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Abstract. A typical task of image segmentation is to partition a given
image into regions of homogeneous property. In this paper we focus on
the problem of further detecting scales of discontinuities of the image.
The approach uses a recently developed iterative numerical algorithm for
minimizing the Mumford-Shah functional which is based on topological
derivatives. For the scale selection we use a squared norm of the gradient
at edge points. During the iteration progress, the square norm, as a func-
tion varied with iteration numbers, provides information about different
scales of the discontinuity sets. For realistic image data, the graph of
the norm function is regularized by using total variation minimization to
provide stable separation. We present the details of the algorithm and
document various numerical experiments.
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1 Introduction

One of the most well-studied image segmentation model is the Mumford–Shah
functional [16], which is to find the image u which minimizes the following:

F (u,K) =
1

2

∫

Ω

(u− f)2dx+
α

2

∫

Ω\K

|∇u|2dx+ βH1(K) (1.1)
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over all sets K ⊂ Ω and all smooth functions u defined on Ω\K. The first
component provides a piecewise smooth approximation of the given image data
f : Ω → [0,∞). The second component provides the information on the discon-
tinuity set of the image f . Here Hs(K) denotes the s-dimensional Hausdorff-
measure of the set K. We focus on the two-dimensional case Ω ⊂ R

2.
There are number of methods proposed to minimize the Mumford-Shah func-

tional. One of the most important approach is by Ambrosio and Tortorelli [1,
4]. The general idea is to approximate the functional by a family of elliptic
functionals, where each of them in principle can be minimized with numerical
partial differential equation solvers. Related works include the Chan–Vese model
[7], where the Mumford–Shah model is simplified to the reconstruction of piece-
wise constant functions only, and the discontinuity sets are eliminated using an
explicit notion of boundary via a level set formulation or using well-potential
models (see [13, 21]).

Recently, a numerical algorithm for minimizing the Mumford–Shah func-
tional based on topological derivatives has been developed [12]. The implemen-
tation of the algorithm is iterative in nature and selects edges successively ac-
cording to certain rules. In this paper, we further experimentally analyse these
criteria. We show that the algorithm based on topological derivatives can distin-
guish between edges of different scales and therefore can be used for detecting
scales of edges. This is different from [1, 4] where the global approximation of
the Mumford–Shah functional is achieved by partial differential equations, which,
however, does not allow a selective selection of edges.

The approach of [12] consists of approximating the Mumford–Shah functional
by the family of functionals

Jε,κ(u,K) = Gε,κ(u,K) + 2βεmε(K)

=
1

2

∫

Ω

(u− f)2dx+
α

2

∫

Ω\K

|∇u|2 dx+ κ
α

2

∫

K∩Ω

|∇u|2 dx+ 2βεmε(K) ,

(1.2)

where
mε(K) = inf{H0(Y ) : Y ⊂ R

2, K =
⋃

y∈Y

Bε(y)
}

.

The minimization is performed over all u ∈ H1(Ω) and K ⊂ R
2. It has been

shown in [12] that these functionals Γ -converge to F , if κ = o(ε). For fixed
ε and κ the approximate minimization of the functional Jε,κ is performed by
using a topological asymptotic analysis (see [9, 10, 22]). In the context of image
processing, topological asymptotic analysis has been recently applied by Auroux
et al. [2, 3] and by Muszkieta [17]. In [12], an implementation for minimizing Jε,κ
is proposed, and compared to the Ambrosio–Tortorelli approach [1].

The outline of this paper is as follows: In the following section, we recapitulate
the algorithm from [12] for approximate minimization of the Mumford–Shah
functional. We present a simple example where we can explain the idea of scales
of edges in Section 3. Section 4 considers scale detection for realistic image
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data. In the later cases, total variation regularization of the according scale
detection functions over the number of iterations has to be performed to be able
to calculate the according edges. We use the taut string algorithm for computing
the total variation minimizers.

2 A Topological Algorithm for Edge Detection

We shortly review the algorithm from [12] for detecting edges in an image
f : Ω → R. In this iterative algorithm, the edges are approximated by a col-
lection of balls of small diameter 2ε (in implementations, the diameter is chosen
as the pixel distance). In each iteration, we smooth the original image using a
diffusivity which is small at the (previously found) edge set and large outside
this set. Then we add the new balls where the gradient norm is largest to the
edge set. A detailed outline is given in Algorithm 1.

Algorithm 1 Topological algorithm for edge detection.

Let f ∈ L∞(Ω), α, β > 0, ε > 0 and 0 < κ < 1 be given. Set k = 0 and K0 := ∅.

Step 1. Define
uk := arg min

u

Gε,κ(u,Kk).

Step 2. For i = 1, . . . ,m, find y
(i)
k ∈ Ω\Kk such that |∇uk(y)|2 is maximal, and replace

Kk by Kk ∪ {Bǫ(y
(i)
k )}.

Step 3. If

max
i

α

2
π

1 − κ

1 + κ
|∇uk(y

(i)
k )|2 <

β

ε
,

stop the iteration; else set Kk+1 := Kk, u := uk, increase k by 1, and go to Step 1.

Result: Approximation of an optimal edge set K and smoothed image u for the
Mumford–Shah functional with parameters α and β.

It is shown in [12] that the resulting set K and the smoothed image u can be
considered approximations of the minimizer of the Mumford–Shah functional.

Remark 1. The parameters α and β in Algorithm 1 are identical with the param-
eters in the Mumford–Shah functional. For noisy images, they should be chosen
in dependence of the noise level: the larger the parameters are the smoother the
filtered results are and the smaller the edge sets are. In the numerical experi-
ments, we used α in the range from 5 to 10 and β between 100 and 200, and the
size of the images are 256× 256, of which the intensities range from 0 to 255.

In the numerical implementations, the parameter ε is always chosen as half
the distance between adjacent pixels. According to [12], the parameter κ should
be chosen as o(ε). In our implementations we have set κ equal to 0.005. In general,
the results proved quite robust with respect to the variations of κ, except for
the optimization problem Gε,κ(u,K) → min in Step 2 of the algorithm, which
becomes more difficult to solve as κ decreases.
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The original algorithm from [12] uses an update of the function u whenever a
ball has been added to K; this corresponds to setting m = 1 in Algorithm 1. For
larger images, this is obviously not feasible. In this paper, we add multiple balls
during each iteration, slightly compromising the accuracy in favour of vastly
improved computation times.

3 Detecting Scale of Discontinuities

We present how the iterative construction of the edge set K in Algorithm 1 can
be applied to detecting the edges of different scales. To highlight the idea, we con-
sider the test image depicted in Figure 1, which consists of different flat regions
that appear well separable. For this piecewise constant example the different
scales of edges correspond to edges of a certain magnitude.

We first define the following norm to distinguish between different scales of
the edges:

S(k) := |∇uk(y
(1)
k )|2 . (3.1)

This is the squared norm of the gradient of uk at the center point of the first
ball detected in each iteration, i.e., the largest gradient outside of the edge set
at the previous iteration.

Figure 1 shows the results of Algorithm 1 for a fixed set of parameters.
The function S shows some discriminative features: there are intervals where
the values are approximately constant. This reflects that the edges recovered
during these iterations are of a similar magnitude. Moreover, there are clear
discontinuities (clear drops in height), which reflects that all the edges of a
certain scale have been completely detected.

This change in the edge jump is illustrated in the lower images in Figure 1.
They present the current edge indicators Kk at steps k of the iteration where the
most significant jumps in S occur. In addition, we have chosen the depicted jumps
sufficiently far from each other so that the differences between subsequent edge
indicators are not too small. The first jump in S appears after approximately 40
iterations. The corresponding edge indicator K40 indicates the upper left edges
of the image, which have the largest absolute value of the gradient. The next
significant jump of the function S occurs at iteration 74 — here we extract the
full shape of the spade; the surface of the clubs is fully recovered at iteration
124 and the diamond comes out last around the 182 iterations with a very slight
drop of S as the last obviously detectable scale.

4 Regularization of S(k)

The Cards image consists of large piecewise constant regions and the edges
betweens these regions are clearly pronounced, and different scales of edges are
easily identified. For natural images, the scales of edges are less pronounced, and
the function S shows a less regular behaviour. This effect worsens if the data are
noisy. We experimented with the Cameraman and the Peppers image data (see
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Fig. 1: Cards pictures. We apply Algorithm 1 with parameters α = 5, β = 100,
and m = 20. Upper row, left: The cards image. Upper row, right: The graph of
the function S, one can discern distinct jumps of this function. Middle row: The
edge set Kk at the iterations k where the most important jumps occur (from
left to right: iterations 40, 74, 124, and 182). Lower row: The difference between
two neighbouring edge sets.

Figure 2), and the functions S do not reveal similar obvious plateaus as for the
Cards image.

To better deal with these natural images, we smooth the function S (consid-
ered as a function of iterates) by minimizing the discrete total variation, setting

Ŝλ := argmin
R

(

∑

k

(R(k)− S(k))2 + λ|R(k + 1)−R(k)|

)

.

This optimization problem has been studied for a long time in the contexts
of one-dimensional signal processing and non-parametric regression (see for in-
stance [8, 15, 23]). There are numerous methods for solving this minimization
problem, most of which deal specifically with total variation regularization for
image denoising (see for instance [5, 6, 19]). In the one-dimensional case, the most
efficient method for total variation minimization is the taut string algorithm [8,
11, 18], which can be implemented in the form of a dynamical programming
algorithm with linear time and space complexity. A detailed derivation of this
method can be found in [11, 20]. The dynamical programming algorithm for the
solution is described in [8]. For this algorithm recall that a one-dimensional func-
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Fig. 2: Edge sets and scale detection function S for the Cameraman and Pep-
pers images. (c) and (e) are the edges of the Cameraman and Peppers images,
respectively, detected by our algorithm. In both cases the algorithm has been
used with parameters α = 10, β = 200, and m = 50. (d) and (f) are the graphs
of the functions S for the Cameraman and Peppers images, respectively, where
the horizontal axis represents the iteration numbers and the longitudinal axis is
the maximum norm of gradients for the center of added balls in that iterations.
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tion of bounded variation is continuous outside its jump set, and that a function
U ∈ W 1,1(Ω) is continuous.

Algorithm 2 Taut String Algorithm

Given discrete data u
δ = (fi), i = 1, . . . , s, and λ > 0, the taut string algorithm is

defined as follows:
Step 1. Let Uδ

0 = 0 and Uδ
i = 1

s

∑i

j=1 fj , i = 1, . . . , s. We denote by Uδ(x) the linear

spline with nodal points xi = i/s, i = 0, . . . , s, and function values Uδ
i at xi.

Step 2. Define the λ-tube

Yλ :=
{

U ∈ W 1,1(0, 1) : U(0) = Uδ(0) , U(1) = Uδ(1) ,

and |U(t) − Uδ(t)| ≤ λ for t ∈ (0, 1)
}

.

Step 3. We calculate the function Uλ ∈ Yλ which minimizes the graph length, that is,

Uλ = argminU∈Yλ

∫ 1

0

√

1 + (U ′)2 .

Step 4. uλ := U ′
λ is the outcome of the taut string algorithm.

In this approach, the amount of regularization depends on the parameter
λ > 0. However, due to the properties of one-dimensional total variation reg-
ularization, the results are quite stable with respect to λ. We recall that one-
dimensional total variation regularization satisfies a semi-group property: Re-
peated regularization first with a parameter λ1 > 0 and then with a parameter
λ2 > 0 is the same as a single regularization step with a parameter λ1 + λ2 (see
e.g. [20, Thm. 4.38]). In particular, this implies that for µ > λ, the jump set of
Ŝµ is contained in the jump set of Ŝλ. For this reason, the precise choice of the
regularization parameter has, for modest values, no effect on the location of the
most prominent jumps of Ŝλ. In our implementations, we therefore chose the
regularization parameter experimentally, using a sufficiently large parameter in
order to remove most of the noise, but still retaining all the significant jumps.

Another possibility is to choose the smallest parameter λ for which the func-
tion Ŝλ is monotonically decreasing, since it is sufficient to find points where the
scale of edges suddenly decreases.

Finally, we present some experimental results with Cameraman and Peppers
image data, respectively in Figure 3 and Figure 4. To obtain these results, we first
applied the taut string algorithm to filter the plots of the oscillating function S

defined in (3.1). The plateaus between two discontinuities in the filtered function
Ŝλ mark areas of a specific scale. Actually, there are more jumps detected than
which we are separately displaying, as well shown in the filtered graphs with the
figures, for the purpose of emphasising the scales detected by Algorithm 1, we
just specify the most obvious jumps and figure them out part by part.

See Figure 3 and Figure 4, respectively. In Figure 3, the first discontinuity
of S appears at iteration 17. There the most contrasty edges of the image —
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the boundary of the hair and black coat of the photographer — are almost
developed. The next significant jump appears at iteration 23, where the outline
of the photographer has almost been formed. Then, at iteration 43, the structure
of the cameraman has been caught. Finally, at iteration 64, also smaller details
like the the camera are segmented.

In Figure 4 the situation is slightly different. The data contains many peppers
where the contrast of the edges is rather similar. Thus the algorithm does not
select complete pepper components but only parts of them on different peppers
and associates them to a unique scale.

As a final example we apply the algorithm to the Cameraman, superim-
posed with Gaussian noise (see Figure 5). The results show the robustness of the
method. Because of the noise, we used a larger regularization parameter in the
taut string algorithm in order to select the different scales. Note that it was not
necessary to change the regularization parameters α and β.
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Fig. 3: Edge and scale detection in the Cameraman image. Upper row, left: The
Cameraman image. Upper row, right: The TV filtered graph of function S. Mid-

dle row: The edge set Kk at the iterations k where the most prominent jumps
occur (from left to right: iterations 17, 23, 43, and 64). Lower row: The difference
between two subsequent edge sets.
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Fig. 4: Edge and scale detection of Peppers image. Upper row, left: The Peppers
image. Upper row, right: The TV filtered graph of function S. Lower row: The
edge set Kk at the iterations k where the most prominent jumps occur (from
left to right: iterations 15, 60, 85, and 108). Lower row: The difference between
two subsequent edge sets.
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Fig. 5: Edge and scale detection in the presence of noise. Upper row, left: The
noisy Cameraman image. Upper row, right: The edge set after 200 iterations.
Middle upper row, left: The graph of the function S. Middle upper row, right: TV
filtered graph of function S. Middle lower row: The edge set Kk at the iterations
k where the most prominent jumps occur (from left to right: iterations 16, 43,
74, and 91). Lower row: The difference between two subsequent edge sets.
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5 Conclusion

We presented a method to detect different scales of jumps across the boundary,
using a recently developed algorithm [12] for approximating the Mumford–Shah
algorithm using topological derivatives. This process is possible due to the local-
ity of the algorithm, contrasting the globality of approaches like the Ambrosio–
Tortorelli approximation. By considering the function S which represents the
scale change of the edges, one can distinguish different parts of boundaries with
different levels of jumps. For realistic images (also noisy), we applied total varia-
tion minimization using the taut string algorithm for a more stable scale separa-
tion. For future works, different norms can be considered for the function S, and
there are possible improvements by adapting particular image features to the
function Ŝλ, or either considering to replace the current discrete count k which
is the variable of the function S by a continuous parameter, as well, the impact
of the roughness of edges on the scales separation is worth to be discussion.
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