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Abstract. We consider image registration, which is the determination of a

geometrical transformation between two data sets. In this paper we propose

constrained variational methods which aim for controlling the change of area
or volume under registration transformation. We prove an existence result,

convergence of a finite element method, and present a simple numerical example

for volume-preserving registration.

1. Introduction

Registration is concerned with the determination of a geometrical transformation
that aligns points in one view of an object with corresponding points in another
view of the same or a similar object. There exist many applications, particularly in
medical imaging, which demand for registration. Examples include the treatment
verification of pre- and post-intervention images, the study of temporal series of
cardiac images, and the monitoring of the time evolution of a contrast agent injec-
tion subject to patient motion. Another important application is the combination
of information from multiple images, acquired using different modalities such as
computer tomography (CT) and magnetic resonance imaging (MRI), a technique
also known as fusion. In the last two decades, computerized non-rigid image reg-
istration has played an increasingly important role in medical imaging, see, e.g.,
[21, 27, 12, 35, 24] and references therein.

Recent work on image registration concerns taking into account prior information
on the geometrical transformation. For example, many applications require the
transformation to be one-to-one. In this context two major directions have been
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suggested. One approach facilitates diffeomorphic or geodesic splines; see, e.g.,
[32, 9, 4, 23, 22, 33, 19]. The underlying idea is to add time as a further dimension
and to establish an energy minimizing flow of correspondent particles. An additional
regularization enforces that particles can not cross and as a consequence, the flow
and hence the transformation is one-to-one. These techniques are of particular
interest for constructing transformation groups and for performing shape analysis.
However, these techniques require an additional time integration and do not provide
full control on the transformation. The second approach is based on constrained
optimization. Introducing the displacement u with y(x) = x+u(x), the constraints
are based on the determinant of the Jacobian

C(u)(x) = det (∇(x+ u(x))) for almost all x .

Equality C(u)(x) = 1 as well as inequality k(x) ≤ C(u)(x) ≤ K(x) constraints
have been discussed in the literature [16, 18]. The choices 0 < k(x) ≤ K(x) < ∞
provide lower and upper bounds for volume changes. In contrast to the diffeo-
morphic approach, the equality constrained approach guarantees that the volume
of tissue is constant under transformation. The inequality approach enables the
usage of pre-knowledge. For example, one could restrict on subregions displaying
bones with k(x) = K(x) = 1 and on subregions displaying soft-tissue with some
relaxed bounds. It is worthwhile noticing, that there is a connection to local rigidity
constraints, where with Id the identity matrix in R d, the constraints are essentially

Crigid(u)(x) = ∇u>(x)∇u(x)− Id = 0.

Volume preservation and local rigidity have been treated in terms of soft-constraints
and hard constraints. For soft-constraints, an appropriate penalty term is added
to the overall objective [30, 31, 25, 34], whereas hard constraints are much more
delicate. For the local rigidity approach, it has been shown that a Lagrangian
framework leads to linear constraints and thus enables an efficient numerical im-
plementation and analysis [15]. Numerical schemes have been proposed for the
non-linear and differential volume preserving hard constraints [16, 18]. However,
existence theory has only be established for a finite dimension setting.

In this paper, we use variational techniques to derive an existence theory for a
minimizing element of the constrained optimization problem in an infinite dimen-
sional setting. From a mathematical point of view the work most closely related
work is [8], where variational regularization methods motivated from nonlinear elas-
ticity have been used. However, there the minimization problem is treated in an
unconstrained setting.

This paper is organized as follows. In Section 2 we introduce the registration
setup for this paper, then we quote some important results from the calculus of
variation, that are relevant for this work. Using them we prove existence of min-
imizers of the constrained regularization functionals for registration in Section 4.
Theorem 4.1 indicates that in the volume constrained case, the spacial dimension
determines the choice of the regularization functional strongly. A central part of
this work is the convergence analysis of the finite dimensional approximation of the
minimization problem. In Section 5 we explain how to approximate the constraints
and the involved functionals, and show in Theorem 5.5 that under certain condi-
tions, the approximated regularized solution converges to a solution of the original
registration problem. At the end we give a brief outline how we implemented the
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area/volume preserving image registration problem and show a simple numerical
result.

2. The Registration Setup

Given a reference image I0 and a template image I1, which are assumed to be
compactly supported functions I0, I1 : Ω → R , where Ω =]0, 1[d and d = 2 or
d = 3. Hence, I1(x) is a gray value at spatial position x and I0(x) = I1(x) = 0
for all x 6∈ Ω. The objective is to find a displacement u = (u1, . . . , ud) : Ω → R d

such that the distance between the transformed template image I1(id+ u) and the
reference is small in an appropriate sense. In principle every integral based distance
measure can be used; see, e.g., [29, 20, 24] for an overview. The most widely used
distance measure is the squared distance

(1) S(u) =
∫

Ω

|I1(x+ u(x))− I0(x)|2 dx .

Minimizing the distance measure is known to be ill-posed, in the sense that the min-
imizers of the distance measure are non unique. Therefore regularization becomes
inevitable. For regularization, in this paper we focus on regularization functionals
involving gradients, for instance

R(u) =
∫

Ω

|∇u|p dx, p ∈ N ,

where |∇u|p :=
∑d
i,j=1

∣∣∂iuj∣∣p. Another choice for regularization functional (elastic
potential) is discussed in Remark 3. The considered regularized registration problem
then read as follows

(2) minimize T (u) := S(u) + αR(u) subject to u ∈ A ,

where A is an intersection of two of the following sets of constraints:

Apb := {u ∈W 1,p | ‖u‖Lp ≤ b}, b <∞} ,(3)

As,pE :=
{
u ∈W s,p | C(u) = 1 a.e. in Ω

}
,(4)

As,pI :=
{
u ∈W s,p | k ≤ C(u) ≤ K a.e. in Ω

}
.(5)

The set of bound constraints Apb is very general. In particular bounding the dis-
placement by twice the diameter of Ω does not provide a constraint to the regis-
tration problem at all. The set As,pE (E stands for equality constraints) is the set
of all volume preserving transformations. The elements of the sets As,pI allow for
some tolerance for local volume preservation. Note that for the particular choices
K(x) ≡ k(x) ≡ 1 the equality constraints are a special case of the inequality con-
straints.

Remark 1. For spatial dimension d = 1 and a smooth and differentiable displace-
ment u, the condition u ∈ A1,p

E implies u′(x) = 0 for all x ∈ Ω. Hence the only
feasible transformation is a translation y(x) = x + b with b ∈ R . For d = 2,
the situation is already much more complex. For example, any transformation
y(x) = x + u(x)T with u(x) = (0, g(x1))T does fulfill the constraints C(u) = 1,
independent on the choice of g:

C(u) =
∣∣∣∣ 1 0
g′ 1

∣∣∣∣ = 1 .
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In general, C(u) = 1 leads to non-linear differential constraints since the determi-
nant results in a polynomial of degree d in the partial derivatives of u. For example,
det (∇u) = u1

x1
u2
x2
− u1

x2
u2
x1

for d = 2.

3. The Variational Setup

The goal of this paper is to characterize and identify feasible choices and com-
binations of regularization functionals and set of constraints guaranteeing the ex-
istence of minimizing elements of problem (2). The main result in this section is
Theorem 4.1. The first part of this section concentrates on existence results in gen-
eral and the second part is dedicated to the set of volume constrained functions.
Theorem 3.3 states under which assumptions the constraint sets are weakly closed.

To formulate the results of this subsection we use the concept of Carathéodory
functions [7, page 74].

Definition 3.1 (Carathéodory [7]). Let Ω ⊂ R d be an open set and let f : Ω ×
R d × R d×d → R := R ∪ {±∞}. Then f is a Carathéodory function if

1. f(x, ·, ·) is continuous for almost every x ∈ Ω,
2. f(·, ξ, A) is measurable in x for every (ξ, A) ∈ R d × R d×d.

It is convenient to rewrite the functional T from (2) as

(6) T (u) =
∫

Ω

f(x, u(x),∇u(x)) dx,

with f : Ω × R d × R d×d → R , (x, u,A) 7→ f(x, u,A) . For example, choosing
R(u) =

∫
Ω
|∇u(x)|p dx results in f(x, ξ, A) = |I1(x+ ξ)− I0(x)|2 + α |A|p .

Finally, if second order derivatives are involved, we use the notation

T (u) =
∫
f(x, u(x),∇u(x), Hu(x)) dx ,

where the last component Hu stands for second order terms. Definition 3.1 extends
straightforwardly to the higher order case.

3.1. Existence Theorems in the Calculus of Variations. We summarize
conditions on f which ensure that the constrained problem (2) has a minimizing
element. The following results from [7, Chapter 3] are reviewed. For our registration
problem we have to modify these results a little bit, since boundary-settings in the
original problem are too strong for our application (see Remark 2 for the difference).

Theorem 3.2. Let f : Ω× R d× R d×d → R be a Carathéodory function satisfying
the coercivity condition

(7) f(x, u,A) ≥ β|A|p + γ(x)

for almost every x ∈ Ω, for every (u,A) ∈ R d × R d×d, for some function γ ∈
L1(Ω, R ), β > 0 and p > 1. Assume that f is convex in A. For u0 ∈ W 1,p,
let Ã ⊂ u0 + W 1,p

0 be a weakly closed set of admissible functions and T as in (6)
defined on W 1,p. Moreover, assume that there exists z ∈ Ã with T (z) < ∞, then
T (u) attains a minimum.

Proof. The central assumption is that the Carathéodory function f is convex with
respect to A. This is a sufficient condition for T to be weakly lower semi-continuous
in W 1,p [7, Section 3.3]. From this and the coercivity of f it follows that attains a
minimum on u0 +W 1,p

0 .
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Remark 2. A central assumption of Theorem 3.2 it is that the weakly closed set
Ã is a subset of u0 + W 1,p

0 . This means, that for u ∈ Ã, u = u0 on ∂Ω, hence in
our numerical implementation, we would have to set boundary conditions. Since
for our registration problem we do not know u0 and we do not want to fix u on
the boundary of Ω, hence we need to replace the condition Ã ⊂ u0 + W 1,p

0 my a
more reasonable condition, under which we still can proof existence of a minimizing
element (see blow).

In the original proof of Theorem 3.2 in [7, Theorem 4.1, p. 82] the condition
Ã ⊂ u0 + W 1,p

0 guarantees that a minimizing sequence (uk)k∈N is bounded in
the Lp-norm (via the Poincaré-inequality). However, in our application all elements
of A are bounded in the Lp-norm, hence it is sufficient to assume that the set of
admissible functions is a subset of W 1,p instead of u0 +W 1,p

0 . This implies that no
additional boundary conditions on the transformation have to be imposed.

To see that Apb is closed weakly closed in W 1,p, consider Apb for some b <∞. Note
that Apb is convex and closed in W 1,p. The mapping M : W 1,p → R , u→ ‖u‖Lp is
continuous. Thus A1,p

b is the pre-image of [0, b] under a continuous mapping, thus
it is closed with respect to the W 1,p-norm. Thus, since Apb is convex and closed in
W 1,p, it is weakly closed in W 1,p.

The previous theorem can be extended to higher order derivatives.

3.2. Weak Closedness of the Sets of Constraints. In the previous sub-
section, we showed existence of a minimizing element of the registration functional
assuming that the sets of constraints A are closed with respect to the weak topolo-
gies (see Theorem 3.2 and Remark 2). We now prove the weak closedness of the
sets As,pE ,As,pI as defined in (4) and (5), respectively.

Theorem 3.3.

1. For d ≥ 2 and p ≥ d, the sets A1,p
I ,A1,p

E are weakly closed with respect to the
W 1,p-topology.

2. The sets A2,p
I ,A2,p

E are weakly closed with respect to the W 2,p-topology.

Proof. For part (1) we distinguish the cases p = d and p > d. For p > d, the mapping
M : A1,p

I → L
p
d (Ω, R ), u 7→ C(u), is continuous with respect to the weak topology

on both W 1,p and L
p
d (Ω, R ); see [11, Section 8.2.4, Lemma, p. 454]. Hence, the set

A1,p
I is a pre-image of the closed set {u ∈ Lp/d : k ≤ C(u) ≤ K a.e. in Ω} under the

weakly continuous mapping M with respect to the weak topology on W 1,p. Thus
A1,p
I is weakly closed.
For p = d, we assume 0 < K ≤ B <∞ and define the set

B1,p := {u ∈W 1,p | ‖C(u)‖L∞ ≤ B}.

First we prove that B1,p is weakly closed with respect to the W 1,p-topology, then we
show that the mapping M : B1,p → Lq(Ω, R ), u 7→ C(u) is continuous with respect
to the weak topology on W 1,p and the weak topology on Lq. With this we can
argue as before, that A1,p

I is the pre-image closed set of a weakly closed mapping
and consequently it is weakly closed.

Every weak convergent sequence (uk)k in B1,p with weak limit u induces a se-
quence ck := C(uk) in L∞. Since supk∈N {‖ck‖L∞} ≤ B and according to the
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Alaoglu-Bourbaki-Kakutani Theorem, (ck)k contains a weak ∗ convergent subse-
quence (cki)i with a weak limit z ∈ L∞,

(8) ∀ φ ∈ L1(Ω, R ) : lim
k→∞

∫
Ω

C(uki)φ dx =
∫

Ω

zφ dx

From [7, Chapter 4, Theorem 2.6, p. 172] we know that for uk ⇀W 1,p u, C(uk) ⇀
C(u) weakly in D′(Ω), meaning that

∀ φ ∈ C∞0 :
∫

Ω

C(uk)φ dx→
∫

Ω

C(u)φ dx.

Moreover, since C∞0 (Ω) ⊂ L1(Ω) we have z = C(u) and thus C(u) ∈ L∞(Ω). Hence
B1,p is weakly closed.

Since Ω is bounded, L∞(Ω) ⊂ Lq(Ω) and Lq
′
(Ω) ⊂ L1(Ω), for 1 < q <∞, where

1
q + 1

q′ = 1. Hence for uk ∈ B1,p, C(uk) ∈ Lq, and thus (8) also holds for all φ ∈ Lq′ .
This implies that the mapping M is weakly closed with respect to the weak topology
on W 1,p and the weak topology on Lq. Thus A1,p

I ⊂ B1,p is the pre-image of the
closed set

{u ∈ Lq(Ω, R d) | k ≤ C(u) ≤ K a.e. in Ω}

under a weak continuous mapping. Hence, A1,p
I is weakly closed.

For the second statement we show that A2,p
I is weakly closed. Using again the

result in [7, Chapter 4, Theorem 2.6, p. 172] and the compact imbedding W 2,p ⊂
W 1, dpd−p one can proof that M : A2,p

I → L1+δ(Ω, R ), u 7→ C(u) is continuous with
respect to the weak topologies on W 2,p and L1+δ(Ω, R ). The set A2,p

I is thus the
pre-image of the closed set

{u ∈ L1+δ | k ≤ C(u) ≤ K a.e. in Ω}

under the weak continuous mapping M , and hence weakly closed.

4. Minimizing Elements for the Registration Problems

In the previous section we proved the weak closedness of the constraint sets. We
are now ready to prove the existence of minimizing elements for the registration
problem (2) with respect to the different constraints. According to Theorems 3.2,
it remains to check the following conditions for f (or f in case of higher order
regularization):

1. f or f is a Carathéodory function,
2. f or f satisfies the coercivity condition (7) or f(x, u,A,H) ≥ β |H|p, respec-

tively,
3. the admissible set of functions A ⊂ A1,p

b is weakly closed with respect to
W 1,p; A ⊂ u0 +W 2,p

0 is weakly closed with respect to W 2,p.

Theorem 4.1. Assume that I0 and I1 are continuous and that the sets A1,p
b and

As,pI are as in (3) and (5), respectively. For the following constrained image regis-
tration functionals there exist minimizing elements:

1. for d ≥ 2, p ≥ d, and

T (u) = S(u) + α

∫
|∇u|p dx→ min subject to u ∈ A1,p

I ∩ A
1,p
b ,
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2. for d ≥ 2, p ≥ 1, and higher order regularization

T (u) = S(u) + α1

∫
Ω

|∇u|p dx+ α2

∫
Ω

|H(u)|p dx→ min

subject to u ∈ A2,p
I ∩

(
u0 +W 2,p

0

)
. Here H(u) is the hessian of u.

Proof. Since the images I0 and I1 are assumed to be continuous, the functions f or
f are Carathéodory functions.

1. For d ≥ 2 and p ≥ d we have

f(x, ξ, A) = (I1(x+ ξ)− I0(x))2 + α |A|p ,

thus α |∇u|p ≤ f(x, u,∇u), and hence f is coercive in W 1,p. Moreover,
A1,p
b ∩A

1,p
I is weakly closed with respect to the W 1,p-norm; cf. Theorem 3.3.

According to Theorem 3.2, T attains a minimum.
2. For higher order regularization,

f(x, ξ, A,H) = (I1(x+ ξ)− I0(x))2 + α1|A|p + α2|H|p.

Since α2|H(u)|p ≤ f(x, u,∇u,H(u)) the coercivity condition is satisfied in
W 2,p. The set of admissible functions A2,p

I ∩ (u0 + W 2,p
0 ) is weakly closed

with respect to the W 2,p-norm; cf. Theorem 3.3. An application of a straight-
forward extension of Theorem 3.2 to higher order derivatives completes the
proof.

Remark 3 (Elastic Regularization Functional). Theorem 4.1 indicates that in our
existence analysis, the spacial dimension d influences the choice of the regularization
functional R strongly. The limiting factor in this existence result is the determinant
constraint, since the determinant is a polynomial of degree d. For example, the
probably most commonly used elastic regularization [1, 3, 2, 5, 14, 17] is given by

(9) Relas(u) :=
∑
i=1..d

∑
j=1..d

∫
Ω

(
λ1

2
∂ ui

∂xi

∂ uj

∂xj
+
λ2

4

(
∂ ui

∂xj
+
∂ uj

∂xi

)2
)
dx ,

with material parameters λ1, λ2 > 0. Using min {λ1/2, λ2/4}
∫

Ω
|∇u|2 ≤ Relas(u),

and Theorem 4.1, existence of a minimizing element for the volume preserving
constraint registration functional is only guaranteed for d = 2.

5. Finite Dimensional Approximation

In this section we study a finite dimensional approximation of the minimization
problem in (2). The main result of this section is stated in Section 5.3, where we give
necessary assumptions under which the solutions of the discretized minimization
problem converge to a solution of the original registration problem.

An index m is connected to the approximation of the images, an index n to
the approximation of the Sobolev spaces, and An are the approximated spaces of
functions, satisfying the constraints as explained in the next section.
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5.1. Approximation of the Minimization Functional. We assume that I0, I1 ∈
C0

0( R d, R ) and that the components of ∇I1 are bounded by CI1 := ‖∇I1‖L∞ . We
consider the following operator

(10) F : W 1,2 → L2( R d, R ), u 7→ I1(id+ u).

We approximate the images Il by piecewise affine functions such the approximated
image Il,m, satisfies ‖Il,m − Il‖2L2 ≤ δlm. The parameter m is connected to the
image-resolution. Moreover we define the approximated operator Fm by

(11) Fm : W 1,2 → L2( R 2, R ), u 7→ I1,m ◦ (id+ u).

Since we have assumed that the images Il are continuous, the operator F in (10)
is compact and satisfies a Lipschitz condition; cf. Lemma 5.1. This properties are
exploited in Theorem 5.5 which states convergence of the solutions of the approxi-
mated problem to a solution of the original problem.

In the following we consider the case of inequality constraints, i.e, the sets As,pI .

Lemma 5.1. Assume that I1 ∈ C0
0( R d, R ), and F, Fm as in (10),(11). Then

1. F is compact,
2. F is Lipschitz continuous: there exists CF > 0 such that ‖F (v)− F (u)‖ ≤

CF ‖v − u‖ ,
3. Assume that 0 < k ≤ det(id+ u) ≤ K, then

(12) ‖Fm(u)− F (u)‖2 ≤ k−1δ1
m for all u ∈ D (F ) ∩ A1,d

I .

Proof.
1. First we prove that F is compact. Assume therefore that we have a ‖·‖W 1,2-

bounded sequence {ui}, which defines a sequence {F i} in L2( R d, R ), by the
relation F i := F (id + ui) = I1 ◦ (id + ui) . Since I1 ∈ C0

0( R 2, R ), F i is
bounded in W 1,2, which can be seen by the following inequalities∥∥F i∥∥

L2 ≤ ‖I1(id+ ui)− I1(id) + I1(id)‖L2

≤ ‖I1(id+ ui)− I1(id)‖L2 + ‖I1(id)‖L2

≤ CI1 ‖ui‖L2 + ‖I1(id)‖L2

and
∥∥∇F i∥∥

L2 ≤ ‖∇I1(id+ ui)∇(id+ ui)‖L2 ≤ CI1 ‖∇(id+ ui)‖L2 . Thus
according to the assumptions

{
F i
}

is bounded and has a weakly convergent
subsequence

{
F ik
}

in W 1,2. Using Sobolev embeddings it follows that
{
F ik
}

is strongly convergent in the L2-norm. Hence F is compact.
2. For arbitrary x, x̃ ∈ Ω we have |I1(x)− I1(x̃)| ≤ CI1 |x− x̃| . Thus we get the

following estimate:

‖F (v)− F (u)‖L2 = ‖I1 ◦ (id+ v)− I1 ◦ (id+ u)‖L2 ≤ CI1 ‖v − u‖L2 .

The Lipschitz-constant of F is less or equal to CI1 .
3. Since we assume that 0 < k ≤ det(id+u) ≤ K we can use the transformation

formula and obtain

k

∫
Ω

|I1(x+ u(x))− I1,m(x+ u(x))|2 dx

≤
∫

Ω

|I1(x+ u(x))− I1,m(x+ u(x))|2 det(∇(id+ u)(x))dx

=
∫

Ω

|I1(x)− I1,m(x)|2 dx ≤ δ1
m .

Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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In the following we consider the approximated functionals. Setting Sm(u) :=
‖I1,m ◦ (id+ u)− I0,m‖2 and R(u) := ‖∇u‖dLd , the approximated objective func-
tional reads

(13) Tm,n(u) = Sm(u) + αR(u) −→ min over An.

5.2. Approximation of the Constraints. The final step is the approximation
of the box constraints A1,d

I by a sequence of finite dimensional subspaces An. We
aim for an approximation which allows easy handling of the determinant-constraint.
In particular, we choose linear finite elements on triangles or tetrahedrons of poly-
nomial degree one. With these the determinant of the approximation is a constant
on each triangle of the triangulation.

In the two dimensional case, starting with a triangulation as shown in Figure 1, a
refinement is obtained by dividing each triangle into four congruent triangles. This
leads to a family of regular triangulations Γn := (τ1, · · · , τ2·22n) . Analogously we
handle the 3d-triangulation, which is denoted again by Γn.

τ1

τ2 τ1
τ2

Figure 1. Refinement of the triangulation. Left: Γ1, right: Γ2.

The displacements are elements of the following set:

Un :=
{
u ∈ C0(Ω, R d) | u|τi ∈ Π1(Ω, R d) for every τi ∈ Γn

}
,

where Π1 is the set of polynomials of degree 1. By this choice of the refinement we
have a nested sequence of spaces

· · · ⊂ Un ⊂ Un+1 ⊂ · · ·
⋃
m∈N

Um
⋃
n∈N
Un = W 2,2.

For d = 2, u|τi is of the form:

u|τi(x) =
(
a1
i + b1ix1 + c1ix2

a2
i + b2ix1 + c2ix2

)
and hence ∇u|τi(x) =

(
b1i c1i
b2i c2i

)
.

The challenging part in the registration problem is to incorporate the determinant
constraints. For the ease of presentation, we restrict ourself to the case of constant
bounds k and K (that appear in definition of As,pI ). The case of non-constant box
constraints is along the same lines.

We distinguish two cases: the integrated or global and the local constraints.

Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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• The integrated constraints are based on the L1-norm, and give the constraint a
global nature. The bound for the discrepancy is a function of the discretization
parameter hn, i.e. basically the size of the triangles/tetrahedrons. Note that
‖det(Id+∇un)− 1‖L1 ≤ ε(hn) does not prevent det(Id+∇un) to be negative
in some of the triangles. Here Id ∈ R d×d denotes the identity matrix.

For the global L1-norm based integrated determinant-constraint we work
with

(14) A1
ε(hn) := {un ∈ Un | ‖det(Id+∇un)− 1‖L1 ≤ ε(hn)} .

In the 2d case this reads

(15) A1
ε(hn) =

{
un ∈ Un |

h2
n

2

∑∣∣(1 + b1i )(1 + c2i )− c1i b2i − 1
∣∣ ≤ ε(hn)

}
.

The reason for this choice is that under the right choice of the tolerance ε(hn)
in dependence of hn, (see Lemma 5.3) we can use the W 1,2-norm projection

(16) P 1
n : W 1,2 → Un, u 7→ argminun∈Un ‖u− un‖

2
W 1,2 .

in order to project onto this space. As a consequence we have to specify a
condition on ε(·) that guarantees that P 1

n(u) ∈ A1
ε(hn). This condition is given

in Lemma 5.3.
• The measure for the local determinant-constraints is based on the L∞-norm.

This implies that we take the maximal change of the determinant on each
triangle. A disadvantage of this choice is that we cannot guarantee that
W 1,2-norm projected functions are elements of the set of functions satisfying
the local determinant constraints. Hence we have to introduce an alternative
projection operator. Since the corresponding sets are not convex, the projec-
tion onto them does not have to be unique. For the local L∞-norm based
determinate-constraints we work with

(17) A∞n,ε := {un ∈ Un | ‖det(∇un + I)‖L∞ ≤ ε} ,
with a constant ε. For the 2d case this reads:

A∞n,ε =
{
un ∈ Un |

∣∣(b1i + 1)(c2i + 1)− c1i b2i − 1
∣∣ ≤ ε, i = 1 . . . 2 · 22n

}
.

As projection operator we choose

(18) P∞n : W 1,2 → A∞n,ε, u 7→ argminun∈A∞n,ε ‖u− un‖
2
W 1,2 .

When minimizing over A∞n,ε, we solve a finite dimensional minimization prob-
lem. Existence of a minimum is assured, due to the continuity of the absolute
value and the determinant, in the finite dimensional setting. In our algorithm,
the condition un ∈ A∞n,ε is realized via a Lagrangian method [28, p. 317–319],
described in Section 6.

In the following we provide a Lemma that gives a condition on the function ε(hn)
used for the definition of the global determinant constraint sets, that assures that
the least squares approximation P 1

n(u) in (16) is an element of the set of integrated
determinant constraints. A central estimation in the proof of Lemma 5.3 is given
by the following theorem, see Cialet [6, Theorem 18.1. , p 138] or [10, Corollary
110, p. 61–62].

Theorem 5.2 (Approximation of W 2,2 functions). There exists a constant CΩ <∞
such that

inf
un∈Un

‖u− un‖W 1,2 ≤ CΩ ‖u‖W 2,2 hn

Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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for every u ∈W 2,2.

The following Lemma suggests the choice of ε(h) as in (19).

Lemma 5.3. Let u ∈W 2,2 and hn be the mesh size parameter. If

(19) ε(hn) ≥ CΩCdet ‖id+ u‖W 2,2 hn ,

then P 1
n(u) ∈ A1

ε(hn). The constant CΩ depends on Ω and the regularity of the
triangulation. The constant Cdet depends on the space dimension d and on ∇u.

Proof. Given A ∈ R d×d , for 1 ≤ i, j ≤ d, define AijS ∈ R d−1×d−1 to be the sub
matrix of A, formed by removing from A its ith row and jth column. Then we can
write

det(A) =
d∑
j=1

(−1)i+jAij det(AijS ) .

For the gradient of the the determinant-function we obtain

∇det(A) =
(

(−1)i+j det(AijS )
)

1≤i,j≤d
.

We denote |M |R d×d :=
∑

1≤i,j≤d |Mij |, and 〈M,M〉R d×d is the point wise product
of matrices. Let An ∈ R d×d, then Taylor-expansion gives:

(20) det(A) = det(An)− 〈∇ det(An), A−An〉R d×d +O((A−An)2) .

The entries of |∇det(A)| are polynomials of degree d−1 in the variables Aij . With
this we can estimate the norm by

|∇det(A)|R d×d ≤ |A|R 2×2 := c(A, 2), for d = 2

|∇det(A)|R d×d ≤ 2 |A|2R 3×3 := c(A, 3) for d = 3 .

which together with (20) implies

|det(An)− det(A)| = |〈∇det(A), A−An〉R 4 |+O
(
(A−An)2

)
≤ |∇det(A)| |A−An|+O

(
(A−An)2

)
≤ c(A, d) |A−An|+O

(
(A−An)2

)
.

For v = id+ u ∈W 2,2 Theorem 5.2 states that
∥∥P 1

n(v)− v
∥∥
W 1,2 ≤ CΩ ‖v‖W 2,2 hn .

Set

Cdet :=

{
‖c(∇u, 3)‖2L2 =

∫
Ω
|∇u(x)|2 dx for d = 2

‖c(∇u, 3)‖2L2 =
∫

Ω
2 |∇u(x)|4 dx for d = 3.

Then we obtain following estimate:∥∥det
(
∇P 1

n(v)
)
− det (∇v)

∥∥
L1

=
∫

Ω

∣∣det
(
∇P 1

n(v)(x)
)
− det (∇v(x))

∣∣ dx
≤
∫

Ω

c(∇v(x), d)
∣∣∇P 1

n(v)(x)−∇v(x)
∣∣ dx+O

(∥∥∇P 1
n(v)−∇v

∥∥2

L2

)
≤ ‖c(∇v, d)‖L2

∥∥∇P 1
n(v)−∇v

∥∥
L2 +O

(∥∥∇P 1
n(v)−∇v

∥∥2

L2

)
≤ Cdet CΩ ‖v‖W 2,2 hn .

Thus if ε(hn) ≥ C ‖v‖W 2,2 ‖∇v‖L2 hn then P 1
n(v) ∈ A1

ε(hn) (set with integrated
determinant constraints).

Inverse Problems and Imaging Volume X, No. X (200X), X–XX



12 Christiane Pöschl, Jan Modersitzki and Otmar Scherzer

A necessary ingredient for the convergence of solutions of the discretized problems
to a solution of the inverse problem is that the projection operators converge to the
identity.

Theorem 5.4. Let A1
ε(hn),A

∞
n,ε be as in (15), (17) and P 1

n , P
∞
n as in (16), (18).

1. Equality constraints: Assume that u ∈ A2,d
E , limn→∞ ε(hn) = 0 and

ε(hn) ≥ C ‖∇u‖L2 ‖u‖W 2,2 hn .

For P 1
n as in (16), limn→∞

∥∥P 1
n(u)− u

∥∥
W 1,2 = 0.

2. Box constraints: Assume u ∈ A2,d
I with constant bounds k = 1− ε,K = 1 + ε.

For P∞n as in (18) we have limn→∞ ‖P∞n (u)− u‖W 1,2 = 0.

Proof. For the first part we use that P 1
n is the W 1,2-least square spline approxima-

tion of u onto Un and u ∈ A2,d
E ⊂W 2,d ⊂W 2,2. Hence we can apply Theorem 5.2.

Moreover Lemma 5.3 states that P 1
n(u) ∈ A1

ε(hn) by the choice of ε(hn).
For the second part, we denote with the closure in W 1,2. Note that by the

choice of k = 1− ε,K = 1 + ε, we have that A∞n,ε = Un ∩A1,d
I . Since Un is dense in

W 2,2 [6], we have⋃
n∈N

A∞n,ε =
⋃
n∈N

Un ∩ A1,2
I =

⋃
n∈N

Un ∩ A1,2
I = W 2,2 ∩ A1,2

I = A2,2
I .

Thus, for u ∈ A2,d
I it holds that limn→∞ ‖u− P∞n (u)‖W 1,2 = 0.

5.3. Convergence of the Approximate Solutions. The proof of the theorem
that finite dimensional solutions converge to a solution of the registration problem
is based on the following assumptions and definitions.

1. Constraints: Let Acon denote the constraints and satisfying the volume pre-
serving constraints, i.e Acon = A1,d

E ∩Adb or Acon = A1,d
I ∩Adb (see (3)-(5) for

the definition of the sets). Assume u ∈ Acon ∩W 2,d. Let (An)n∈N denote
either A1

ε(hn) with operator P 1
n or A∞n,ε with operator P∞n .

2. Define Dn := D (F ) ∩ An, where D (F ) is the domain of F (see (10)). Since
0 ∈ Dn, it follows that Dn 6= ∅ .

3. Images: For l = 0, 1, let Il ∈ C0
0( R 2, R ), with approximations Il,m as outlined

in Section 5.1; thus, ‖Il − Il,m‖2L2 ≤ δIlm → 0 as m → ∞; set δm := k−1δI1m +
δI0m , where k is the lower bound for the determinant constraint, as in Lemma
5.1.

4. let α = α(m,n) such that for m,n→∞ it holds that

(21) α→ 0, δm/α→ 0,
∥∥u† − Pn(u†)

∥∥2

W 1,2 /α→ 0.

The following result can be found in a slightly modified version in [26] and is the
main result of this section. However, in [26] they consider only the special case with
a regularization function R(u) = ‖u− u0‖2H and projection Pn : H → H, where H
is a Hilbert space.

Theorem 5.5. Let u = u† be a solution of the inverse problem F (u) = I0. Under
the above assumptions and with R(u) := ‖∇u‖dLd , the sequence {umk,nk(αk, δk)}
has a convergent subsequence. The limit of every convergent subsequence is an R-
minimizing solution.
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If in addition the R-minimizing solution u† is unique, then

lim
δm→0,m→∞,n→∞

um,n = u† .

Proof. Let n be large enough, then according to Theorem 5.4, Pn(u†) ∈ An. By defi-
nition F (u†) = I0 and by assumption we have ‖I0 − I0,m‖2 ≤ δI0m . Moreover accord-
ing to Lemma 5.1 the conditions on I1,m imply that

∥∥Fm(Pn(u†))− F (Pn(u†))
∥∥2 ≤

Cδm. Since um,n minimizes (13) we have

‖Fm(um,n)− I0,m‖2 + αR(um,n) ≤

≤
∥∥Fm(Pn(u†))− I0,m

∥∥2
+ αR(Pn(u†))

≤ 2
[∥∥Fm(Pn(u†))− F (Pn(u†))

∥∥2
+
∥∥F (Pn(u†))− F (u†)

∥∥2
+∥∥F (u†)− I0,m

∥∥2
]

+ αR(Pn(u†))

≤ 2
(
k−1δI1m + C2

F

∥∥u† − Pn(u†)
∥∥2

+ δRm

)
+ αR

(
Pn(u†)

)
.

(22)

From this we obtain

‖Fm(um,n)− I0,m‖2 ≤
(
k−1δI1m + C2

F

∥∥u† − Pn(u†)
∥∥2

+ δRm

)
+

α
∣∣R(Pn(u†))−R(um,n))

∣∣ .
Taking the limit m,n → ∞, we know from the assumptions on α, δm and Pn that∥∥u† − Pn(u†)

∥∥
L2 → 0 and α→ 0. Hence

(23) ‖Fm(um,n)− I0,m‖ → 0 .

Moreover, from (22) together with Theorem 5.4 implying that R
(
Pn(u†)

)
→ R(u†)

and the assumptions on α it follows that

lim infR(um,n)

≤ lim inf α−1
(
k−1δI1m + C2

F

∥∥u† − Pn(u†)
∥∥2

+ δRm

)
+R

(
Pn(u†)

)
≤ lim supα−1

(
k−1δI1m + C2

F

∥∥u† − Pn(u†)
∥∥2

+ δRm

)
+ lim supR

(
Pn(u†)

)
=

(21)
0 + lim supR(Pn(u†)) = R(u†).

Since {um,n} is a W 1,2-bounded sequence, we know that um,n has a weakly con-
vergent subsequence with limit u ∈ U . For the sake of simplicity of notation, we
denote this weakly convergent subsequence again with {um,n}. Moreover taking
into account (22), the fact that u† is an R-minimizing solution and the weak-lower
semi continuity of R, it follows that

R (u) ≤ lim infR (um,n) ≤ R(u†) .

Thus, R (u) = limR (um,n) = R(u†) and I0 = limF (um,n) = F (u).
Moreover, (12) implies that for any subsequence umk,nk of um,n

‖F (umk,nk)− I0‖2 ≤ 2 ‖F (umk,nk)− Fm(umk,nk)‖2 + 2 ‖Fmk(umk,nk)− I0‖2

≤ 2k−1δI1mk︸ ︷︷ ︸
→0

+ 4 ‖Fmk(umk,nk)− I0,m‖2︸ ︷︷ ︸
→(23)0

+ 4δI0m︸︷︷︸
→0

.
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14 Christiane Pöschl, Jan Modersitzki and Otmar Scherzer

Taking the limit mk, nk →∞, this implies that

‖F (umk,nk)− I0‖2 → 0 ,

Hence u is an R-minimizing solution.

6. Solving the Registration Problem with Finite Elements

To show that this theory can be applied to determinant based constraints, we
present a simplified example for the equality case. An implementation of the more
general box constraints is subject of current research. In order to solve the reg-
istration problem numerically we use a finite element approach. In particular, we
use triangles and tetrahedron to ensure a nested sequence of the finite element
spaces. Particularly, we use the least squares functional S in (1) to compare the
reference and the deformed template image and R = Relast (elastic) as in (9) or
R(u) = ‖∇u‖3L3 (cubic) as regularization functionals. We note that for the elastic
regularizer the existence of a minimizing element is only guaranteed in the 2d case.

We apply the Augmented Lagrangian method [28] to incorporate the deter-
minant constraints det (∇u+ Id) = 1, that is, we iterate the following minimization
problem

uk ∈ argminu∈Un
{
S(u) + αR(u) + β ‖u− ũl‖2L2︸ ︷︷ ︸

T (u)

+...

..
κk
2

∫
Ω

(det(∇u+ Id)− 1)2 −
∫
pk−1 (det(∇u+ Id)− 1)

}
(24)

pk = pk−1 + κk (1− det(∇uk + Id))

in order to minimize S(u)+αR(u) under the local determinant equality constraints
with ε = 0 (volume/area preserving).

We do not set any boundary conditions, instead, we achieve that uk stays
bounded by adding an additionally term β ‖u− ũl‖2, that stabilizes the minimiza-
tion process (steepest decent iteration) and vanishes, if the minimizing sequence
converges to a minimum of (24) with β = 0. We solve (24) with a semi-implicit gra-
dient decent method. In each iteration step (for the minimization of (24)) we have
to update the stiffness-matrix, and ũl. We mention again that we do not minimize
over W 1,3

0 but over W 1,3. Since we bound u, we can still guarantee the existence of
a solution (see Remark 2).

For the cubic regularization, in order to avoid solving a nonlinear problem, we
approximate the gradient of the cubic regularization functional by

R(u, v) =
1
3

∑
i,j=1..3

∫ ∣∣∣uixj ∣∣∣uixjvixj ∼ ∑
i,j=1..3

∫ ∣∣∣(ũl)ixj ∣∣∣uixjvixj
where again ũl is the solution of the previous step in the gradient decent minimiza-
tion process.

6.1. Numerical Example. The above scheme was implemented in C++ (2D and
3D) using the imaging2 class written by Matthias Fuchs [13]. The imaging2 class
provides an object-oriented implementation of basic mathematical objects and func-
tions used in image processing. It includes a FEM module that provides functions
to assemble the stiffness matrix and force vector for user-defined equations.

The results for a simple 3D-example are shown in Table 1 and Figures 2 and 4.
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Figure 2. Minimal and maximal values of det(I+∇un)−1. The
jumps in the plot for the constraint case, indicate an update of the
Lagrange parameter pk.

1 (UC) 2 3
error: ‖I1(u+ id)− I0‖2L2 0.26 0.11 0.22
min(det(id+ u)− 1) -0.13 -0.06 -0.08
max(det(id+ u)− 1) 0.21 0.05 0.06

Table 1. Parameters of the example shown in Figure 4: β = 1,
Example 1 (unconstrained): κk = 0, λ1 = 0.1, λ2 = 0.2. Example
2 (constrained, elastic regularization): κ1 = 0.1, λ1 = 0.1, λ2 =
0.2. Example 3 (constrained, cubic regularization R(u) = ‖∇u‖3L2 :
κ1 = 0.1, α = 1.

7. Conclusions

In this paper we have investigated the existence of minimizing elements of area/
volume preserving registration functionals. One motivation for studying these is due
to our previous work, where we introduced numerical methods for volume preserving
image registration [17]. Here we used variational techniques to prove the existence of
minimizers of the registration functional. Moreover we provide convergence analysis
of the finite dimensional approximation of the minimization problem, clarified the
difficulties caused by the discretization of the area/volume preserving constraints
and proposed two ways to approximate the set of area constrained transformations.
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