and cap j, then

ΩE =
∏

i<j,mi=mj

ΩE,i,j

operates on K. Exchanges are illustrated in Figure 6.

An easy computation shows that the two operations commute, i.e.

ωτ(K) = τω(K) for ω ∈ ΩR, τ ∈ ΩE and K ∈ K.

As a consequence, we can apply rotations and exchanges in an arbitrary order
to a handle. With these operations, only very few elements are required to
generate elements of K. This is illustrated by comparing the last two columns
of Table 1.
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(a) (b)

(c) (d)

Figure 7: In (a), Λ1 consists of two and Λ2 of three vertices connected by a bold

line. N1 and N2 have three common neighbor vertices, and N2 forms no simple closed

polygon because of edge e. The iterative refinement algorithm is demonstrated in

(b) and (c). Bisector vertices vj are inserted as well as edges between them (dashed

line), and the arising quadrilaterals are triangulated (dotted line). The result of the

refinement algorithm is shown in (d).

4 Implementation of the Topology Adaptation

For implementation of the topology adaption algorithm (compare the Segmen-
tation Concept 1) the opening of the mesh has to performed in such a way that
the boundary of the opened mesh Mb consists of simple closed polygons.

For this purpose vertices of colliding mesh parts (which have been detected
by the hashing algorithm described in Section 2) are grouped into disjoint con-
nected sets Λ1, . . . ,Λk such that for i 6= j, two arbitrary vertices v ∈ Λi, w ∈ Λj

have no common neighbor.
The set Ni of all neighboring vertices of vertices in Λi without Λi is a neigh-

borhood of Λi, which consists of connected components N0
i , . . . , N li

i . We assume
that the neighborhoods N j

i are pairwise disjoint and that its edges form a sim-
ple, closed polygon, otherwise the following preprocessing routine is used: We
insert new vertices on the bisectors of edges between vertices of Λi and of N j

i ,
and connect these vertices by edges as shown in Figure 7. Arising quadrilaterals
are triangulated. As a result, the edges connecting the bisectors form a simple
closed polygon around Λi, and their neighborhoods are pairwise disjoint. The
routine is illustrated in Figure 7(b)-(d).

In general, the neighborhood Ni consists of several components N0
i , . . . , N li

i .
One component, say N0

i , encloses Λi, and the other components are enclosed
by Λi, see Figure 8. The outside component N0

i can be computed from the
orientation of the mesh. Components N1

i , . . . , N li
i belong to enclosed parts of

the mesh. There are two different kinds of inclusion neighborhood components
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Figure 8: The neighborhood of cluster C consists of two components. N0 is the

component outside C, N1 is an inclusion component.

Figure 9: The original ultrasound image is shown on the left hand side. The final

segmenting mesh is shown in the middle. A projection on the y-z plane is presented

on the right hand side.

N j
i for j ≥ 1 and propose two different procedures:

• If N j
i contains a triangle, i.e. there exist v1 ∈ N j

i , v2, v3 ∈ V \Λi neighbors
of v1, s.t. (v1, v2, v3) ∈ F . Then the neighborhood refinement algorithm is
applied such that the boundary of Λi towards N j

i as well as the boundary
of N j

i towards Λi are Jordan polygons. The connections between the two
polygons are discarded. For each polygon, the barycenter of the vertices
is inserted, and connected to the polygon. Thus, the mesh is split into
two separate components.

• If N j
i contains no triangle, no real inclusion has been detected, and N j

i is
added to Λi.

5 Results and Discussion

We tested our algorithm for topology adaptation in connection with the active
contour algorithm published in [1] on artificial and medical test images. In both
cases the dark part is regarded as the object to be segmented. To initialize the
segmentation algorithm a small sphere is manually placed inside the dark part
of the voxel image. The evolving surface moves towards the boundary of the
object.

As far as possible we compare the numerical results to those given in [8].
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Figure 10: A cube with a spherical cavity and some Gaussian noise added. As a
segmentation result we obtain the mesh shown on the middle and right. In the middle
diagram only the edges are visualized.

Object Voxel size Iterations Vertices Sec.
Cyst 199× 99× 171 133 8687 9
Cube 100× 100× 100 709 13576 65

Genus 3 100× 100× 100 677 9680 28
Torus 100× 100× 100 215 5454 8

Table 2: For each test example, the number of iterations and vertices and the running

time of the segmentation algorithm is given. Tests were performed on a 3.5 GHz

computer with 2 GB RAM.

• An ultrasound image of a cyst is segmented. The white part inside the
cyst, running from front to back, stems from a biopsy needle, see Figure
9. The segmentation is used to determine the shape of the cyst and the
position of the biopsy needle. As the projection to the y-z plane shows the
cyst and the needle are accurately segmented, also in regions where the
topology of the mesh has been adapted during the evolution of contour.

• The next example concerns a computer generated voxel image of a cube
with a spherical cavity (see Figure 10). Different from the example in [8],
every side of the cube contains a hole such that the segmenting contour
of the object has genus 5.

• The next example shows an object of genus 3, the starting ball chosen
on one crossing of the four parts. Therefore, a topology change with four
parts hitting at the same iteration step is performed. The result is shown
in the left part of Figure 11.

• The last example shows a torus with 4 inclusions. As segmentation result
a torus enclosing 4 spheres is obtained, see the right part of Figure 11.

The performance of our topology change algorithm tested on the four exam-
ples is summarized in Table 2.

The numerical experiments demonstrate the robustness and efficiency of the
topology completion algorithm. Although no reparameterizations are performed
during the mesh evolution, and no global restrictions are inferred, the algorithm
works stable. As expected, the running times of the segmentation algorithm
roughly depend linearly on the number of iterations resp. vertices. The running

12



Figure 11: Voxel images for the last two examples and the segmentation results.

time for segmentation of the object of genus 3 is a bit shorter than expected,
because many vertices reach the object boundary rather early, and only a com-
parably small number of vertices is actually updated during an evolution step.
As a consequence, we obtain a speedup versus previous 3D topology adaptive
segmentation routines. The cube with spherical cavity can be compared to the
first example in [8]. There, only one face of the cube is penetrated by the ball,
such that their object to recover has genus 0. The running time of our algorithm
is much better, although the topology in our case is more complex, more faces
are involved, and more iteration cycles are performed.

6 Conclusion and Outlook

We introduce a very efficient novel topology completion system which runs inde-
pendently of the evolution, does not require any reparameterizations and runs
stable, even if the mesh is not regularly sampled. We introduce a novel and
efficient collision and self-collision detection algorithm for triangular meshes,
which runs in linear time and does not require complex data structures or huge
memory resources. The system is designed for interactive applications.

Due to the topological completion formulas obtained by the homology cri-
terion, we were able to develop a very robust topological completion system,
working with arbitrary mesh deformation algorithms. Since our (self-)collision
detection algorithm works in linear expected time, the system is also very ef-
ficient resulting in significantly reduced computation times. For numerical ex-
periments, we used a standard balloon model, thus losing overall efficiency for
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segmentation a bit. As a future work, it seems to be interesting to combine
the presented topological completion algorithm with a locally adaptive mesh
evolution as presented in [8].
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Appendix

For a triangle T in R3 given by its vertices T1, T2, T3 and a point P in R3 let

d(P, T ) := min {‖P − T1‖ , ‖P − T2‖ , ‖P − T3‖} .

We use the notation T = (T1, T2, T3) and denote by prT (P ) the orthogonal
projection of P in the plane spanned by T - which is of course only well-defined
if the triangle does not degenerate.
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(a) (b)

Figure 12: In (a), edge PR intersects triangle (T1, T2, T3) in Q. In (b), the projection

prT (P ) of P onto the plane spanned by T lies outside the three circles.

Lemma 8. Assume that T = (T1, T2, T3) is a triangle in R3, and P ∈ R3. Then

d(P, T ) =
√
‖P − prT (P )‖2 + d(prT (P ), T )2.

Proof. The situation is illustrated in Figure 12(a). Looking at the Voronoi di-
agram of the three points T1, T2, T3 ∈ R3, we deduce that for some i = 1, 2, 3,
‖P − Ti‖ ≤ ‖P − Tj‖ for all j = 1, 2, 3 if and only if

‖prT (P )− Ti‖ ≤ ‖prT (P )− Tj‖ for all j = 1, 2, 3. (2)

Therefore, if d(P, T ) = ‖P − Ti‖ for some i, we have

d(P, T ) = ‖P − Ti‖ =
√
‖P − prT (P )‖2 + ‖prT (P )− Ti‖2

=
(2)

√
‖P − prT (P )‖2 + d(prT (P ), T )2

�

Now we can give a proof of Theorem 3:

Proof. Without loss of generality we can assume that every edge of both triangles
S and T has maximal edge length s, i.e. both triangles are equilateral. Moreover,
we assume that an edge e of S intersects T (otherwise we interchange the role
of S and T ), and we denote the intersection point by Q.

Let P be an endpoint of e which fulfils ‖P −Q‖ ≤ 1
2s. Denote by barT the

barycenter of T . (see Figure 12(a)). We consider two cases concerning the
position of prT (P ):

• d(prT (P ), T ) ≤ d(barT , T ): In this case, we have that

‖P − prT (P )‖ ≤ ‖P −Q‖ ≤ s

2

and
d(prT (P ), T ) ≤ d(barT , T ) =

1
3

√
3s.
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Therefore, using Lemma 8 we deduce that

d(P, T ) =
√
‖P − prT (P )‖2 + d(prT (P ), T )2 ≤

√
1
4

+
1
3
s ≤

√
2
3
s.

• d(prT (P ), T ) > d(barT , T ): In this case, prT (P ) lies in the complement
of the discs around the points Ti with radius ‖barT − Ti‖, as illustrated
in Figure 12(b). Since P is projected to prT (P ) outside T , there exists a
point B contained in an edge (Ti, Tj) of T , such that

‖P −B‖ ≤ ‖P −Q‖

(namely the intersection point of the line (prT (P ), Q) with one of the tri-
angle edges). Since ‖P −Q‖ ≤ s

2 , we can deduce that

‖P −B‖ ≤ s

2
(3)

From (3) it also follows that ‖prT (P )−B‖ ≤ s
2 , and moreover one of the

norms ‖Ti −B‖, ‖Tj −B‖ is smaller than s
2 . Therefore, we obtain

d(prT (P ), T ) ≤
√

min{‖Ti −B‖2
, ‖Tj −B‖2}+ ‖prT (P )−B‖2

≤ 1
2

√
2s .

(4)

Let A be the image of barT under reflection along the edge (Ti, Tj). Since
prT (P ) lies in the complement of the discs around the points Ti with radius
‖barT − Ti‖, we have

‖B − prT (P )‖ ≥
∥∥∥∥A− 1

2
(Ti + Tj)

∥∥∥∥ =
∥∥∥∥barT −

1
2
(Ti + Tj)

∥∥∥∥ =
1
6

√
3s (5)

Altogether, using Lemma 8, we obtain

d(P, T ) =
√
‖P − prT (P )‖2 + d(prT (P ), T )2

=
√
‖P −B‖2 − ‖B − prT (P )‖2 + d(prT (P ), T )2

≤︸︷︷︸
(3)(5)(4)

√
( 1
2s)2 − ( 1

6

√
3s)2 + ( 1

2

√
2s)2

=
√

2
3s.

Altogether, we have found a point P of triangle S which is closer to T than√
2
3s, and the assertion follows. �
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