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Abstract
We propose a two-step approach to segment closed surfaces
in 3D of arbitrary topology. First, a pre segmentation step
with an active contour method is performed. This evolu-
tion process does not take into account topology adaptions.
Topologically correct segmentations are derived with Kazh-
dan’s algorithm in a second step. Kazhdan’s algorithm re-
quires information on the surface normals, which are ob-
tained from the active contour method. We show that the
two-step algorithm is computationally efficient. Moreover,
we apply the algorithms for segmentation of 3D ultrasound
data.
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1. Introduction
Starting with the pioneering work (WKT), active contour
models have been extensively studied and applied in many
applications such as image segmentation, surface recon-
struction and shape modeling.

In this paper we investigate parametric active contour
(AC) models for segmentation of three dimensional data
which allow for topological changes. There have been sev-
eral contributions on topology adaptive active contours in
2D, some of them are reviewed below. However, there has
been done much less work in 3D. In 2D discrete active
contours are curves given by a discrete number of vertices
which are connected by lines. The curves are called snakes.
In (MT2), snakes are implemented topology-adaptive using
an additional Freudenthal triangulation of the image plane.
With this additional simplicial structure, a re parametriza-
tion (and therefore a topology adaption) is performed cycli-

∗Correspondence to: J. A.

cally after a fixed finite number of iterations of the active
contour evolution. The re parametrization is performed by
computing the intersections of the (discretized) snake with
the triangles of the Freudenthal triangulation and the snake
is locally adapted to the topology. After a re parametriza-
tion, the snake vertices are edges of the Freudenthal trian-
gulation. A related approach is suggested in (BK) where
the discretized snake is a-priori restricted to have its snax-
els on edges on an underlying two-dimensional grid. If the
number of snaxels is large, already in 2D, the evolution is
rather time-consuming. This is due to the fact that a vertex
is not allowed to move further than the next gridpoint, and
therefore many iterations are required.

AC models evolve a contour over time. The evolution
is driven by the propagation speed vS , which is specified
a-priori and usually image content specific. We discretize
the AC model in time and space by a sequence of triangular
meshes (see e.g. (LM)). Alternatively, one could discretize
the surface by hexagons (see e.g. (Del)) or by spline sur-
faces (see e.g. (LC2)).

We suggest and investigate the following segmentation
procedure:

Initialization: The user provides a starting point inside the
object to be segmented. Automatically, a sphere inside
the object to be segmented with center at the starting
point is generated.

Segmentation: During the evolution of AC model the
sphere expands towards the boundary of the object un-
til boundaries or self intersection (for instance topol-
ogy changes) are detected. We perform segmentation,
that is the boundary detection, borrowing the ideas of
intelligent scissors (see (SH)). Given the costs of mov-
ing between neighboring pixels (for instance the ab-
solute value of the directional gradient between two
neighboring pixels), the intelligent scissors calculate
the minimal costs of moving from a user specified cen-
ter to all other points. The segmentation is the closest
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contour to the center where all pixels exceed a cost
threshold. Intelligent scissors are used to segment ob-
jects of different topology, for instance objects with
inclusions. In our AC model we use a cost model,
where the costs are evaluated along trajectories dur-
ing the evalution. These costs are certainly higher than
for intelligent scissors but it can be implemented more
efficiently in the context of AC models. The advantage
of intelligent scissors is that it can be implement more
stable. Since the step length of the AC model is not
restricted by the grid size of an underlying simplical
structure, our algorithm is computational efficient.

Post Processing: The contour is re parametrized using
Kazhdan’s algorithm and topology adapted.

The paper is organized as follows: the active contour seg-
mentation model with speed function motivated from intel-
ligent scissors is derived in Section 2. Section 3 is con-
cerned with the numerical implementation of the AC model.
Kazhdan’s algorithm for surface reconstruction is described
in the Section 4. Moreover, we present some numerical ex-
periments for segmentation of 3D clinical image data.

2. The Active Contour Model in 3D
Let I ∈ C1

0 (Ω, R) be a representation of intensities of an
image with image domain Ω ⊂ R3.

The continuous active contour model (see (TV)) consists
in calculating a sequence of parametrized surfaces

(St : Γ→ Ω)t≥0, Γ ⊂ R2

which for t → ∞ approximates the segment of the object
of interest. Following (CM) we use physical considera-
tions and derive an evolutionary partial differential equa-
tion where a surface evolves like a rubber skin of a balloon
which is blown up. We use the momentum equation

∂St

∂t
= ft on Γ . (1)

The forcing term is modelled as ft = kt(f int
t + fext

t ):

1. f int describes an internal force, which physically sim-
ulates a steady air flow into the balloon. Neglecting
other forces this results in a steady expansion in nor-
mal direction to the surface

f int
t = ~nt .

Here ~nt denotes the outer unit normal vector to the sur-
face St.

2. An external force, the surface tension, which depends
on the shape of the balloon and is given by

f int
t = ∆St.

This simulates the forces on the rubber skin. For seg-
mentation application this enforces a smooth surface.

3. The indicator function

kt : Γ→ {0, 1} ,

is used to ensure that the contour does not move across
edges and corners. For modelling kt we use a bound-
ary indicator Ψcost

t for the image, a smoothness indica-
tor of the surface Ψcurv

t and an indicator for self inter-
sections. Let (u, v) ∈ Γ, then in case Ψcost

t (u, v) and
Ψcurv

t (u, v) do not exceed a certain threshold we as-
sume that there do not occur self intersections, and we
set kt(u, v) = 1, otherwise we put kt(u, v) = 0. The
later enforces termination of the evolution at (u, v) ∈
Γ.

We use the following boundary indicator function

Ψcost
t : Γ→ R ,

(u, v)→
∫ t

0

max
{

0,

〈
∇I(Sr),

∂Sr

∂t

〉
(u, v)

}
dr

which is motivated from segmentation with intelligent
scissors (SH). Intelligent scissors are hybrid indicator
functions combining region based and gradient based
segmentation. A typical examples of gradient based
segmentation is Canny’s edge detector (Can) and an
example of a region based segmentation technique is
Mumford-Shah segmentation (MS). The functional
Ψcost takes into account the sum of absolute values
(costs) of all gradients along a trajectory. This is differ-
ent to intelligent scissors where the path with minimal
costs is selected, while we follow the path of evolution
of the surface. We restrict our attention to the evolution
along trajectories of the surface evolution since this al-
lows 3D real time segmentation. We observed, that for
our application of filtering ultrasound data (see below)
this approach is more stable than pure gradient based
segmentation.

The smoothness control of the contour is achieved with

Ψcurv
t = Ht,

where Ht denotes the mean curvature of the surface
St.

The contour moves outwards until internal and external
forces balance, or kt becomes 0.

Discretizations of the forcing terms can be compared
with established AC models in the literature, like for in-
stance (CM) and (MT2); there the external forces are inter-
preted as spring forces (the forces serve as edge indicators
and are related to the strength of an edge).
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Figure 1: A small triangulated sphere is placed inside the
object of interest.

3. Numerical implementation of the
balloon model

Initially, we use a regularly triangulated sphere S0 in R3

with 102 vertices and 200 triangles centered around a user
supplied point, which is completely contained in the object
of interest. Let P be a vertex of the mesh of the contour St.

In the numerical implementation the derivatives in the
active contour model (1) are approximated as follows:

• We use the following approximation of the time deriva-
tives in the evolustion process:

∂St

∂t
(u, v) =

1
h

(Sn+1(u, v)− Sn(u, v)))

if
Sn(u, v) = Shn(u, v).

That is, we use an explicit Euler method. An explicit
Euler method is considered to be inefficient in terms
of numbers of iterations, however for this particular
application where the cost functional is dependent on
the trajectory, (semi-)implicit methods are inpractical.

• The Laplacian of the surface at P = Sn(u, v) is ap-
proximated by the umbrella vector (see (KCVS)):

U(P ) =
1

|NV (P )|
∑

Q∈NV (P )

(Q− P ),

where NV (P ) = {neighbor vertices of P}.

• The normal vector to the triangulated surface at P is
approximated by the normalized mean of normal vec-
tors of the neighboring triangles:

~nn(P ) =

∣∣∣∣∣∣
∑

∆∈NT (P )

~nn
∆

∣∣∣∣∣∣
−1 ∑

∆∈NT (P )

~nn
∆, (2)

where ~nn
∆ is the outer normal vector of the triangle ∆

and NT (P ) is the set of triangles with vertex P . The
normal vector is unique up to a sign. If in addition the
mesh is given an orientation at t = 0, the orientation
is preserved as long as no topology changes occur, and
the outer normal vectors are uniquely specified during
the evolution.

• The boundary indicator function Ψcost is approxi-
mated as follows:

Ψn,cost =
1
n

(
n∑

i=1

max
{

0,

〈
∇hI(Sn),

∂Sn

∂t

〉})

where∇hI is a finite difference approximation of gra-
dient of I . Let P and Q be two vertices of the mesh,
then for each point R on the edge

eP,Q = {tP + (1− t)Q|0 < t < 1} ,

the mean curvature Ht can be approximated by (see
(Sul))

Ht(R) = |(Q− P )× ~n
(n)
∆1
− (Q− P )× ~n

(n)
∆2
|

Here, ~n
(n)
∆i

denote the outer unit normals on the two
adjacent triangles to eP,Q.

During the numerical evaluation of AC we store an array At,
which marks all voxels inside the contour at time t. Using
this array we can detect self intersections by checking, if the
next evolution step will move a mesh point into a marked
voxel.

Using the above numerical approximations the evolution
of the nodes is given by

S(n+1) = S(n) + hk(n)(λU(S(n)) + µ~n(n)) on Γ.

In our numerical implementation, we additionally imple-
mented a re meshing scheme (refinement and coarsening)
to get regular triangles during the iteration. This ensures
higher accuracy of the umbrella vector approximating the
surface Laplacian and of the normal at the vertex points.
Both approximations are inaccurate in case of obtuse trian-
gles or highly varying triangle sizes at a vertex.

Refinement and coarsening is implemented as follows:
If the length of an edge e exceeds a certain user-defined pa-
rameter, a refinement of the two neighbor triangles is per-
formed. Vice versa, it if the edge length is smaller that an-
other threshold then coarsening is perormed. The two algo-
rithms read as follows:

Algorithm: REFINEMENT

Given triangular mesh (V,E, F ) and lower length bound ε.
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Figure 2: If the edge e appears to be too long, vertex R and
lines PR, RQ are inserted to subdivide the triangles.

Figure 3: If two points are closed, they are melted.

WHILE {e ∈ E | length(e) > ε} 6= ∅
S, T ← endpoints(e)
P,Q← opposite vertices(e)
R← 1

2 (S + T )
V ← V ∪ {R}
E ← E\{(S, T )}
E ← E ∪ {(P,R), (R,Q), (S, R), (R, T )}
F ← F\{(P, S, T ), (Q,T, S)}
F ← F ∪ {(P,R, S), (Q,S, R), (T,R, P ), (Q,R, T )}

END WHILE

Algorithm COARSENING

Given a mesh (V,E, F ) and upper distance bound ε.

WHILE {e ∈ E | length(e) < ε} 6= ∅
P,Q← endpoints(e)
S, T ← opposite vertices(e)
R← 1

2 (P + Q)
V ← V \{P,Q}
V ← V ∪ {R}
E ← E\{(S, P ), (S, Q), (P, T ), (Q,T ), (P,Q)}
E ← E ∪ {(S, R), (R, T )}
F ← F\{(S, P,Q), (T,Q, P )}
replace coordinates P and Q by R in each triangle

END WHILE

Some results of the active contour model are presented
in Figure 4.

4. Third step: Topology changes
The AC contour model described in the previous section did
not allow for topology changes. In fact whenever topology

(a) (b)

(c) (d)

Figure 4: In (a) and (b), the end of the balloon evolution is shown
for the cyst example. The evolution result for the torus can be seen
in (c) and (d). All these four meshes are still homeomorphic to a
sphere.

changes are predicted, the iteration is locally terminated.
Therefore the result of the AC model the balloon evolution
is homeomorphic to a sphere. An example for the result of
the AC model is shown in figure 4.

In the following we present an algorithm that allows to
reconstruct the correct topology of surfaces of genus g > 0
from the output of the AC model.

Let P1, . . . , PNterm denote the mesh points of the sta-
tionary surface of the AC model. Moreover, we denote by
~n1, . . . , ~nNterm

the weighted normals at the mesh points,
computed with formula (2). In practice the informations on
the mesh points and their weighted normals is sufficient to
uniquely determine the mesh surface. However, there can
occur situations when the mesh is not uniquely determined,
which in a mathematical notation means that for each mesh
point Pi there exists a scalar µi such that∑

∆∈N 1
T (Pi)

~n∆ = µi

∑
∆∈N 2

T (Pi)

~n∆. (3)

The set of configurations {P1, . . . , PNterm} admitting
such a relation is a finite intersection of a finite union
of codimension-2-subspaces of R3Nterm and hence has
Lebesgue measure zero. If the mesh after the balloon evolu-
tion encloses a flat region, the upper mentioned ambiguities
do not influence the shape of the mesh. Otherwise we can
think of the vertices as a random sample of surface points,
such that the upper relation is not satisfied. These consider-
ations motivate to use as mesh information just points and
normals.

Given the mesh after the balloon evolution, to approx-
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imate the surface in a topological correct form, we distin-
guish beetween two types of vertices:

1. The flow of a vertex has been stopped during the AC
evolution since a self intersection has been detected.
Such a vertex must be discarded as an interior point of
the object.

2. In all the other cases, a vertex is considered to be part
of the boundary of the object.

The following procedure shows how to remove vertices of
type 1 which belong to the interior of the object. For this
purpose the mesh is first opened and afterwards remeshed.

Opening of mesh for topology adaption
A procedure for opening and updating of the normal is as
follows:

• [1] Mark all triangles which contain a vertex of type 1.

• [2] For all vertices P contained in a marked trian-
gle, update the surface normals: Set NT (Pi)) =
{triangles incident to Pi, not marked}, and

nPi =

∣∣∣∣∣∣
∑

∆∈NT (Pi)

~n∆

∣∣∣∣∣∣
−1 ∑

∆∈NT (Pi)

~n∆

• [3] Delete all marked triangles and vertices of type 1
from the mesh.

We obtain a meshed surface with boundaries and update the
normals of the vertices which had a neighboring triangle
which has been cut out.

The result of the opening procedure is shown in figure 5.

The remeshing algorithm
We discard all the edges of the mesh after the opening pro-
cedure, such that only surface points and their normals re-
main.

We compute the topology adapted mesh with vertices
and outer unit normals following the mesh reconstruction
method described in (Kaz). To be self-contained, we shortly
summarize this algorithm, the features and adapt it to our
purposes.

Let P1, . . . , PN denote the remaining points on the sur-
face after the opening procedure, and ~n1, . . . , ~nN the cor-
responding outer unit normals. Moreover, let M ⊂ R3 de-
note the object of interest. We approximate the indicator (or

(a) (b)

(c) (d)

Figure 5: Opening Algorithm: vertices and triangles at places of
self-intersection are discarded. The remaining vertices and trian-
gles are remeshed.

characteristic) function 1M of the set M by computing the
fourier series expansion of 1M . For this purpose, let

1̂M (k) =
∫
M

e−i〈k,x〉dx

be the k-th Fourier coefficient of 1M , k ∈ Z3.
Moreover, for x ∈ R3, let

Fk(x) =


ik1
|k|2 e−i〈k,x〉

ik2
|k|2 e−i〈k,x〉

ik3
|k|2 e−i〈k,x〉

 .

This function satisfies

divFk(x) = e−i〈k,x〉, k ∈ Z.

Therefore, by Stokes’ Theorem, we have∫
M

e−i〈k,x〉dx =
∫

∂M

〈Fk(p), ~n(p)〉 dp.

Therefore, by using Monte-Carlo-Approximation we find

∫
∂M

〈Fk(p), n(p)〉 dp ≈ c(M)
N

N∑
i=1

〈Fk(Pi), ~ni〉 .

Here c(M) denotes the surface area of M , a constant which
actually need not be computed for what follows.

To summarize, we have shown that for every x ∈ R3
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(a) (b)

(c) (d)

Figure 6: After remeshing, the mesh shown in (a) and (b) is ob-
tained, (c) and (d) show the result for the torus. Note that both
surfaces have genus 1, hence a topological change has taken place.

1M (x) =
∑

k∈Z3
1̂M (k)ei〈k,x〉

≈ const
∑
k∈Z3

N∑
i=1

〈Fk(Pi), ~ni〉︸ ︷︷ ︸
=:1̃M (x)

.

Following (Kaz), an approximation of the characteristic
function 1M can be calculated using the mean value µ =
E(1̃M ) and by appropriate thresholding

1M (x) ≈
{

1, 1̃M (x) ≥ µ
0, 1̃M (x) < µ.

Once the indicator function of the object has been com-
puted, the surface mesh can be computed with the marching
cubes algorithm, see (LC1).

Figure 6 illustrates the algorithm for topology adaption
and the result obtained after applying the marching cube
algorithm.

5. Results and Discussion
We tested our algorithm with artificial and real 3D voxel
data. Wo have considered two examples showing a cyst in
a kidney and an artificial torus shown in Figures 3 and 4-4.
During biopsy a needle has been sticked into the cyst. Since
the needle penetrates the object, mathematically we might
say that this object has genus 1. The sequence of pictures
shows

• the original voxel image,

(a)

(b)

Figure 7: (a) Zoom into the cyst mesh. (b) The segmentation of
the torus is equally good in regions where no topological change
occured.
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• the voxel image filtered (which is applied before seg-
mentation to stabilize the algorithm),

• the small sphere is placed inside the object for initial-
ization (is the single user interaction),

• the final result of the AC evolution (the surface is still
homeomorphic to a sphere),

• the sphere points which were stopped because of
threatening self-intersections are discarded,

• the surface mesh after reconstruction by normals and
the marching cubes algorithm,

• the final segmentation result.

We computed the two examples on a Pentium 4 Computer
with 2 GB RAM and 3,5 GHz CPU.

While Step 2 took approximately 8 seconds for the cyst
and 5 seconds for the torus, the remeshing step 3 was done
in ca. 0.1 seconds in both cases.

The drawback of our method can be seen in figure 4(b).
In regions of topological change, the segmentation is a bit
imprecise. This is a consequence of the curvature control.
At the end of the evolution the deformed sphere fills the
object up to small pieces at the boundary. Discarding in-
tersection triangles, the normals of the resting triangles on
the boundary of the opened mesh point slightly backwards,
away from the boundary. Therefore, the torus is a bit thin-
ner in this region. One possible solution to this problem
might be a second usage of the first step, now blowing up
the present (topologically correct) surface.

6. Summary and Future Work
In this paper we have proposed a new approach for active
contours which allows for topology adaptations. The algo-
rithms consists of two steps, and AC model which supresses
topology changes and a topology adaptions using Kazhdans
algorithm and a marching cube algorithm. The AC model is
time efficient since it evolves a surface withour using an un-
derlying grid structure. In practical applications we applies
the segmentation algorithm to filtered data. The topic of ad-
equate filtering has not been addressed in this paper but is
important to achieve relyable results. As a future work we
intend to study adaptions of the contour where the topolog-
ical adaptation has taken place.
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