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Abstract. In this paper we present a variational method for determin-
ing cartoon and texture components of the optical flow of a noisy image
sequence. The method is realized by reformulating the optical flow prob-
lem first as a variational denoising problem for multi-channel data and
then by applying decomposition methods. Thanks to the general formu-
lation, several norms can be used for the decomposition. We study a
decomposition for the optical flow into bounded variation and oscillat-
ing component in greater detail. Numerical examples demonstrate the
capabilities of the proposed approach.

1 Introduction

Let be given Ω ⊆ R2, a rectangular domain, and let the spatial-temporal function
f : Ω× [0,∞)→ R be a representation of a continuous image sequence. The goal
of this work is to apply image decomposition methods to separate the optical
flow belonging to f in texture and cartoon parts.

For this purpose we first review on optical flow estimation and decomposition
methods.

Optical flow estimation.
Optical flow estimation is used to determine the motion in an image sequence
by tracking pixels of constant intensity. For an excellent overview on optical
flow estimation we refer to [11]. The standard optical flow model is differential
and based on a Taylor series expansion, requiring that f ∈ C1(Ω × [0,∞); R2).
The optical flow is a characteristics w = (w1, w2)T , w1 = w1(x1, x2, t), w2 =
w2(x1, x2, t) of the differential equation

ft + fx1w1 + fx2w2 = 0 for (x1, x2) ∈ Ω, t ∈ [0,∞) . (1)
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In mathematical terms characteristics are the paths of constant intensity. Vari-
ational optical flow methods are based on least squares formulations, consisting
in minimization of the functional

w → S(w) :=
1
2
‖ft + fx1w1 + fx2w2‖2L2(Ω) . (2)

The minimization problem is ill-posed, which is usually overcome by adding
a convex regularization term R to S. For λ > 0, the regularized optical flow
problem consists in minimization of

w → 1
λ
S(w) +R(w) . (3)

Optical flow methods have been pioneered in [12]. There, the squared L2-norm
of the gradient is used for regularization and therefore the method consists in
minimization of

w → 1
λ
S(w) +

1
2
‖∇w‖2L2(Ω;R2) . (4)

This regularization approach has the drawback that the computed optical flow
field w is not aligned with edges in f1 and f2. To overcome this drawback gen-
eralized regularization functionals R have been considered in the literature. See
for instance [9, 10, 19, 6], to name but a few. An extensive survey on variational
methods in optical flow estimation is given in [18]

Image decomposition models.
Recently, decomposition models of gray-value images into structural and textural
components have been studied [14, 16, 15]. Generally speaking, for an image I,
these models consist in minimizing the functional

(u, v) 7→ 1
2λ
‖u+ v − I‖2 +NU (u) + γNV (v) over u ∈ U , v ∈ V (5)

The minimizer (u, v) of (5) is considered the structural and textural component
of I. In [4], various spaces U (such as BV (Ω), the Sobolev spaces W 1,p

0 (Ω), and
the homogeneous Besov space U = Ḃ1

1,1) with associated seminorms NU and
duals V = U∗, NV = (NU )∗ have been examined. As it is reported there, the
choice U = BV (Ω) and NU the total variation seminorm is very interesting,
since the dual of the total variation seminorm approximates Meyer’s G-norm
[14]. The G-norm is suitable to model texture, because it takes small values on
oscillating functions.

Optical flow decomposition models.
Quite recently, there have been established decomposition models for optical flow
models. In particular, for analyzing experimental fluid flow data, decomposition
into solenoidal components (div w) and vortices (curl w) of the flow w are
calculated (see [13, 21, 20]). There, minimizers of functionals of the form

S(w) + λd

∫
Ω

|∇div w|pddxdy + λc

∫
Ω

|∇curl w|pcdxdy + γ

∫
∂Ω

(∂nw)2ds (6)
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with pd, pc ∈ {1, 2} are used for optical flow decomposition.
A duality based model for optical flow estimation is proposed in [22]. Functionals
of the form

Eθ(u,v) =
∫
Ω

{∑
d

|∇ud|+
1
2θ

∑
d

v2
d + λ |ρ(u + v)|

}
dx (7)

are minimized. Here, u = (ud)d and v = (vd)d are flow fields, |ρ| is a data
fidelity function, being small if u+v solves the optical flow equation, and λ > 0,
θ > 0 are weighting parameters. The arising optical flow w = u + v is implicitly
decomposed into a component u of small total variation and a component v of
small L2-norm.

Outline of the paper.
In this paper we apply the variational decomposition models of [4] to optical flow
problems. To do so, we first reformulate the optical flow problem as an image
denoising problem for vector valued data (cf. Section 2). In section 3 we recall
recent methods for image decomposition of color data [5] and decomposition
models for gray valued data [3] and adopt them for optical flow decomposition.
We present a general formulation of variational optical flow decomposition which
allows for utilizing various spaces and seminorms. In section 4, we particularly
focus on the total variation seminorm and Meyer’s G-norm. Moreover, a variant
of Chambolle’s algorithm (originally used for total variation denoising) is used
to compute numerical examples in section 5, which demonstrate the feasibility
of the proposed method.

2 Reformulation as a Denoising Problem and Optical
Flow Decomposition

The matrix A0 := ∇f(∇f)T has rank one, is positive semi-definite with non-
trivial kernel, which consists of all vector valued functions, which are orthogonal
to ∇f . Moreover, 〈u,v〉A0

=
∫
Ω

uTA0v is an inner product and by |u|2A0
:=

〈u,u〉A0
=
∫
Ω

uTA0u a seminorm is given. For further rewriting the optical
flow least-squares functional S, defined in (2), we use a full rank approximation
of A0, which is derived in two steps. We first regularize A0 by setting Ã :=
((A0)TA0 + εId)

1
2 . Here, Id denotes the identity matrix and ε > 0 is a small

regularization parameter. This way, Ã is positive definite. Second, we apply an
anisotropic evolution to the matrix Ã to enhance the structure of the underlying
image data. We solve

∂taij = div g(|∇A∇AT |)∇aij (8)

aij(0) = ãij (9)

It can be checked easily, that the matrix A is positive definite. Moreover, in [7,
17], it is reported that this preprocessing is very appropriate for optical flow
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estimation in noisy data. As a consequence, 〈u,v〉A =
∫
Ω

uTAv is a scalar
product (which we call A-scalar product) on the weighted L2-space

L2(Ω;A) =
{

u : ‖u‖A :=
√
〈u,u〉A <∞

}
. (10)

The optical flow least squares functional S, defined in (2), can now be approx-
imated by the squared of the A-norm of the optical flow residual. To see this
let

f̂ :=
1
|∇f |

(−ftfx,−ftfy)T (11)

Note that A1/2
0 , defined by spectral decomposition, equals 1

|∇f |A0. Then,∥∥∥A1/2
0 ·w − f̂

∥∥∥2

L2(Ω;R2)

=
∫
Ω

[(A1/2
0 ·w)1 − f̂1]2 + [(A1/2

0 ·w)2 − f̂2]2

=
∫
Ω

[
f2
xw1 + fxfyw2

|∇f |
+
fxft
|∇f |

]2
+

[
fxfyw1 + f2

yw2

|∇f |
+
fyft
|∇f |

]2

=
∫
Ω

f2
x + f2

y

|∇f |2
(fxw1 + fyw2 + ft)2

= ‖∇f ·w + ft‖2L2(Ω) ,

(12)

Using the notation
f̃ = A−

1
2 f̂ , (13)

we find that

‖∇f ·w + ft‖L2(Ω) =
∥∥∥A1/2

0 ·w − f̂
∥∥∥
L2(Ω;R2)

≈
∥∥∥w − f̃

∥∥∥
A
. (14)

This relation shows that the optical flow least squares functional S defined in (2)
can be approximated, and in fact replaced, by the squared norm of the weighted
L2-space defined in (10).

3 Decomposition Models for Optical Flow

From now on, taking into account (14), we regard the optical flow problem as
an imaging problem. The actual difference to standard image decomposition [3]
is that here the function to be filtered, f̃ , is vector valued and that weighted
norms are used in the fit-to-data functional.

Inspired by the work on variational decomposition of color data in [5] we
consider minimizing

L(u,v) :=
1

2λ

∥∥∥(u + v)− f̃
∥∥∥2

A
+NU (u) + γNV (v) ; (15)
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over u ∈ U and v ∈ V . Thus, optical flow w is decomposed into w = u+v. Sev-
eral spaces and seminorms can be considered for U, V,NU , NV to model structure
and texture component of optical flow, compare [4].

Total variation model.
Here, we take U = BV(Ω,R2), which is defined as the space of functions f ∈
L∞(Ω,R2), with the property

J(f) := sup
{∫

Ω

f · div(p) : p ∈ C1
c (Ω,R2 × R2), ‖p‖L∞(Ω,R2×R2) ≤ 1

}
<∞ ,

(16)

where C1
c (Ω,R2×R2) is the space of differentiable functions with compact sup-

port in Ω; moreover, ‖p‖L∞(Ω,R2×R2) is the L∞-norm of the Frobenius-norm of
p.

We take J(f), which is called total variation seminorm of f , as NU . The space
V consists of R2- valued distributions g, which can be written as g = div(p),
with p ∈ L∞(Ω,R2×R2). The divergence operator is a distributional derivative
here. On V we use for NV the G-norm [14], which is defined as

‖g‖G := inf{‖p‖L∞(Ω,R2×R2) : p ∈ L∞(Ω,R2 × R2), g = div(p)} (17)

The G-norm is suitable to model texture, because it takes small values on oscil-
lating functions.

Sobolev space model.
In this model, we choose U as the Sobolev space W 1,p

0 (Ω,R2) and NU as the
standard Sobolev seminorm (see [2] for a reference of general Sobolev spaces).
Moreover, we use for V the dual space of U , which is V = W−1,q(Ω,R2), where
q is the conjugate of p, and NV is the corresponding Sobolev-Norm.

Besov space model.
Here U = Ḃ1

1,1(Ω,R2) is the homogenous Besov space with norm NU (see also
[2]) and V is its dual Ḃ∞−1,∞(Ω,R2)

For gray valued images, as stated in [4], the total variation model gives the
most meaningful decomposition results of the three mentioned above. This is
why we concentrate on this case in detail and apply it for the decomposition of
optical flow.

4 Numerical Implementation

In the following section, we discretize the total variation model and derive nu-
merical algorithms for its minimization. From now on we only consider a discrete
and finite-dimensional setting.
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Discrete one-channel images are matrices U = (ui,j) of size M × N , rep-
resenting continuous images on Ω. Analogously, multi-channel images are ma-
trices of size M × N with vectorial entries ui,j = (u1

i,j , u
2
i,j)

T . We denote by
X := (R2)M×N the space of multi-channel matrices.

For a discrete matrix H = (hij) we define the discrete gradient ∇H =
(∇xH,∇yH)T as

∇xhi,j :=
{
hi+1,j − hi,j if i < M

0 if i = M
(18)

and

∇yhi,j :=
{
hi,j+1 − hi,j if j < N

0 if j = N
. (19)

The discrete total variation of a vector field u is defined by

J(u) =
∑
i,j

√
(∇xu1

i,j)2 + (∇yu1
i,j)2 + (∇xu2

i,j)2 + (∇yu2
i,j)2. (20)

Moreover, the discrete divergence operator of the tensor u is defined by

[div(u)]i,j =


u1
i,j − u1

i−1,j if 1 < i < M
u1
i,j if i = 1

−u1
i−1,j if i = M

+


u2
i,j − u2

i,j−1 if 1 < j < N
u2
i,j if j = 1

−u2
i−1,j if j = N

.

The discrete divergence operator, as in the continuous setting again denoted by
div, of u is defined as the discrete divergences of the components. For definition of
the discrete time derivative, we fix a small constant δt > 0. Given two subsequent
frames Uk, Uk+1 ∈ RM×N of discrete one-channel images, we define

∇tU =
Uk+1 − Uk

δt
. (21)

The discrete formulas in (18), (19) and (21) give approximations of f̃ as defined
in (13) and hence also of A0 and its regularization A. The A-scalar product in
L2(Ω;A) as defined in (10) is then approximated by

〈u,v〉X =
∑
i,j

uTi,jAi,jvi,j , (22)

where Ai,j ∈ R2×2.

Approximation of the discrete G-Norm by the dual J∗ of J .
For definition of the G-norm, we set

K = {v ∈ X : there exists p = (p1, p2) ∈ X ×X such that v = div(p)} (23)
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For v ∈ K, the discrete G-norm ‖·‖ is then given by

‖v‖G = inf {‖p‖∞ : p ∈ X ×X, v = div(p)}. (24)

Here ‖p‖∞ denotes the l∞-norm of the Frobenius-norm of the matrix p. This
definition of the discrete G-norm is difficult to implement numerically. For nu-
merical purposes it is convenient, as proposed in [4], to use the Fenchel dual

J∗(v) := sup{〈v, u〉 − J(u) : (u, v) ∈ X ×X} (25)

of J . Since J is a seminorm, an elementary calculation shows that there exists a
convex, closed set K1 ⊆ X such that

J∗(v) =
{
∞ if v ∈ K1

0 otherwise . (26)

Similar to [4], one can show that K1 in (26) is given by

K1 = {div(p) : p ∈ X ×X and ‖p‖∞ ≤ 1} (27)

Because of this characterization, J∗ is much easier to compute than the G-
norm. The close relationship between G-norm and J∗ is revealed by the following
theorem:

Theorem 1. Let α, λ, γ > 0. Consider the following minimization problems
over X ×X:

(A) minu+v=f̃ J(u) + α ‖v‖G
(B) minu+v=f̃ J(u) + J∗(v

γ )
(C)

min
(u,v)

Hλ,γ(u,v) :=
1

2λ

∥∥∥u + v − f̃
∥∥∥2

X
+ J(u) + J∗(

v

γ
) (28)

Then minimizers for all three problems exist, and for (C) it is unique. Moreover,
there exists a relation between α and γ, such that a minimizer of (A) is a mini-
mizer of (B) and vice versa. Moreover, as λ ↓ 0, the minimizers of (C) converge
to a minimizer of (B).

Proof. Here, we only prove existence and uniqueness of a minimizer of (C),
following the proof in [3] for gray valued images. The other statements can then
be proven analogously and are therefore omitted.

Existence of a minimizer of Hλ,γ : The set X×γK is closed in the finite dimen-
sional space X × X and the restriction of Hλ,γ to X × γK is continuous.
Therefore lower semicontinuity of Hγ,λ holds, that is, for every sequence
(uk,vk) ∈ X ×X

Hγ,λ(u,v) ≤ lim inf
(uk,vk)→(u,v)

Hγ,λ(uk,vk).
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Next we show coercivity for Hλ,γ on X ×X, i.e. we prove that

Hλ,γ(u,v)→∞ if ‖(u,v)‖X×X →∞ .

Let (u,v) ∈ X × γK. By the definition of γK there exists p ∈ X ×X such
that div(p) = v and ‖p‖∞ ≤ γ. Therefore we have

‖v‖2X =
∑
i,j

div(p)Ti,jAi,jdiv(p)i,j ,

Since p is uniformly bounded with respect to v, we see that ‖·‖X is bounded
on γK. Therefore, if ‖(u,v)‖X×X → ∞ with v ∈ γK, it follows that

‖u‖X → ∞, hence Hλ,γ(u,v) ≥
∥∥∥u + v − f̃

∥∥∥
X
→ ∞, which gives coerciv-

ity. In summary, since Hλ,γ is lower semi-continuous and coercive in X ×X,
a minimizer for (15) exists.

Uniqueness of a minimizer of Hλ,γ : The functional Hλ,γ(u,v) is strictly convex
on X×γK up to direction (u,−u). So it might happen for some t > 0, that
both (u,v) and (u+tu,v−tu) are (global) minimizers of (15). We show that
in this case, u = 0, which means that the two minimizers coincide. Indeed,
from Hλ,γ(u + tu,v − tu) = Hλ,γ(u,v) + tJ(u) and the assumption that
both are global minimizers, we conclude that J(u) = 0. From the definition
of the discrete total variation it follows that u is a constant. Moreover, since
u ∈ γK, there exists p ∈ X ×X such that u = div(p). Therefore∑

i,j

ui,j =
∑
i,j

div(p)i,j = 0.

The last equality holds, since each summand occurs exactly four times in∑
i,j div(p)i,j , twice with a plus, twice with a minus sign.

Theorem (1) enables us to discretize the G-norm in functional(15) by J∗ and
minimize Hλ,γ numerically. Using Equation (26), Hλ,γ(u,v) can be expressed in
the more convenient form

Hλ,γ(u,v) =

{
1
2λ

∥∥∥u + v − f̃
∥∥∥2

X
+ J(u) if v ∈ γK1

∞ otherwise
. (29)

In the following we investigate an alternating direction algorithm for minimiza-
tion of Hλ,γ . It consists of the following two steps:

1. Choose v(0) ∈ γK1

2. For k = 0, 1, 2, . . .
– Calculate a minimizer u(k) ∈ γK of

1
2λ

∥∥∥u + v(k) − f̃
∥∥∥2

X
+ J(u) . (30)
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– Calculate a minimizer v(k+1) of∥∥∥u(k) + v − f̃
∥∥∥2

X
. (31)

– Continue

We state convergence of the iteration process. The proof is omitted here, since
it is again along the lines in [3].

Theorem 2. The sequence (u(k),v(k)) converges to the unique solution (û, v̂)
of (28).

We stress that ṽ solves (31) if and only if w̃ = f̃ − u− ṽ is a minimizer of the
functional

w → 1
2γ

∥∥∥u + w − f̃
∥∥∥2

X
+ J(w) . (32)

This formulation actually shows that also minimization with respect to v can be
realized by total variation denoising. Therefore both iteration steps of the alter-
nating direction algorithm can be realized by total variation denoising, which can
be implemented with a variant of Chambolle’s projection algorithm [8]. There-
fore, in the sequel, we only consider total variation denoising for vector valued
data uδ, which consists in minimization of

1
2λ

∥∥u− uδ
∥∥2

X
+ J(u) . (33)

Following Chambolle’s algorithm [8], we derive an iterative procedure for mini-
mizing (33).

Let

p(0) := (p1(0),p2(0)) :=
(
p1,1(0) p1,2(0)
p2,1(0) p2,2(0)

)
= 0 .

For k = 0, 1, 2, . . . set
q(k) =

[
div(p(k))− uδ/λ

]
Each entry Ai,j of the matrix A is a 2× 2-matrix, which is positive definite.
We set

Si,j := A
1/2
i,j ,

the root of A. Then componentwise

p1(k + 1) =
p1(k) + τ

[
∇
(
S1,1q

1(k) + S1,2q
2(k)

)]
1 + τ |∇ (S1,1q1(k) + S1,2q2(k) + S2,1q1(k) + S2,2q2(k))|

(34)

and

p2(k + 1) =
p2(k) + τ

[
∇
(
S2,1q

1(k) + S2,2q
2(k)

)]
1 + τ |∇ (S1,1q1(k) + S1,2q2(k) + S2,1q1(k) + S2,2q2(k))|

.

(35)
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Theorem 3. Let πλK the orthogonal projector onto λK, where K is as in (23).
If τ , as in (34) and (35), is chosen sufficiently small, then div p(k) converges
to πλK(uδ). The solution of (33) is given by

u = uδ − πλK(uδ) . (36)

Proof. The proof is along the lines of [8] and thus it is omitted here.

From Theorem 3 it follows that the minimizer uα of (33) satisfies

uα = uδ − λ lim
k→∞

div p(k) .

This theorem completes the numerical analysis of the functional Hλ,γ .

5 Results

We performed numerical experiments on several image sequences, which are
publicly available at [1]. We decomposed the optical flow in the rubber whale
sequence (see Figure 1). The curtain and the two round pieces at the bottom
move to the left, while the other pieces move to the right, see (a). The moving
large structures, such as the fence and the two round objects, are captured in the
cartoon component (b), while for instance the curtain contains texture movement
in (d). In order to improve visibility, the (scaled) magnitude of the flow u and v
is shown in (c) and (e), respectively. The whole optical flow field is shown in (f)
and (g). In the Mini Cooper sequence shown in Figure 2, a man is closing the
trunk of a car (a). The cartoon part u of the optical flow consists of the moving
tailgate and the man (b). The magnitude of flow u is shown in (c). The slight
motion of the trees in the background is completely contained in the texture
component v of the optical flow, shown in (d). The (upscaled) magnitude of v is
given in (e).
These two examples show the advantages of our method quite well, separating
different kinds of movements in an image sequence.
In the Dimetrodon sequence shown in Figure 3, we examine directions of the
computed flow field and its decomposition in greater detail. The main direction
of movement of the head can be seen in flow field u in (c), where neighboring flow
vectors are often parallel. Oscillating patterns are captured in v shown in (d),
where the directions of the flow vectors can differ very much between neighboring
pixels.

6 Conclusion

We presented a general approach for decomposition of the optical flow of an im-
age sequence into structural and textural components. A variational framework
has been established, which allows to use various functionals for different kinds
of texture extraction. Numerical examples demonstrate the effectivity of total
variation norm, respectively G-norm, decomposition. In the future, we plan to
study other possible seminorms in (15) as well and plan to compare the outcome
of the different methods.
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Fig. 1. (a) On top: Frame 10 of the rubber whale sequence (584 × 388 pixels). (b)
Top left: Cartoon part u of the flow between frame 10 and frame 11. (c) Top right:
Norm of cartoon part u. (d) Middle left: Texture part v. (e) Middle right: Norm
of texture part v. (f) Bottom left: The flow field w = u + v. (g) Bottom right:
Norm of the flow field w = u + v.
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Fig. 2. (a) On top: Frame 10 of the Mini Cooper sequence (640 × 480 pixels). (b)
Top left: Cartoon part u of the flow between frame 10 and frame 11. (c) Top right:
Norm of cartoon part u. (d) Middle left: Texture part v. (e) Middle right: Norm
of texture part v. (f) Bottom left: The flow field w = u + v. (g) Bottom right:
Norm of the flow field w = u + v.
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Fig. 3. (a) Top left: Frame 10 of the dimetrodon sequence (584 × 388 pixels). (b)
Top right: A detailed view of the head in the upper middle of (a). (c) Bottom left:
Detailed view of cartoon part u of the flow field between frame 10 and frame 11. (d)
Bottom right: Detailed view of texture part v.
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