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Abstract

We study a convex regularization of the local volatility surface identification problem for

the Black-Scholes partial differential equation from prices of European call options. This

is a highly nonlinear ill-posed problem which in practice is subject to different noise levels

associated to bid-ask spreads and sampling errors. We analyze, in appropriate function spaces,

different properties of the parameter-to-solution map that assigns to a given volatility surface

the corresponding option prices. Using such properties, we show stability and convergence of

the regularized solutions in terms of the Bregman distance with respect to a class of convex

regularization functionals when the noise level goes to zero.

We improve convergence rates available in the literature for the volatility identification

problem. Furthermore, in the present context, we relate convex regularization with the notion

of exponential families in Statistics. Finally, we connect convex regularization functionals

with convex risk measures through Fenchel conjugation. We do this by showing that if the

source condition for the regularization functional is satisfied, then convex risk measures can

be constructed.

Keywords: local volatility surface identification, convex regularization, convergence rates,

source condition interpretation, convex risk measures.
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1. Introduction

In financial markets a number of contracts are negotiated in such a way that their

values are derived from other underlying assets or equities. Such derivative contracts play

a fundamental role in risk management and corporate strategies. Their presence became so
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widespread that currently, the volume of many derivative markets surpasses the value of the

corresponding underlying markets.

The development of mathematical methods for pricing derivatives has been a major reason

for the expansion of derivative markets. Such theoretical achievement was recognized by the

Nobel prize in Economics award to R. Merton and M. Scholes. The corresponding methods

involve the solution of the Black-Scholes partial differential equation, which in turn depends

on the risk-free interest rate prevalent in the market, the dividend rate, and the volatility of

the underlying asset. There are many models to describe the volatility. Among those, one

that is very popular with practitioners is to assume that such volatilities are functions of the

form σ = σ(t, S), where t is the time and S is the asset price. It is usually referred to as

Dupire’s local volatility model [1] and σ is called the volatility surface.

This paper is concerned with theoretical aspects of the practical problem of determining

the volatility from market observed prices of European call options. This is a nonlinear

ill-posed problem whose solution calls for regularization techniques. We propose Tikhonov

regularization by means of a convex regularizing functional as an extension to the quadratic

regularization that has been used previously in the inverse problem literature for this specific

problem [2, 3, 4].

We address the regularization problem from the perspective of convex analysis methods

and Bregman distances. On the theoretical side, our result is that this yields better conver-

gence rates and allows for convergence in spaces different from those in the quadratic regu-

larization setting. In fact, in some cases, the convergence of certain convex regularization

expressions implies convergence in the L1-norm. Besides those results, our approach connects

with central topics in different areas of current research. Such topics include exponential

families of probability distributions, which is an important subject in Statistics and convex

risk measures in Risk Management and Quantitative Finance [5, 6].

The connection between Bregman distances and exponential families is well established

in some context [7, 8], albeit in the present context our motivation in Section 5 is heuristic.

From the financial intuition, it can be understood as follows: Each volatility surface leads

to a corresponding risk neutral measure whose expectation of the payoff are the observed

derivative prices. Thus, if we are given the problem of inferring the volatility surface from

market observed option prices, the use of Bregman distances leads to the choice of certain

exponential families of probability distributions. The latter, can be thought of as optimal (in

an appropriate sense) a posteriori distributions for the class of models under consideration.

Indeed, under some circumstances, exponential families are connected to minimal entropy

measures. This hints to yet another connection with the now classical work developed by

Avellaneda et al. See [9] and references therein.

The passage of the regularized volatility to the market probability measures allows us to

also connect the results to convex risk measures. In fact, in Section 6, we exhibit procedures
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to produce such risk measures which depend on the regularization functional. This in turn

relates to Malliavin calculus results and the determination of the so-called Greeks of option

prices [10].

The Setting and the Inverse Problem:. We consider a complete financial market, where cash

can be borrowed at a constant interest rater, and a risky stock of value S = S(t) that yields a

continuously compounded dividend at a constant rate q, satisfying the diffusion price process

dS(t) = S(t)(ν(t, S(t))dt+ σ(t, S(t))dW (t)) , t > 0 , S(0) = S0 , (1)

where W (t) denotes the standard Wiener process [11]. The parameters ν and σ are called

drift rate and the volatility of the underlying asset, respectively.

A European call option with maturity date T and strike K, on the underlying asset S,

consists of the right, but not the obligation, to buy, at a price K, a unit of S at time T . In the

context of complete and arbitrage-free markets, the theoretical fair price, for the European

call on S, has the probabilistic representation

U(0, S0;T,K, r, q, σ2) = exp(−rT )E0,S0

Q (S(T )−K)+ , (2)

where E0,S0

Q is the expected value with respect to the risk-neutral probability measure Q given

that, at t = 0, we have S(0) = S0. Here, as usual, we define

(S −K)+ := max{S −K, 0} .

The interpretation of Equation (2) is that for each realization ω of the market, the payoff

(S(T, ω) − K)+ should be brought to its present value e−rT (S(T, ω) − K)+ by means of

discounting by the interest rate r. Then, we average over all the possible realizations with

respect to the risk neutral measure Q. The risk neutral measure differs from the so-called

subjective one in the sense that it is the one for which the discounted process S(t)/ert is a

martingale. For more details see [12].

In this framework the fair price for an European call option is given by the solution to

the Black-Scholes equation [13]

Ut +
1

2
σ2(t, S)S2USS + (r − q)SUS − rU = 0 , t < T , (3)

with final condition

U(t = T, S) = (S −K)+ . (4)

An important consequence of the Black-Scholes-Merton theory is that the drift rate ν in

Equation (1) does not enter into (3). Indeed, this is at the root of the concept of the risk-

neutral measure Q.
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In the case where σ is a deterministic function of time only, explicit formulas for the price

U are well known. See the seminal paper [13]. In this context, a careful analysis of the

theoretical volatility calibration problem was carried out in [14, 15].

We note that the option price U depends also on the maturity T and strike K. It satisfies

the, by now classical, Dupire forward equation [1]

− UT +
1

2
σ2(T,K)K2UKK − (r − q)KUK − qU = 0 , T > 0 , (5)

with the initial value

U(T = 0,K) = (S0 −K)+, for K > 0 . (6)

Dupire’s equation is the starting point of our inverse problem analysis. As usual, the dividend

and interest rates are known during the option life. However, the crucial parameter in the

initial value problem determined by (5) and (6) is the volatility.

Thus, the nonlinear inverse problem of option pricing under consideration is the identifi-

cation (or calibration) of a local volatility surface σ(T,K) by observations of the solutions

U(t, S;T,K, r, q, σ) = U t,S∗ (T,K) (7)

of (5) and (6) to match quoted market prices U t,S∗ (T,K). Each observation is linked to the

solution of (5) and (6) with different values of T and K.

Organization of the Article:. In Section 2 we define and review some facts about the inverse

problem under consideration as well as the Tikhonov regularization theory with convex regu-

larization functionals. Properties of the forward operator that guarantee the well-posedness

and regularization analysis of the proposed Tikhonov functional for the inverse problem under

consideration are described at Section 3 and Section 4. Subsection 4.1 is dedicated to the

analysis of the source condition assumptions needed to obtain convergence rates. In Section 5

we motivate the general regularization theory with convex penalization by making use of a

statistical point of view. In Section 6, we relate the convex penalization on the Tikhonov

functional and the respective source condition with convex risk measures. We conclude in

Section 7 with some final comments and directions for further investigations.

2. Convex regularization for calibration

We start our analysis by reformulating the inverse problem in more convenient variables.

More precisely, we perform the usual change of variables

K = S0e
y , τ = T − t , b = q − r , u(τ, y) = eqτU t,S(T,K) (8)
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and

a(τ, y) =
1

2
σ2(T − τ ;S0e

y) , (9)

in (5) and (6). This yields the Dupire equation with forward variables (τ, y)

− uτ + a(τ, y)(uyy − uy) + buy = 0 (10)

and initial condition

u(0, y) = S0(1− ey)+ (11)

Existence and uniqueness results for the solution of the parabolic equation (10) and (11) in

Sobolev spaces can be found in [2, 4, 16].

Volatility calibration in extended Black - Scholes models has been investigated by many

authors. See [17, 9, 18, 2, 4, 19, 20, 15] as some references. The stable identification of local

volatility surfaces in the Black - Scholes equation from market prices using standard Tikhonov

regularization with ‖·‖2
H1(Ω) penalization was investigated by Crépey [2] and later by Egger &

Engl [4]. In [15] the inverse problem of identification of a time-dependent volatility function

of a European call option with a fixed strike K > 0 was considered. In [20], Hofmann

et al. analyzed the same financial problem of [15] with general source conditions for the

regularization functional f(·) = ‖·‖2
L2(0,T ). In [2, 4, 20, 15], the ill-posedness of the inverse

problem is proved, convergence and convergence rates of a regularized solution are derived.

The idea of convex regularization for inverse problems has been suggested by different

authors. An early reference on Bregman distance regularization is [21]. See also [22, 20, 23]

and references therein.

In the initial part of this work, we consider the following admissible class of calibration

parameters:

Definition 1. Let ε ≥ 0 be fixed. We denote by U := H1+ε(Ω) with the standard H1+ε–inner

product 〈·, ·〉.
Moreover, let a > a > 0 and let a0 be a function defined on Ω = (0, T ) × R that satisfies

a ≤ a0 ≤ a with ∇a0 ∈ (L2(Ω))2. We define the admissible parameter class by

D(F ) := {a ∈ a0 + U : a ≤ a ≤ a}. (12)

We emphasize that by definition D(F ) is a convex set.

We apply convex regularization as discussed in [22, 20, 23] to solve the ill-posed operator

equation

F (a) = u(a), (13)

where F : D(F ) ⊂ U → L2(Ω) is the parameter-to-solution operator between Hilbert spaces

U and L2(Ω). Here u(a) is the solution of (10) and (11), where a ∈ D(F ).
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The novelty of the present article vis-a-vis [2, 4, 20, 15] is that we consider a regularization

method for solving the calibration problem for a general class of convex functionals. For given

convex f the proposed methods consists in minimizing the Tikhonov functional

Fβ,uδ(a) := ||F (a)− uδ||2L2(Ω) + βf(a) (14)

over D(F ), where, β > 0 is the regularization parameter.

In this paper we only make the following assumptions on f :

Assumption 2. Let ε ≥ 0 be fixed. f : D(f) ⊂ U −→ [0,∞] is a convex, proper and

sequentially weakly lower semi-continuous functional with domain D(f) containing D(F ).

The use of convex functionals in the present calibration context is motivated by both

mathematical and financial reasons. From the mathematical point of view, we are able to

extend known results to take into account different features of the surfaces. In particular

convergence rate results known in the literature are extended [4, 19, 14, 2]. From the financial

side, it is known that practioners have for a while used different regularization functionals

to pin down particular aspects of volatility surfaces that suit their needs. Yet, not many

analytical results are known. See [9] and references therein. As a byproduct of the theory, we

obtain the following interpretation in Section 6: The existence of a source condition for the

regularized inverse problem leads to a convex risk measure. The latter is a way of quatifying

risk associated to the different replication portfolios in the market.

In practical situations, the price U t,S(T,K) is only known for a discrete set of maturities

and strikes. Since we are interested in continuous observations of the price U t,S(T,K), this

leads to an interpolation or an approximation that introduces noisy data uδ, whose level δ is

assumed to be known a priori and satisfies the inequality

||ū− uδ||L2(Ω) ≤ δ , (15)

where ū is the data associated to the actual value â ∈ D(F ).

An important tool in the studies of Tikhonov type regularization [22, 20, 24, 23] is the

Bregman distance with respect to f .

Definition 3. Let f be as in Assumption 2. For given a ∈ D(f), let ∂f(a) ⊂ U denote the

sub-differential of the functional f at a, which we define and denote by

D(∂f) = {ã : ∂f(ã) 6= ∅}

the domain of the sub-differential [25]. The Bregman distance with respect to ζ ∈ ∂f(a1) is

defined on D(f)×D(∂f) by

Dζ(a2, a1) = f(a2)− f(a1)− 〈ζ, a2 − a1〉 .

6



Concerning the definition of the sub-differential and the Bregman distance, we emphasize

that the sub-differential is a subset of the dual of U . However, in Hilbert spaces there exists

an isomorphism between the space U and its dual U∗. This justifies Definition 3 where ∂f(a)

is considered a subset of U and the Bregman distance, which is considered with respect to

the U -inner product.

Notation 4. Throughout this paper we use the following notation: I ⊂ R denotes an open

(possibly unbounded) interval and 1 ≤ p <∞. We assume that T > 0 and we use the notation

Ω := (0, T )× I. Moreover, W 1,2
p (Ω) denotes the space of functions u(·, ·) satisfying

||u||
W 1,2
p (Ω)

:= ||u||Lp(Ω) + ||ut||Lp(Ω) + ||uy||Lp(Ω) + ||uyy||Lp(Ω) <∞ .

We now summarize the convergence-rate results of regularization methods to the proposed

problem available in the literature. In all the examples, presented below, the regularization

parameter is chosen by β = β(δ) ∼ δ.

(i) Egger and Engl [4] applied the standard results for nonlinear Tikhonov regularization

in a Hilbert space setting, and obtained convergence rates of∥∥∥aδβ − a†∥∥∥
H1(Ω)

= O(
√
δ) and

∥∥∥F (aδβ)− uδ
∥∥∥
L2(Ω)

= O(δ) (16)

to aδβ, a
† ∈ D(F ) ⊂ H1(Ω) under the assumption of the source condition

a0 − a† = F ′(a†)∗w

with ‖w‖ sufficiently small. Moreover, the above convergence rates are proved for time-

independent volatilities in a more regular set and with a variational source condition.

See [4, Theorem 4.1].

(ii) Focusing on the time dependent case only, Hofmann and Krämer [15] studied the

maximum entropy regularization functional f(·) in the setting of D(F ) ⊂ L1[0, T ]

and data in L2[0, T ]. Under the source condition log(a†/â) = F ′(a†)∗w, for some

w ∈ L2[0, T ], the convergence rates of

‖aδβ − a†‖L1[0,T ] = O(
√
δ) (17)

was proven. In addition the authors had to assume the nonlinear estimate

‖F (a)− F (a†)− F ′(a− a†)‖L2[0,T ] ≤ C‖a− a†‖2L1[0,T ]. (18)

We will return to maximum entropy regularization in Section 5 and, more generally, to

Bregman distance regularization in Section 4.1.
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(iii) Hofmann et al. [20] improved the convergence rates of [15] for the regularization func-

tional f(·) = ‖ · ‖L2[0,T ]. Also here, as in [20, 15], the volatility parameter is considered

to be time-dependent only.

One of the goals of the present work is to generalize the above mentioned convergence rate

results for local volatility (volatility that is time and space dependent) estimation by using

recent abstract convergence results for Tikhonov regularization [26], in the H1(Ω) norm.

3. Properties of the forward operator

Below we summarize some properties of the operator F defined in (13).

Theorem 5. Assume that ε ≥ 0 and consider the operator F : D(F ) ⊂ U → L2(Ω), with U

as in Definition 1. Then,

i) F is continuous and (sequentially) compact. Moreover, F is sequentially weakly contin-

uous and weakly closed.

ii) F is differentiable at a ∈ D(F ) in every direction h such that a+h ∈ D(F ). The deriva-

tive F ′(a) is extensible to a bounded linear operator on U . Moreover, F ′(a) satisfies the

Lipschitz condition

∥∥F ′(a)− F ′(a+ h)
∥∥
L(U ;L2(Ω))

≤ c‖h‖U , (19)

for a+ h ∈ D(F ).

Proof. The proof is sketched in the Appendix Appendix A. See also [4], Proposition A.3 and

Proposition 4.3 respectively.

The (sequentially) compactness and weak closedness of the operator F , concluded in

Theorem 5, imply the local ill-posedness of the inverse problem of identification of the local

volatility surface σ(T,K). In fact, for every U -bounded sequence {an}n∈N in D(F ), that

has no strong convergent subsequences, we can extract an U -weakly-convergent subsequence,

say {ank}k∈N. Since D(F ) is weakly closed with respect to the H1-norm, the weak limit

of {ank}k∈N belongs to D(F ). Thus, since F is (sequentially) compact, {F (ank)} has a

convergent subsequence. So, similar option prices may correspond to completely different

volatilities.

As observed in [4, Remark 4.1], D(F ) has no interior points when equipped with the H1(Ω)

norm. Because of that, F ′(a) is not necessarily differentiable in every direction h ∈ H1(Ω). In

other words, F ′(a) is not Gateaux differentiable. This will not affect the convergence analysis

that follows. In fact, for such analysis we only need that the operator F attains a one-sided

directional derivative at a† in the directions a− a† for all a ∈ D(F ). The sufficient condition
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for this to happen is D(F ) to be starlike with respect to a†. That is, for every a ∈ D(F ) there

exists t0 > 0 such that

a† + t(a− a†) = ta+ (1− t)a† ∈ D(F ) ∀0 ≤ t ≤ t0 .

Because D(F ) is convex, the requirement above follows. Moreover, the bounded linear oper-

ator F ′(a†) has properties that mimic the Gateaux derivative.

In particular, there exists an adjoint operator

F ′(a†)∗ : L2(Ω) −→ U

defined by

〈F ′(a†)∗v, a〉L2(Ω) = 〈v, F ′(a†)a〉U , a ∈ U , v ∈ L2(Ω) .

We emphasize that Theorem 5 holds true if we restrict our attention to

D(F ) := {a ∈ a0 + U : a ≤ a ≤ a} (20)

and a convex, weakly lower semi-continuous functional f on U with D(F ) ⊆ D(f). Moreover,

for ε > 0, by the Sobolev embedding theorem, each function of D(F ) ⊂ U is an interior point,

for which Fréchet-differentiability holds, as Theorem 5 shows.

Lemma 6. Let ε > 0 be fixed. For a ∈ D(F ) the Frèchet derivative of F exists and is

injective.

Proof. Let h ∈ N (F ′(a)) ⊂ U . Because of equation (A.2) we have that

h · (uyy − uy) = 0 . (21)

However, G(τ, y) = (uyy − uy) is the distributional solution of the initial value problem

∂τG(τ, y) =
1

2
(∂2
yy − ∂y)(a(t, y)G(τ, y)) + bG(τ, y) (22)

G(0, y) = δ(y) ,

where δ(y) is the Dirac’s delta. In others words, G(τ, y) is the Green’s function of the Cauchy

problem (22). Hence, G(τ, y) 6= 0 for every y and τ ≥ 0 (See, for example, [27] or [2, Theorem

4.3]). Thus, it follows from (21) that h = 0 a.e.

The above lemma states that for every a ∈ D(F ) the operator F ′(a) has a trivial null-

space, and thus the range of F ′(a)∗ is dense in U . Interestingly, (F ′(a)†)∗ shares the same

properties, and consequently the range of F ′(a†) is dense in L2(Ω). This property will be

used later on to characterize source conditions in the inverse problem theory.
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Lemma 7. Let ε > 0. The operator F ′(a†)∗ has a trivial kernel.

Proof. As before, we take b = 0 for simplicity. Denote by

Lu := −∂τ + a(∂yy − ∂y)

and by Guyy−uy , the parabolic partial differential operator on the left hand side of Equa-

tion (A.2) with homogeneous boundary condition and the multiplication operator by the

function uyy − uy, respectively. Hence, the solution of (A.2) has a functional form u′(a) :=

F ′(a) =
(
Lu
)−1

Guyy−uy , where by
(
Lu
)−1

we mean the left-inverse of the operator Lu with

vanishing boundary and initial conditions.

Since F ′(a†)∗ : L2(Ω) −→ U , we have

〈F ′(a†)h, z〉L2(Ω) = 〈h, ϕ〉U , ∀h ∈ U , ∀z ∈ L2(Ω)

and F ′(a†)∗z = ϕ. Now, let z ∈ N (F ′(a†)∗). Then,

0 = 〈F ′(a†)h, z〉L2(Ω) = 〈
(
Lu
)−1

Guyy−uyh, z〉L2(Ω) = 〈Guyy−uyh,
((
Lu
)−1)∗

z〉L2(Ω)

= 〈Guyy−uyh, g〉L2(Ω) =

∫
Ω

(uyy − uy)h g dτ dy ∀h ∈ U .

where g is a solution of the adjoint equation

gτ + (a†g)yy + (a†g)y = z ,

with homogeneous final and boundary conditions. Since z ∈ L2(Ω), g ∈ U . See [27]. In

particular ∫
Ω

(uyy − uy)h gdτ dy = 0 ,

holds true for h = g. Since Guyy−uy > 0 (see the end of the proof of Lemma 6) it follows that

g = 0. Consequently, z = 0 and N (F ′(a†)∗) = {0}.

Remark 8. The range of F ′(a†)∗ is dense in U . Indeed,

U = R(F ′(a†)∗)
H1+ε(Ω)

⊕N (F (a†))

and the claim follows from Lemma 6.

4. Stability and convergence of regularized solutions

Given the properties of F on Theorem 5, the general result of [26, Chapter 3] implies

the well-posedness, stability and convergence of the minimizers of the Thikhonov functional
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Fβ,uδ . We refer to [26, Chapter 3, Theorems 3.22 - 3.26], for details of proofs. These results

are summarized below with the following abstract assumptions:

Assumption 9.

1. The spaces U and V are Banach spaces endowed with topologies τU and τV that are

weaker than the norm topologies and ‖ · ‖V is sequentially lower semi-continuous with

respect to τV .

2. There exists a solution of (13) on D(F ) ⊂ U .

3. The functional f : D(f) ⊂ U → [0,∞] is convex and sequentially lower semi-continuous

with respect to τU and D := D(F ) ∩ D(f) 6= ∅.
4. F : D(F ) ⊂ U −→ V is continuous with respect to τU and τV .

5. Let Fβ,ū the Tikhonov functional defined in (14). Then,

Mβ(M) := levelM (Fβ,ū) = {a : Fβ,ū(a) ≤M}

is sequentially pre-compact and closed with respect to τU . The restrictions of F to

Mβ(M) are sequentially continuous with respect to the topologies τU and τV .

The general result of [26, Chapter 3, Theorems 3.22-3.26], then implies well-posedness,

stability, convergence. These results are summarized below.

Theorem 10 (Existence, Stability, Convergence). Suppose that F , f , D, U , and V satisfy

Assumption 9. Furthermore, assume that β > 0 and uδ ∈ V . Then, we have that:

• There exists a minimizer of Fβ,uδ . Moreover, there exists an f -minimizing solution of

(13).

• If (uk) is a sequence converging to u in V with respect to the norm topology, then every

sequence (ak) with

ak ∈ argmin
{
Fβ,uk(a) : a ∈ D

}
has a subsequence which converges with respect to τU . The limit of every τU -convergent

subsequence (ak′) of (ak) is a minimizer ã of Fβ,u, and
(
f(ak′)

)
converges to f(ã).

• Let β : (0,∞) → (0,∞) satisfies β(δ) → 0 and δ2/β(δ) → 0 , as δ → 0 . Moreover,

assume that the sequence (δk) converges to 0, and that uk := uδk satisfies ‖ū− uk‖ ≤ δk.

Set βk := β(δk). Then, every sequence (ak) of elements minimizing Fβk,uk , has a

subsequence (ak′) that converges with respect to τU . The limit a† of any τU convergent

subsequence (ak′) is an f -minimizing solution of (13), and f(ak)→ f(a†). In addition,

if the f -minimizing solution a† is unique, then ak → a† with respect to τU .

Note that, for the special setting of the calibration problem, the spaces U := H1+ε(Ω)

and V := L2(Ω) are Hilbert spaces with their weak topologies, respectively. Moreover, the
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functional f satisfies Assumption 2. Therefore, the first three conditions of Assumption 9 are

satisfied for our particular problem. The last condition of Assumption 9 is a consequence of

Theorem 5.

Convergence rate results will be based on the following theorem which requires further

assumptions.

Assumption 11. Besides Assumption 9, we assume that

1. There exists an f -minimizing solution a† of (13), which is an element of the Bregman

domain DB(f).

2. There exist β1 ∈ [0, 1), β2 ≥ 0, and ζ† ∈ ∂f(a†) such that

〈ζ†, a† − a〉 ≤ β1Dζ†(a, a
†) + β2

∥∥∥F (a)− F (a†)
∥∥∥
V
, (23)

for a ∈Mβmax(ρ), where βmax, ρ > 0 satisfy the relation ρ > βmaxf(a†).

Under this assumption we have the following:

Theorem 12. (Convergence rates [26, Theorem 3.42]) Let F , f , D, U , and V satisfy Assump-

tion 11. Moreover, let β : (0,∞)→ (0,∞) satisfy β(δ) ∼ δ. Then

Dζ†(a
δ
β, a
†) = O(δ) ,

∥∥∥F (aδβ)− uδ
∥∥∥
V

= O(δ) ,

and there exists c > 0, such that f(aδβ) ≤ f(a†) + δ/c for every δ with β(δ) ≤ βmax.

The following proposition reveals that the technical conditions in Assumption 9 can be

obtained from rather classical ones:

Proposition 13. [26, Proposition 3.35] Let F , f , D, U , and V satisfy Assumption 9. Assume

that there exists an f -minimizing solution a† of (13), and that F is Gateaux differentiable at

a†.

Moreover, assume that there exist γ ≥ 0 and ω† ∈ V ∗ with γ
∥∥ω†∥∥ < 1, such that

ζ† := F ′(a†)∗ω† ∈ ∂f(a†) (24)

and there exists βmax > 0 satisfying ρ > βmaxf(a†) such that∥∥∥F (a)− F (a†)− F ′(a†)(a− a†)
∥∥∥ ≤ γ Dζ†(a, a

†) , for a ∈Mβmax(ρ) . (25)

Then, Assumption 11 holds.

We emphasize that U = H1+ε(Ω) is a Hilbert space and thus we can use the inner

product on U and the adjoint operator F ′(a†) instead of the duality pairing of F ′(a†), F ′(a†)#,

respectively, as in [26, Proposition 3.35 ].
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The next section is devoted to verifying the assumptions of the previous results in conver-

gence rates. In particular, it require us to investigate (23), or alternatively (24) and (25),

respectively.

4.1. Convergence rates for the calibration inverse problem

It turns out that, for the specific problem under consideration, we are not able to char-

acterize the source condition (24). However, we can guarantee (23) under mildly restrictive

conditions. The first step in order to guarantee (23) is the following simple Lemma:

Lemma 14. Let ζ† ∈ ∂f(a†). Then, there exists a function w† ∈ L2(Ω) and a function r ∈ U
such that

ζ† = F ′(a†)∗w† + r (26)

holds. Furthermore, ‖r‖U can to be taken arbitrarily small.

Proof. Indeed, Lemma 6 implies that R(F ′(a†)∗) is dense in U . In particular, from Lemma 7,

if ζ† = 0 we can take w† = r = 0.

In this subsection we exhibit a class of functionals for which we are able to prove that

condition (23) holds provided the variational source condition (26) is satisfied. For that we

shall make use of the following concept:

Definition 15. Let 1 ≤ q < ∞ and Ũ be a subset of U . The Bregman distance Dζ(·, ã) of

f : U → R ∪ {+∞} at ã ∈ DB(f) and ζ ∈ ∂f is said to be q-coercive with constant c > 0 if

Dζ(a, ã) ≥ c‖a− ã‖q
Ũ

, ∀a ∈ D(f). (27)

In the next lemma we prove the existence of an approximate source condition as (26) and

f satisfying Definition 15 is sufficient for convergence rates:

Lemma 16. Let ζ† ∈ ∂f(a†) satisfy (26) with w† and r such that

(
C‖w†‖L2(Ω) + ‖r‖L2(Ω)

)
:= β1 ∈ [0, 1),

and the Bregman distance with respect to f be q − coercive with 1 < q < ∞, with constant

c ≥ e−2 and with Ũ := U . Then, Equation (23) holds. In particular, the convergence rates of

Theorem 12 hold.

Proof. Using the Sobolev Embedding Theorem [28], Equation (26) and the Lipschitz condition

of F ′(·) of Equation (19), we have that

|〈ζ†, a− a†〉| ≤ |〈ζ† − r, a− a†〉+ 〈r, a− a†〉|

≤ ‖w†‖L2(Ω) ‖F (a)− F (a†)‖L2(Ω) +
(
C‖w†‖L2(Ω) + ‖r‖U

)
‖a− a†‖U .

13



Therefore, from here, we obtain, for p, q > 1 such that p−1 + q−1 = 1, that

|〈ζ†, a− a†〉| ≤ ‖w†‖L2(Ω) ‖F (a)− F (a†)‖L2(Ω) +
(
C‖w†‖L2(Ω) + ‖r‖U

)
‖a− a†‖

1
p

U‖a− a
†‖

1
q

U ,

(28)

Applying to the second term on the right hand side of Equation (28) the following variant of

Young’s inequality

ab ≤ ε̃ap1 +
bp2

(ε̃p1)p1/p2p2
a, b > 0 and ε̃ > 0 ,

where a = ‖a− a†‖
1
p

U , b = ‖a− a†‖
1
q

U , p1 = q2/(q − 1) and p2 = q2, it follows that,(
ε̃‖a− a†‖qU +

‖a− a†‖qU
(ε̃ q2

q−1)1/(q−1)q2

)
≤

(
ε̃+

1

(ε̃ q2

q−1)1/(q−1)q2

)
‖a− a†‖qU .

Now, we take ε̃ > 0 such that

ε̃+
1

(ε̃ q2

q−1)1/(q−1)q2
≤ c . (29)

To check that the Equation (29) holds true for some ε > 0, it is enough taking ε̃ = q − 1 > 0

and verify that the limit when q → 1+, in Equation (29), is e−2.

Therefore, from the assumption that f satisfies Definition 15 and the definition of β1 we

have

|〈ζ†, a− a†〉| ≤ β1Dζ†(a, a
†) + β2

∥∥∥F (a)− F (a†)
∥∥∥
L2(Ω)

.

The convergence rates now follow from Theorem 12.

The condition
(
C‖w†‖L2(Ω) + ‖r‖L2(Ω)

)
:= β1 ∈ [0, 1), is a standard condition that is

used frequently in inverse problems. See for example [29]. We note that one does not have

an explicit description of w†. Therefore, the size of w† is not totally controllable for the

specific setting of the calibration inverse problem. Hence, in this paper, we assume that(
C‖w†‖L2(Ω) + ‖r‖L2(Ω)

)
:= β1 ∈ [0, 1), holds. However in Section 6 we have a financial

interpretation of the source condition (26), when r = 0.

Under the assumption of Lemma 16, if in addition f is q-coercive, a convergence rate in

the norm holds: ∥∥∥aδβ − a†∥∥∥
U

= O((δ)
1
q ) . (30)

In the sequel we present possible choices for q-coercive Bregman distance.

Example 17 (q-coercive Bregman distance). Let Ũ be a Hilbert space and D(f) ⊂ Ũ and

f(a) := q−1
∥∥a− a†∥∥q

Ũ
. Then, the Bregman distance associated to f is q-coercive. See [30] and

14



references in there. In particular, if Ũ is a uniformly convex Banach space and continuous

embedding in H1(Ω), then f(a) := p−1
∥∥a− a†∥∥p

Ũ
, with 1 < p ≤ q has a q-coercive Bregman

distance.

Example 18. Let 1 < q ≤ 2 and ε > 0. We consider the functional

f(a) =

∞∑
n=1

| < a, φn > |q ,

where {φn} is an orthonormal basis in H1+ε(Ω). The functional is convex, proper and sequen-

tially weakly lower semi-continuous. Moreover, the Bregman distance of the functional f

satisfies

f(a)− f(a†)− 〈∂f(a†), a− a†〉 ≥ C
∞∑
n=1

|〈a− a†, φn〉|2 = C‖a− a†‖2U .

Hence, f is 2-coercive. Therefore, according to Lemma 16 and Equation (30) the rate of

O(
√
δ) holds for the H1+ε-norm. This method is usually considered in the case of sparsity

regularization [31]. The case p = 1, which refers to the original sparsity regularization is not

taken into account here, since we aim at convergence rates in the Hilbert space norm.

5. Exponential Families

In this section, we will motivate the use of Bregman distances for regularization from a

statistical perspective and then connect it to the general theory developed earlier.

The Darmois-Koopman-Pitman theorem states that under certain regularity conditions

on the probability density, a necessary and sufficient condition for the existence of a sufficient

statistic of fixed dimension is that the probability density belongs to the exponential family

[32]. We start with the definition of an exponential family in dimension 1, which is used later

on to define appropriate priors.

Definition 19 (Regular Exponential Family). Let ψ : R→ R∪{+∞} be convex and p0 : R→
R+ by continuous. The family of probability distribution functions pψ,θ : R→ R+ defined by

pψ,θ(s) := exp(s · θ − ψ(θ))p0(s)

is called a regular exponential family. In this context the function ψ is called log-partition or

circulant function. The expectation number a(θ) is defined by

a(θ) :=

∫
R
spψ,θ(s) ds .

This definition calls for an example, namely:

15



Example 20. We consider the exponential family of normal distributions on R with known

variance $2 = 1. The density is

pψ,θ(s) =
1√
2π

exp

(
−(s− θ)2

2

)
, s > 0.

This is a one parameter exponential family with

p0(s) =
1√
2π

exp

(
−s

2

2

)
and ψ(θ) =

θ2

2
,

The expectation number is

a(θ) =
1√
2π

∫
R
s exp

(
−(s− θ)2

2

)
ds

=
1√
2π

∫
R

(s− θ) exp

(
−(s− θ)2

2

)
ds+

θ√
2π

∫
R

exp

(
−s

2

2

)
ds

= 0 + θ .

We have the following result from [8] which relates exponential families with Bregman

distances.

Theorem 21 (Banerjee et al. [8]). Let ψ∗ denote the Fenchel transform of ψ, which we

assume to be differentiable. Then, the Bregman distance with respect to ψ∗ is given by

Dψ∗(â, ã) = ψ∗(â)− ψ∗(ã)− ψ∗′(ã)(â− ã) .

If we assume that a(θ) ∈ int(dom(ψ∗)), then

pψ,θ(a) = exp
(
−Dψ∗ (a, a(θ))

)
exp

(
ψ∗(a)

)
p0(a) . (31)

We now present some interesting Exponential Families and respective Fenchel conjugate.

Example 22 (Exponential Families and their Fenchel conjugates). For a Gaussian distri-

bution ψ(θ) = $2

2 θ
2, then ψ∗(a) = a2

2$2 . For Poisson distribution ψ(θ) = exp(θ) we have

ψ∗(a) = a log(a)− a.

We shall now motivate Bregman distance regularization as a log-maximum a-posteriori

estimator for an exponential family. For the time being and for motivation purposes, we

consider a discrete statistical setting. As usual, we consider (X ,F ,P) a probability space.

We let ~x := (xi)i be a sequence of elements in X and ~a = (ai)i, where ai = a(xi) ∈ R.

We assume that the conditional probability density for observable data uδi := uδ(xi) from

ui := F (a)(xi) are normally and identically distributed with mean zero and variance $2.
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That is, the probability of observing uδi given ui is given by

p(uδi |ui) =
1

$
√

2π
exp

(
−|u

δ
i − ui|2

2$2

)
.

Now, for a ∈ R>0 denote θ := θ(a). With this notation, for some prior â, the a priori

distribution is defined by

p(a) := pψ,θ(â) = exp (âθ − ψ(θ))p0(â) .

In order to clarify this formula, recall that θ depends on a and this is the only a dependence,

which shows up on the right hand side.

This in turn, according to Theorem 21, can be rewritten as

p(a) = exp (−Dψ∗(â, a)) exp(ψ∗(â))p0(â) .

The advantage of this representation is that it does not involve any parametrization of the

exponential family (that is, with respect to θ). In this context the Log-maximum estimation

then consists in minimizing the functional

~a 7−→
∑
i

(
− log(p(uδi |ui))− log(p(ai))

)
,

which is equivalent to minimizing the functional

~a 7−→
∑
i

(ui − uδi )2 + β
∑
i

Dψ∗(âi, ai) ,

where β = 2$2. Note that the Bregman distance is in general not symmetric, and we minimize

with respect to the second component of the Bregman distance.

In summary, we have shown that Bregman distance regularization can be considered a

log maximum a-posteriori estimator for the expectation number, in our case for the expected

variance.

In this model, we shall introduce some regularization techniques. For notational simplicity

we formulate them in an infinite dimensional framework. Hereafter, we shall assume again

that Ω is a bounded sub-domain of R2. With this framework, we remark that D(F ) ⊂
U ∩ L∞>0(Ω) ⊂ L1(Ω), where L∞>0(Ω) is the set of functions that are (essentially) bounded

from below and above by some positive constants.

Example 23. According to Example 22, if we use the exponential family associated to Poisson

distributions, we obtain Kullback-Leibler regularization, consisting in minimization of

a 7−→ Fβ,uδ(a) :=
∥∥∥F (a)− uδ

∥∥∥2

L2(Ω)
+ βKL(â, a) , (32)
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where

KL(â, a) =

∫
Ω
a log(â/a)− (â− a) dx .

We note that the Kullback-Leibler distance is the Bregman distance associated to the

Boltzmann-Shannon entropy

G(a) :=

∫
Ω
a log(a) dx . (33)

We also note that the standard Kullback-Leibler regularization [33], and more generally,

the Bregman distance regularization, is in general considered with respect to the first compo-

nent. However, the modeling with exponential families results in Bregman distances with

respect to the second component.

Remark 24. The domains of G, D(G), and of the sub-gradient of G, D(∂G), are L∞≥0(Ω) (the

set of bounded non-negative functions) and L∞>0(Ω), respectively.

The Kullback-Leibler distance, which is the Bregman distance of the Boltzmann-Shannon

entropy, is defined on the Bregman domain DB(G), that is a subset of L∞>0. Moreover, the

Kullback-Leibler distance is lower semi-continuous with respect to the L1-norm [33]. Based

on this property we extend the Kullback-Leibler distance, to take value +∞ if either a /∈ D(G)

or b /∈ DB(G).

Note that there are exceptional cases, when the integral∫
Ω
a log(a/â)− (a− â) dx

is actually finite, but KL(a, â) = ∞. This can be seen by taking for instance a ∈ L1
>0(Ω)

which is not in L∞(Ω) and â = Ca, where C is a constant. The reason here, is that a is not

an element of the sub-gradient of the Boltzmann-Shannon entropy. This follows directly from

the definition of the domains of the convex functionals and sub-gradients.

To prove that minimization of Fβ,uδ in (32) is well–posed we have to first prove that our

problem of interest has suitable properties in appropriate topologies.

Lemma 25. Let Ω be a bounded subset of R2 with Lipschitz boundary. Moreover, let an ∈
D(F ) with an ⇀ a in L2(Ω). Then F (an) ⇀ F (a) in L2(Ω).

Proof. Since D(F ) is convex and closed, a ∈ D(F ). Let un, u be the respectively W 1,2
2 (Ω)

solutions of (10) and (11), for an, a ∈ D(F ). By linearity, vn := un − u satisfies

−vnτ + an(vnyy − vny ) + bvny = −(a− an)(uyy − uy) , (34)

with homogeneous initial and boundary conditions. Standard parabolic regularity estimates

implies that ‖vn‖W 1,2
2 (Ω)

≤ C‖a− an‖L2(Ω)‖uyy − uy‖L2(Ω)
. As, ‖uyy − uy‖L2(Ω)

≤ C̃ [2,
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Proposition 4.4 i)], an ⇀ a and from the continuous embedding of W 1,2
2 (Ω) in L2(Ω), it

follows that vn ⇀ ṽ in L2(Ω). Moreover∫
Ω

(−vnτ + an(vnyy − vny ) + bvny )ϕdx = −
∫

Ω
(a− an)(uyy − uy)ϕdx −→ 0 , as n→∞ ,

for any ϕ ∈ C∞0 (Ω). Since an ∈ L∞(Ω), the weak limit ṽ of vn satisfies

−ṽτ + a(ṽyy − ṽy) + bṽy = 0 , in D′(Ω) , (35)

with homogeneous initial and boundary conditions. Using another time the parabolic regu-

larity estimate [27], we have that ṽ = 0.

Lemma 26. Let the assumptions in Lemma 25 be satisfied.

1. Let a, b ∈ D(G). Set 0 · (+∞) = 0. Then,

‖a− b‖2
L1(Ω) ≤

(
2

3
‖a‖L1(Ω) +

4

3
‖b‖L1(Ω)

)
KL(a, b) . (36)

2. For a, b ∈ D(G), we have
1

2
‖a− b‖2

L2(Ω) ≤ KL(a, b) . (37)

3. Let the extended Kullback-Leibler distance. For sequences (ak)k and (bk)k in L1(Ω),

such that one of them is bounded: If KL(ak, bk)→ 0, then ‖ak − bk‖L1(Ω) → 0.

4. Let 0 6= â ∈ DB(G), then the sets

Mβ,uδ(M) := {a ∈ DB(G) : Fβ,uδ(a) ≤M}

are τŨ sequentially compact in L2(Ω).

Proof. For the proofs of Item 1, Item 2 and Item 3 see [33] or [34, Lemma 2.2 and Proposition

2.3]. To prove Item 4, we use (37). Let (ak)
∞
k=1 be a sequence in Mβ,uδ(M), then according

to (37), it is uniformly bounded in L2(Ω). Therefore ak ⇀ a in L2(Ω). Since L2(Ω) ⊂ L1(Ω),

ak ⇀ a in L1(Ω). Furthermore, according to [33] the KL functional satisfies

KL(â, ã) ≤ lim inf KL(â, ak)

Now, assumption on F and the weak lower semi-continuity of the L2 norm implies that∥∥∥F (ã)− uδ
∥∥∥2

L2(Ω)
+ βKL(â, ã) ≤M .

Using standard results on variational regularization (see for instance [26]), we have:
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Theorem 27. There exists a minimizer of Fβ,uδ in (32). The minimizers are stable and

convergent for β(δ) → 0 and δ2/β(δ) → 0. Stable means that argminFβ,uδk → argminFβ,u0

for δk → 0 and that argminFβ(δk),uδk converges to a solution of (13) with minimal energy.

A consequence of Lemma 26 Item 3 and the continuous embedding of L2(Ω) in L1(Ω), is

the following: Let δk be a sequence converging to zero and ak = aδkβk the respective minimizers

of the Tikhonov functional (14). Then, for bk = a† for all k ∈ N, we have∥∥∥ak − a†∥∥∥
L1(Ω)

→ 0 , as δk → 0 .

Moreover, a consequence of (36) and Theorem 12 is that∥∥∥aδβ − a†∥∥∥
L1(Ω)

= O(
√
δ) . (38)

6. Relation with convex risk measures

A very natural question is how to interpret the source condition given by (24) in financial

terms. In order to answer it, in this section, we relate the convex regularization functional f

and the theory of coherent (convex) risk measures [5, 35, 36, 37] by assuming that the source

condition in (24) is satisfied. The upshot will be that the existence of a source condition

allows us to introduce different convex risk measures. We start this section by reviewing the

latter.

In financial practice, a number of ways have been proposed to assess the risk of a given

portfolio or investment choice [6]. Perhaps the most well-known is the so-called value at risk

(VaR). It is defined as follows: For a given portfolio, probability level and time period, the

VaR is defined as the threshold value such that the probability of loss on the portfolio over

the given time period exceeds this value is the given probability level. A minute’s thought

indicates that the higher the VaR the higher the risk, and, in principle, the more undesirable

such investment would be. It turns out that the VaR has a serious pitfall, namely, it does

not encourage diversification. This is related to the fact that it is not in general a convex

function of the portfolio choice.

Several authors have developed a theory of desirable properties for risk measures. See

[6] and references therein. One of the most popular is the concept of a convex risk measure.

It represents a quantitative assessment of the risk involved by the investor’s preference on a

financial position. Usually a position is described by the resulting discounted net worth at the

end of a given period. Thus, it is represented by a random variable in a suitable probability

space. More precisely, we denote by X a convex set of real valued random variables over all

possible scenarios. Following [5, 35, 36, 37] we shall now introduce the definition of convex

risk measure and postpone to the next paragraph a brief explanation of its meaning.
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Definition 28. A map ρ : X −→ R will be called a convex measure of risk if it satisfies the

following conditions:

• Convexity.

• Non-increasing monotonicity, i.e., if the random variable ν2 is dominated by the random

variable ν1 a.e., then ρ(ν2) ≥ ρ(ν1).

• Translation invariance, i.e., if m ∈ R is a deterministic variable in the sense that it

takes the value m a.e., then

ρ(ν +m) = ρ(ν)−m. (39)

We now digress to give an intuitive interpretation of the different requirements above.

The condition of convexity is related to risk aversion and it is important in diversifying risk.

See [6] for details. The translation invariance condition, is natural since adding a deterministic

quantity to a portfolio must decrease its risk of that amount. The monotonicity says that if

two portfolios ν1 and ν2 are such that for almost all events the return of ν1 is greater than,

or equal to, the return of ν2, then the risk associated to ν1 is smaller than the corresponding

risk associated to ν2.

In the sequel, we present a connection between such convex risk measures and the inter-

pretation of source condition (24). The main point is that we present a construction that

allows us to associate the convex regularization functional f involved in the source condition

to a convex risk measure. This circle of ideas is novel, to the best of our knowledge, and

deserves careful further investigations.

The first assumption is that Ω is a bounded set. This is the same to assuming that the

strikes K are bounded below and above by some positive constants. Moreover, we define the

functional f(a) = +∞ if a /∈ D(F ). Using the assumption of existence of a source function

w† ∈ L2(Ω) that satisfies (24) and the definition of ∂f(a†) we have that

f(a)− 〈w†, F ′(a†)a〉 ≥ f(a†)− 〈w†, F ′(a†)a†〉 , (40)

∀a ∈ U and ∀w† s.t.F ′(a†)∗w† ∈ ∂f(a†) .

Let us set g(−F ′(a†)a) := 〈w,−F ′(a†)a〉. The existence of w† satisfying (40) implies that it

is the Lagrangian multiplier of

L : D(F )× L2(Ω) −→ R

(a,w)→ f(a) + g(−F ′(a†)a) ,

i.e., it satisfies

L(a†, w) ≤ L(a†, w†) ≤ L(a,w†) .
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However, it is not clear whether we have more than one w† ∈ R(F ′(a†)) satisfying (40).

Indeed, it depends on the choice of f . For example, if f is differentiable on a†, then ∂f(a†) is

a single element. Then, from Lemma 7 it follows that w† satisfies Equation (24) and therefore

it is unique.

We define a family of separately convex functions (meaning that for a fixed w it is convex

in a and vice versa) by

L2(Ω) 3 w 7−→ hw :D(F ) −→ R ∪ {+∞}

a 7−→ L(a,w) = f(a) + g(−F ′(a†)a) . (41)

Observe that hw(a) is a family of functions of the variable a depending on the parameter w.

Remark 29. A particular property of hw† is that

hw†(a)− hw†(a†) = L(a,w†)− L(a†, w†) = Dζ†(a, a
†) .

However, this property holds only in the special case when w† satisfies (40).

Remark 30. Note, that the source condition (24) together with the existence of an f -

minimum norm solution for (13) is equivalent to the Karush-Kuhn-Tucker condition in convex

optimization [38].

Now, from the theory of Fenchel conjugation [39, 40] we obtain a unique Fenchel conjugate

function of hw given by

ĥ∗w :L2(Ω) −→ R

v 7−→ g∗(v) + f∗(−F ′(a†)∗v) . (42)

If it happens that

g∗(v) =

0 if v = w

+∞ otherwise ,

then we would have difficulties in the above definition of ĥ∗w. Hence, we focus on the related

function h∗w defined as

h∗w : X ⊂ L2(Ω) −→ R

v 7−→ h∗w(v) := f∗(−F ′(a†)∗v) , (43)

where X := {v ∈ L2(Ω) : f∗(−F ′(a†)∗v) is finite}.
We note that since {0} = N (F ′(a†)∗), then h∗w(0) = f∗(0) = 0.

Lemma 31. The functional h∗w satisfies the convexity and monotonicity axioms.
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Proof. The convexity follows directly from the properties of the Fenchel conjugate function

[40, Theorem 2.3.1]. To prove the monotonicity: let v1, v2 ∈ X satisfy v1 ≥ v2. From the

definition of the Fenchel conjugate we have h∗w(v) = f∗(−F ′(a†)∗v) ≥ 〈a,−F ′(a†)∗v〉 − f(a).

Positivity of F ′(a†)a (see [2, Theorem 4.2]) implies that

0 ≤ 〈F ′(a†)a, v1 − v2〉 = 〈F ′(a†)a, v1〉+ f(a)− (〈F ′(a†)a, v2〉+ f(a))

≤ −h∗w(v1) + h∗w(v2) .

In the sequel we give a construction of a convex risk measure ρ in the present context.

This will be achieved using the properties of h∗w and an interesting probabilistic representation

of v ∈ X coming from Malliavin Calculus [10].

We start by relating our notation with that of [10]. Equation (10) is associated to the

diffusion process {yt : 0 ≤ t ≤ T} that satisfies the dynamics

dyt =

(
r − q − σ(t, yt)

2

2

)
dt+ σ(t, yt)dWt , yt0 = y0 , (44)

in the risk neutral probability measure Q.

We recall that the process (44) is the diffusion (1) in a logarithmic variables where σ 7−→
a ∈ D(F ) by (9).

For the sake of simplicity, we assume that the process (44) has no dividend and interest

rates, i.e., b = 0.

Following [10], denote by {Yt : 0 ≤ t ≤ T} the first variation process associated to

{yt : 0 ≤ t ≤ T} and defined by the stochastic differential equation

dYt = (σ2(Yt))
′Ytdt+ σ′(Yt)dWt , Yt0 = 1 .

Remark 32. We now identify σ† 7−→
√

2a† and σ̃ 7−→
√

2ã given by (9) with a†, ã ∈ D(F ).

Then, for sufficiently small ε > 0, the diffusion coefficient σ† + εσ̃ satisfies the uniform

ellipticity condition

∃η > 0 : ζT (σ† + εσ̃)T (x)(σ† + εσ̃)(x)ζ ≥ η|ζ|2,

for all ζ ∈ R2 and for all x ∈ Ω.

We introduce the auxiliary set

Γ :=

{
Θ ∈ L2[0, T ] |

∫ T

0
Θ(t)dt = 1

}
,

which contains for example the constant function Θ(t) = 1/T .
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Our first result is a representation lemma.

Lemma 33. Let v ∈ R(F ′(a†)). Then, there exists a random variable πa† such that

v = Ey0

Q [Φ(yt)πa† ] , (45)

where Q is the risk neutral probability measure.

Proof. Let

β̃Θ = Θ(t)(β(T )− β(0))χ0≤t≤T

where {β(t) : 0 ≤ t ≤ T} is the process given in [10, Lemma 3.1].

Since σ†+ εσ̃ satisfies the uniform ellipticity condition (see Remark 32) we have from [10,

Proposition 3.3] that the Gateaux derivative at σ† in the direction σ̃ is given by

Ey0

Q [Φ(yt)D
∗
t ((σ

†)−1(yt)Ytβ̃Θ(T ))]

where D∗t ((σ
†)−1(yt)Ytβ̃Θ(T )) is the Skorohod integral [41] of the possibly anticipative process

{(σ†)−1(yt)Ytβ̃Θ(T ) : 0 ≤ t ≤ T} ,

for any Θ ∈ Γ.

We remark that the linearity of D∗t with respect to σ̃ arises through the process βt. See

Proposition 3.3 of [10].

Lemma 34. The constants do not belong to R(F ′(a†)).

Proof. If 1 ∈ R(F ′(a†)), then there exist h ∈ D(F ′(a†)) such that F ′(a†)h = 1. Thus, 1 would

satisfy (A.2), i.e.,

0 = 1τ + a†(1yy − 1y) = h(uyy − uy) .

Using the same argument in the proof of Lemma 6 we have that (uyy−uy) cannot vanish in a

set of positive measure. Thus h = 0 a.e. This is a contradiction with the fact that F ′(a†)h = 1

since F ′(a†) is linear.

At this point, we have two interesting sets of random variables for our convex risk measure

construction. Firstly,

X := {ν +m : ν = Φ(yt) and m ∈ C}

and secondly,

X1 := {πa† +m : πa† = D∗t ((σ
†)−1(yt)Ytβ̃Θ(T )) and m ∈ C} ,
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where C is the set of all constants.

Remark 35. It follows from Lemma 33 that we have a representation of X by X and X1

given by the weighted expectation Ey0

Q [·] with weight D∗t ((σ
†)−1(yt)Ytβ̃Θ(T )) and Φ(yt) respec-

tively. We remark that the terminology weight here is used in a loose sense, since indeed

D∗t ((σ
†)−1(yt)Ytβ̃Θ(T )) may take negative values.

The following lemma plays a central part in our analysis below.

Lemma 36. If ν ≡ 1, then

Ey0

Q [νD∗t ((σ
†)−1(yt)Ytβ̃Θ(T ))] = 0 .

Proof. This follows directly by the duality between the Skorohod integral and the Malliavin

derivative [41], and the fact that Dt1 = 0.

We are now ready to state the mains results of this section.

Proposition 37. [First alternative for a convex risk measure] The functional

ρ :X −→ R ν 7−→ ρ(ν) := h∗w(Ey0

Q [ν · πa† ])− Ey0

Q [ν] (46)

satisfies the convex risk measure axioms.

Proof. By the linearity of the expectation operator and the properties of the functional h∗w

in Lemma 31, the convexity and monotonicity axioms follows.

In order to prove the translation axiom, we write

ρ̃ :X −→ R ν 7−→ ρ̃(ν) := h∗w(Ey0

Q [(ν − Ey0

Q [ν]) · πa† ])− Ey0

Q [ν] .

Let ν +m ∈ X . By the linearity of the expected value

ρ̃(ν +m) = h∗w(Ey0

Q [(ν +m− Ey0

Q [ν +m]) · πa† ])− Ey0

Q [ν +m]

= h∗w(Ey0

Q [(ν − Ey0

Q [ν]) · πa† ])− Ey0

Q [ν]−m = ρ̃(ν)−m.

Hence ρ̃ satisfies the translation axiom.

Now we show that ρ̃ = ρ. Indeed, by definition, X = D(ρ̃) = D(ρ). Let us take now

ν ∈ X . Then, by definition of expectation Ey0

Q [ν] = c where c is a constant. It follows from

Lemma 36 that

ρ̃(ν) = h∗w(Ey0

Q [(ν − Ey0

Q [ν]) · πa† ])− Ey0

Q [ν]

= h∗w(Ey0

Q [ν · πa† ]− Ey0

Q [c · πa† ])− Ey0

Q [ν] = ρ(ν) for all ν ∈ X .

Thus ρ̃ = ρ.
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Proposition 38. [Second alternative for a convex measure of risk] The functional

ρ1 :X1 −→ R π 7−→ ρ1(π) := h∗w(Ey0

Q [ν · π]) , (47)

satisfies the convex risk measure axioms.

Proof. Using the same argument of Proposition 37, the convexity and monotonicity axioms

follow.

In order to prove the translation axiom, we write

ρ̃1 :X1 −→ R π 7−→ ρ̃1(π) := h∗w(Ey0

Q [ν · (π − Ey0

Q [π])])− Ey0

Q [π] .

Then, for π +m ∈ X1, by the linearity of the expectation operator we have that

ρ̃1(π +m) = h∗w(Ey0

Q [ν · (π +m− Ey0

Q [π +m])])− Ey0

Q [π +m]

= h∗w(Ey0

Q [ν · (π − Ey0

Q [π])])− Ey0

Q [π]−m = ρ̃1(π)−m.

Hence, ρ̃1 satisfies the translation axiom.

By definition, X1 = D(ρ̃1) = D(ρ1). Let us take π ∈ X1. From Lemma 36 we conclude

that Ey0

Q [π] = Ey0

Q [1 · π] = 0.

Thus, ρ̃1(π) = ρ(π) for all π ∈ X1 .

We note that the choice of σ† enters in a crucial and nonlinear way in the convex risk

measure. Furthermore, the source condition (24) allows us to construct convex risk measures

in the spaces of random variables associated to the diffusion process (44).

Example 39 (Example of a convex risk measure associated with the Boltzmann-Shannon

entropy). We now illustrate the construction of the convex risk measure by considering the

process (44) under constant volatility with vanishing interest and dividend rates. For this

particular case, the representation (45) (or the vega in financial terms) is given by the formula

(see [10])

Ey0

Q

[
Φ

(
y exp

(
σ†Wτ −

(σ†)2

2
τ

))
·
(
W 2
τ

σ†τ
−Wτ −

1

σ†

)]
=

∫
Ω
dz dτ p(z, τ)Φ

(
y exp

(
σ†z − (σ†)2

2
τ

))
·
(
z2

σ†τ
− z − 1

σ†

)
, (48)

where p(z, τ) = e−
z2

2τ /
√

2πτ is the Gaussian probability density function.
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Let us take v ∈ X and compute F ′(a†)∗v. By Fubini’s Theorem

〈F ′(a†)a, v〉 =

∫
Ω

dτ ′ dyv(τ ′, y)

∫
Ω

dτ dzp(z, τ)Φ

(
y exp

(
σ†z − (σ†)2

2
τ

))
·
(
z2

σ†τ
− z − 1

σ†

)
=

∫
Ω

dτ dzp(z, τ)

(
z2

σ†τ
− z − 1

σ†

)∫
Ω

dτ ′ dyv(τ ′, y)Φ

(
y exp

(
σ†z − (σ†)2

2
τ

))
Thus,

−F ′(a†)∗v =

(
z2

σ†τ
− z − 1

σ†

)
〈−v,Φ(·)〉 . (49)

We now consider the regularization functional f as the Boltzmann-Shannon entropy

f(a) =

∫
Ω
a log(a) dx , a ∈ D(F ) ,

whose Fenchel conjugate is given by

f∗(µ) =

∫
Ω
eµ−1 dx̃ .

Since we are in a Gaussian model, applying [7, Lemma 11] and (49) to the definition of ρ

with ν = Φ
(
y exp

(
σ†(z)− (σ†)2τ/2

))
we get

ρ(ν) = − log

(
Ey0

Q

[
exp

(
z2

σ†τ
− z − 1

σ†

)
〈−v, ν〉

])
− Ey0

Q [ν] . (50)

7. Conclusions and future directions

In this work, we have established existence and convergence results for a convex Tikhonov

regularization of the inverse problem associated to the calibration of the local volatility surface

from Black-Scholes prices.

The main novelty is the use of a regularization term that only requires convexity properties

and weak lower-semi-continuity. Thus, the present regularization applies to a large class of

regularization functionals. In particular, in Section 5 we connect with the statistical viewpoint

through the concept of Exponential Families. This is turn, allows the derivation of a Kullback-

Leibler regularization of the calibration problem.

We establish for Bregman distances better convergence rates than those available in the

literature to the calibration problem. This analysis also allows us to obtain convergence of the

regularized solution with respect to the noise level in L1(Ω) by means of a Kullback-Leibler

regularization functional. See Equation (38). Another advantage of the current approach is

the requirement of weaker conditions than those previously required in the literature. Namely,

we only require q-coerciveness of (27).

The convergence results also hold true if we measure the misfit at the Tikhonov functional

27



(14) in W 1,2
p (Ω). The intuition behind the use of the W 1,2

p (Ω) norm is that we have continuous

dependence of the Tikhonov functional with respect to information not only about the prices

but also with respect to the sensitivities uτ , uyy, and uy. Those are the so called Greeks. On

the other hand, we need more information on the measurement data uδ.

We prove the validity of an approximate source condition of the form (26) for the regu-

larization problem under consideration. In particular, if the regularization functional is

f(·) = ‖·‖2
H1+ε(Ω), then the source condition (24) coincides with the representation that

remained an open problem in [2, 4].

A heuristic financial interpretation of the source condition (24) is that we have a restriction

that allows us to quantify the risk associated to a given volatility level. By this we mean that

upon computing the corresponding Black-Scholes solution as a function of the volatility, we

are quantifying how much risk one has in the space of random variables associated to such

volatility. This is done with the help of the source condition (24). Indeed, we constructed

a functional that, through the Fenchel duality, defines different convex risk measures. The

availability of such risk measures permits quantifying the risk associated to random variables

and portfolios of the underlying model. We remark that convex risk measures are a sub-class

of the coherent risk measures. A natural continuation of the present work would be to explore

further such connection to risk measures [35, 36].

Another direction of future research would be the numerical implementation of the present

results with actual market data. An implementation for the case of the standard quadratic

Tikhonov regularization can be found in [4, 42].

Appendix A. Technical Appendix

In this appendix we collect a few technical definitions and proofs. Although they are

known in the literature, we feel it would be useful to have them collected in the present

section since they are used extensively throughout the article.

We start with the concept of one-sided directional derivative:

Definition 40. Let F : D(F ) ⊂ U → V be an operator between U and V .

1. The operator F admits a one-sided directional derivative F ′(a;h) ∈ V at a ∈ D(F ) in

the direction h ∈ U , if a+ th ∈ D(F ) for all t > 0 and

F ′(a;h) = lim
t→0+

F (a+ th)− F (a)

t
. (A.1)

2. If F ′(a;h) is a bounded linear operator with respect to h, we shall write F ′(a;h) :=

F ′(a)h.

We conclude with the proof of Theorem 5.
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Proof of Theorem 5.

i) The proof follows from [4, Theorem 2.1] or [2, Proposition 4.4 and 5.1], where it is

proven that F : D(F ) ⊂ U → W 1,2
p (Ω) satisfies the property for all 2 ≤ p < p̄ with an

appropriate p̄ > 2 and the continuous embedding of W 1,2
p (Ω) into L2(Ω).

ii) Let a ∈ D(F ) and the direction h ∈ U be such that a + h ∈ D(F ). For simplicity of

exposition, let us assume that b = 0 in (10) and (11). By the linearity of equation (10)

the directional derivative u′ · h in the direction h satisfies

−(u′ · h)τ + a((u′ · h)yy − (u′ · h)y) = −h(uyy − uy) (A.2)

with homogeneous initial conditions. From [4, Proposition A.1] there exists a single

solution u′ · h ∈W 1,2
p (Ω) of (A.2), for all 2 ≤ p < p̄ and some p̄ > 2.

Using regularity estimates to parabolic problems (see for example [27]) we have

‖u′ · h‖
W 1,2
p (Ω)

≤ c‖h(uyy − uy)‖Lp(Ω) ≤ c‖h‖Lp2 (Ω)‖(uyy − uy)‖Lp1 (Ω) , (A.3)

where p1 ∈ (p, p̄) and p2 satisfies 1/p = 1/p1 + 1/p2. Note that, p2 = p1p
p1−p . From [4,

Corollary A.1] it follows that ‖uyy − uy‖Lp1 (Ω) ≤ C for all a ∈ D(F ). Moreover, from

the Sobolev Embedding Theorem [28, Theorem 4.12, case B, pg 85] it follows that there

exists a constant c > 0 such that ‖h‖Lp2 (Ω) ≤ c‖h‖U , for all h ∈ U . From (A.3)

‖u′ · h‖
W 1,2
p (Ω)

≤ C‖h‖U . (A.4)

Thus, the derivative u′(a) = F ′(a) can be extended as a bounded linear operator to

U . The next step is to obtain the Lipschitz condition (19). To do this, denote by

ũ(ã) the solution of (10) and (11) with a replaced by ã = a + h and h ∈ U . Setting

v := (F ′(ã)− F ′(a)) · q = (ũ′ − u′) · q with q ∈ U . Then, from the linearity of (10), v is

a solution of

(v)τ + a((v)y − (v)yy) = q((ũ− u)yy − (ũ− u)y) + (ã− a)((ũ′ · q)yy − (ũ′ · q)y) .

Using an estimates analogous to (A.4) we find

‖v‖
W 1,2
p (Ω)

≤ (c̃‖q‖U‖ũ− u‖W 1,2
p̄ (Ω)

+ c̄‖ã− a‖U‖ũ′ · q‖W 1,2
p̄ (Ω)

) ≤ C‖q‖U‖ã− a‖U .

Taking the sup over all q ∈ U satisfying ‖q‖U ≤ 1, on both sides of the above inequalities

we have the Lipschitz condition (19). �
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