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Abstract. This article is concerned with the representation of curves by
means of integral invariants. In contrast to the classical differential invariants

they have the advantage of being less sensitive with respect to noise. The inte-

gral invariant most common in use is the circular integral invariant. A major
drawback of this curve descriptor, however, is the absence of any uniqueness

result for this representation. This article serves as a contribution towards

closing this gap by showing that the circular integral invariant is injective in a
neighbourhood of the circle. In addition, we provide a stability estimate valid

on this neighbourhood. The proof is an application of Riesz–Schauder theory

and the implicit function theorem in a Banach space setting.

1. Introduction. In many applications one faces the challenge to model objects, or
parts of objects, in a mathematical framework. As an example, one important task
is to extract an object from a given data set and manipulate it in a post-processing
step in order to obtain further information. Typical applications include medical
imaging, object tracking in a sequence of images, but also object recognition, where
the post-processing step consists of the comparison of the extracted object with
a database of reference objects. Similarly, such a comparison can be necessary in
medical imaging in order to distinguish between healthy and diseased organs. To
that end, however, one has to be able to decide whether two given objects are similar
or not. This requires a representation of the objects that makes the application of
standard similarity measures possible.

Finding a suitable representation of the object of interest, depending on the type
of application, is crucial as a first step. For simplicity, it is often assumed that the
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object is a simply connected bounded domain, allowing for the identification of the
domain with its boundary. From a mathematical point of view, this assumption
reduces the complexity of the representation. In addition, there exists a larger
number of descriptions of boundaries than of domains, and, consequently, more
mathematical tools to analyze the geometry of the underlying objects.

In 2D a common approach is to encode the contour of an object by the curvature
function of its boundary curve. This approach has, for instance, been used in
[8], where the authors set up a shape space of planar curves, where the shapes
are implicitly encoded by the curvature function. The main advantage of using a
differential invariant — the most prominent representative being the curvature —
to represent an object is the well investigated mathematical framework of this type
of invariants (see [1, 10, 13]).

Since all kinds of differential invariants are based on derivatives, they suffer from
the shortcoming of being sensitive with respect to small perturbations. To bypass
this shortcoming Manay et al. [11] proposed to use integral invariants instead of
their differential counterparts (see also [5, 7, 16]). Integral invariants have similar
invariance properties as differential invariants, but have proven to be considerably
more robust with respect to noise. Their theory, however, is not that well investi-
gated as opposed to the theory of their differential counterparts.

Beside the classical approach of differential invariants and the novel approach of
integral invariants, there exist several other concepts for encoding an object. For
instance, in [3] the authors use the zero level set of a harmonic function, which is
uniquely determined by prescribing two functions on the boundary of an annulus,
to encode the boundary of a 2D object (see [4] for a generalization to compact
surfaces in 3D). A similar encoding of the object by a function is given in the article
of Sharon and Mumford [15]. Here, the authors first map the 2D object, which is
supposed to be a smooth and simply closed curve, to the interior of the unit disc
in the complex plane via the Riemann mapping theorem. This conformal mapping
is composed with a second one, generated out of the exterior of the original object,
and the composition is restricted to the boundary of the unit disc. Thus, the final
mapping, which the authors call the fingerprint of the object, is a diffeomorphism
from the unit circle onto itself.

One of the challenges in object encoding is the question of uniqueness of the en-
coding. More precisely, in many applications, e.g. object matching, the correspon-
dence between the object and its encoding should be one-to-one. Thus, a thorough
investigation of the operator that maps an object to its encoding is needed. In case
of the encoding by a harmonic or conformal mapping — if possible — uniqueness is
well known. Also for the encoding of an arc length parameterized curve by its cur-
vature function, it is known that one obtains a one-to-one correspondence between
the curve and its encoding (up to rigid body motions). One even has a complete
characterization of the set of functions that arise as curvature functions of a class of
sufficiently regular curves (see [2]). For integral invariants the situation is different;
the cone area invariant, first introduced in [5], is an injective mapping independent
of the space dimension, but its application is limited to star-shaped objects. In
contrast, for the circular integral invariant, which is the integral invariant most
common in use, there exists no proof for the uniqueness conjecture so far.

This article is a contribution towards this goal: We first prove that the integral
invariant is `-times continuously Fréchet differentiable in a neighborhood of the
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circle, seen as a mapping from Ck+`+1 to Ck, k ≥ 0. Then we show that the
Fréchet differential is injective on some Ck+`+1-neighborhood of the circle, k ≥ 1,
` ≥ 1. The proofs of these results are based on the implicit function theorem on
Banach spaces and an application of Riesz–Schauder theory. Using the injectivity
result, a Taylor series expansion, and an interpolation inequality for Cm norms, we
obtain the injectivity of the integral invariant on a Ck+6 neighborhood V, k ≥ 1.
More precisely, we show that, in V, the Ck-norm of the difference of the integral
invariants of two curves can be estimated from below by their Ck-distance.

2. Setting. Let Emb be the space of all continuous embeddings from S1 to R2.
Then every curve γ ∈ Emb has a unique interior, denoted by Int(γ). Following
[5, 11], this allows us to introduce the circular integral invariant:

Definition 2.1. For given r > 0 we define the circular integral invariant

Ir[γ] : S1 → R
of a curve γ ∈ Emb as

Ir[γ](ϕ) := area
(
Br
(
γ(ϕ)

)
∩ Int(γ)

)
,

where Br(p) denotes the ball of radius r centered at p ∈ R2.

The circular integral invariant behaves well under several group actions:

• Ir is invariant with respect to Euclidean motions: For A ∈ SE[2] we have

Ir[A ◦ γ] = Ir[γ] .

• Ir is equivariant with respect to reparametrizations: For every homeomor-
phism Φ: S1 → S1 we have

Ir[γ ◦ Φ] = Ir[γ] ◦ Φ .

• For every scalar t > 0 we have

Ir[tγ] = t2Ir/t[γ] .

The observations above suggest to consider the integral invariant on the space
C of all curves modulo Euclidean motions and reparametrizations. Moreover, we
assume as an additional smoothness property that the considered curves are of class
Ck, k ≥ 1. Then it makes sense to use the following representation of C, as it avoids
working with equivalence classes of curves.

Definition 2.2. Denote by Ck ⊂ Emb, k ≥ 1, the space of all curves γ ∈ Ck(S1;R2)
satisfying the following conditions:

• γ has constant speed, i.e., there exists a constant cγ > 0 such that ‖γ̇(ϕ)‖ = cγ
for all ϕ ∈ S1.

• γ(0) = (1, 0) and γ̇(0) = (0, cγ), where we identify the circle S1 with the
interval [0, 2π).

• γ is an embedding, that is, γ(ϕ) 6= γ(ψ) for all ϕ 6= ψ.

For the proof of our main theorem we need the following result from differential
geometry concerning the manifold structure of Ck:

Theorem 2.3. For k ≥ 1 the space Ck is a smooth submanifold of the Banach space
of all Ck-curves from S1 to R2. Its tangent space TγCk at a curve γ ∈ Ck consists
of all Ck-curves σ with

〈σ̇(ϕ), γ̇(ϕ)〉 = c for some c ∈ R, σ(0) = (0, 0) and 〈σ̇(0), γ(0)〉 = 0 .
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Proof. The proof of the submanifold result is similar to [14, Thm. 2.2]. In our case
the situation is less complicated, as we only deal with Ck-curves instead of Sobolev
curves. The constant speed parameterization yields the condition

2c = ∂ε|0〈γ̇(ϕ) + εσ̇(ϕ), γ̇(ϕ) + εσ̇(ϕ)〉 = 2〈σ̇(ϕ), γ̇(ϕ)〉 .

The remaining constraints follow directly from the initial conditions.

Under additional smoothness assumptions on γ we obtain the following charac-
terization of the tangent space TγCk.

Lemma 2.4. Let k ≥ 1 and γ ∈ Ck ∩ Ck+1(S1;R2) with curvature function

κγ(ϕ) :=
〈γ̇(ϕ)⊥, γ̈(ϕ)〉

c3γ
.

Then the tangent space TγCk consists of all Ck-curves σ(ϕ) = a(ϕ)γ̇(ϕ)⊥+b(ϕ)γ̇(ϕ)
satisfying:

• ḃ(ϕ) = ḃ(0) + a(ϕ)κγ(ϕ)cγ .
• a(0) = b(0) = 0.
• ȧ(0) = 0.

Proof. Theorem 2.3 and the fact that 〈γ̇(ϕ), γ̈(ϕ)〉 = 0 imply that there exists a
constant c ∈ R such that

c = 〈σ̇(ϕ), γ̇(ϕ)〉 = 〈γ̇(ϕ), ȧ(ϕ)γ̇(ϕ)⊥ + a(ϕ)γ̈(ϕ)⊥ + ḃ(ϕ)γ̇(ϕ) + b(ϕ)γ̈(ϕ)〉

= a(ϕ)〈γ̇(ϕ), γ̈(ϕ)⊥〉+ ḃ(ϕ)c2γ = −a(ϕ)c3γκγ(ϕ) + ḃ(ϕ)c2γ .

Using the initial conditions for σ, we obtain the initial conditions for a and b and
the value of c = c2γ ḃ(0).

We are now able to formulate the main result of this article. Here and in the
following we denote by ‖γ‖k the Ck norm on the space of curves. Similarly, if
F : Ck → C` is a bounded linear operator, we denote its operator norm by ‖F‖k,`,
and we use the same notation for norms of multi-linear operators.

Theorem 2.5. The circular integral invariant Ir : Ck+`+1 → Ck(S1;R), k ≥ 1,
` ≥ 1 is `-times continuously Fréchet differentiable on a neighborhood U ⊂ Ck+`+1

of the circle of radius R > r/2 and its tangential mapping is injective on this
neighborhood.

Moreover there exists a neighborhood Ũ of the circle with respect to the topology
induced by the Ck+6-norm and a constant c > 0 such that for every γ, γ̃ ∈ Ũ the
stability estimate

‖Ir[γ]− Ir[γ̃]‖k ≥ c‖γ − γ̃‖k

holds. In particular, the mapping Ir is injective on V.

Remark 1. The condition on r to be smaller than 2R is necessary, because oth-
erwise the circular integral invariant in each point ϕ is constant equal to R2π, the
area of the circle, and the same holds for any sufficiently small deformation of the
circle which preserves the area.
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3. Fréchet Differentiability of the Circular Integral Invariant. In the fol-
lowing, we discuss the differentiability of Ir and derive an analytic formula for Ir
and, under certain smoothness assumptions, its derivative I ′r valid in a neighborhood
of the circle. As a first step, we recall the following result on the differentiability
of the composition mapping. To that end, we need the following definitions of
differentiability of mappings on Banach spaces.

Definition 3.1. Let X, Y be Banach spaces, F : X → Y , and ` > 1. The mapping
F is called `-times weakly differentiable, if it is `-times Gâteaux differentiable and
its Gâteaux differential d`F is continuous as a mapping

d`F : X`+1 → Y.

In contrast, it is called `-times continuously Fréchet differentiable or of class C`, if
it is `-times Gâteaux differentiable and d`F is continuous as a mapping

d`F : X → L`(X,Y ).

Here L`(X,Y ) is the Banach space of `-linear mappings from X` to Y equipped
with the operator norm.

Note that the continuity requirement for weak differentiability is weaker than
for continuous Fréchet differentiability, and thus a weakly differentiable mapping
need not be Fréchet differentiable of the same order. The following Lemma shows,
however, that it is Fréchet differentiable of lower order.

Lemma 3.2. Let X, Y be Banach spaces and F : X → Y (` + 1)-times weakly
differentiable with ` ≥ 1. Then F is `-times continuously Fréchet differentiable.

Proof. Let x ∈ X and ε > 0.
We have to show that there exists δ > 0 such that for every y ∈ X with ‖x−y‖ < δ

the inequality

‖d`F (x)− d`F (y)‖L`(X,Y ) = sup
z∈X`
‖z‖

X`
=1

‖d`F (x)(z)− d`F (y)(z)‖Y < ε

holds.
Using the continuity of d`+1F : X`+2 → Y at the point (x, 0, 0) ∈ X ×X ×X`

and the fact that d`+1F (x, 0, 0) = 0, we obtain the existence of η > 0 such that

‖d`+1F (x1, x2, z̃)
∥∥∥ ≤ ε whenever ‖x1 − x‖+ ‖x2‖+ ‖z̃‖ < 3η.

Now let δ := min{η`+1, 1}, let y ∈ X with ‖y − x‖ < δ and z ∈ X` with ‖z‖ ≤ 1.
Then we have

‖d`F (x)(z)− d`F (y)(z)‖Y =
∥∥∥∫ 1

0

∂td
`F (x+ t(y − x), z) dt

∥∥∥
=
∥∥∥∫ 1

0

d`+1F (x+ t(y − x), y − x, z) dt
∥∥∥

≤
∫ 1

0

∥∥∥d`+1F (x+ t(y − x), y − x, z)
∥∥∥ dt

=

∫ 1

0

∥∥∥d`+1F
(
x+ t(y − x),

y − x
η`

, ηz
)∥∥∥ dt < ε.
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Lemma 3.3. For every k ≥ 0, ` ≥ 1 the composition mapping

Comp: Ck+`+1(S1;R2)×Diffk(S1)→ Ck(S1;R2) ,

(f, g) 7→ f ◦ g ,
is (`+ 1)-times weakly differentiable and therefore `-times continuously Fréchet dif-
ferentiable.

Proof. The result on weak differentiability has been shown in [12, Section 6.9] (note
that the result in [12] has been shown for the space HCn, which, however, is equiv-
alent to Cn in the case of a compact manifold). The statement concerning the
continuous Fréchet differentiability follows from Lemma 3.2.

Remark 2. In order to simplify the notation, we will sometimes omit the domain
and range of the function spaces in expressions like Ck(S1;R) and write Ck instead,
if no confusion is possible.

Remark 3. We will need two different types of derivatives for the formulation
of our results: First, Fréchet derivatives in the function space Ck, and, second,
derivatives of functions f ∈ Ck(S1) with respect to their argument ϕ ∈ S1. In
order to highlight this difference, we use the following notation: For a function
F : Ck → Cj , we denote by F ′ : Ck → L(Ck, Cj) its Fréchet derivative. In contrast,

if f ∈ Ck, then ḟ denotes its derivative in the parameter space.

In order to make the notation less cumbersome, we omit the argument ϕ in γ(ϕ),
σ(ϕ) and similar expressions if the argument is clear from the context.

Lemma 3.4. For each k ≥ 0, ` ≥ 1 there exists a neighborhood V ⊂ Ck+`+1(S1;R2)
of the constant speed parameterized circle of radius R > r/2 such that the following
hold:

1. For each γ ∈ V and ϕ ∈ S1 the circle Br
(
γ(ϕ)

)
intersects the curve γ in

exactly two points, denoted by γ
(
pγ(ϕ)

)
and γ

(
mγ(ϕ)

)
. Here mγ(ϕ) denotes

the previous intersection parameter and pγ(ϕ) the next one (see Figure 1).
2. The mappings

m : Ck+`+1(S1;R2)→ Diffk(S1) , p : Ck+`+1(S1;R2)→ Diffk(S1) ,

γ 7→ mγ , γ 7→ pγ ,

are `-times continuously Fréchet differentiable. The first derivatives in direc-
tion σ ∈ Ck+`+1(S1;R2) are given by

p′γ(σ) =
〈σ − σ(pγ), γ(pγ)− γ〉
〈γ̇(pγ), γ(pγ)− γ〉

, m′γ(σ) =
〈σ − σ(mγ), γ(mγ)− γ〉
〈γ̇(mγ), γ(mγ)− γ〉

.

Here Diffk(S1) denotes the group of Ck-diffeomorphisms on the unit circle.

Proof. Denote by γ0 : S1 → R2 the constant speed parameterized circle, that is,
γ0(ϕ) =

(
R cos(ϕ), R sin(ϕ)

)
. Then, for every ϕ ∈ S1, the circle Br

(
γ0(ϕ)

)
inter-

sects γ0 precisely at the two points
(
R cos(ϕ± ϑ), R sin(ϕ± ϑ)

)
, where

ϑ = arccos

(
1− r2

2R2

)
.

Now define the mapping

F : Ck+`+1(S1;R2)×Diffk(S1)→ Ck(S1;R) ,

(γ, d) 7→ |γ(d)− γ|2 −R2 .
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Obviously, the mappings pγ and mγ we are searching for satisfy F (γ, pγ) = 0 and
F (γ,mγ) = 0. In particular, the equation F (γ0, d) = 0 has the two solutions
pγ0(ϕ) := ϕ + ϑ and mγ0(ϕ) := ϕ − ϑ. Now, Lemma 3.3 implies that the map-

ping Comp: Ck+`+1(S1;R2) × Diffk(S1) → Ck(S1;R2), and consequently also F ,
is `-times continuously Fréchet differentiable. Moreover, it is easy to see that the
derivative of F at (γ0, pγ0) in direction (0, τ) ∈ Ck+`+1(S1;R2)×Ck(S1;R) is given
as

F ′(γ0, pγ0)(0, τ) = 2〈γ0(pγ0)− γ0, γ̇0(pγ0)〉τ = 2 sin(ϑ)τ ,

which is obviously an isomorphism of Ck(S1;R), as the assumption R > r/2 > 0
implies that sin(ϑ) 6= 0. Thus the implicit function theorem on Banach spaces
(see [9, Sec. I.5]) implies the existence of a neighborhood V ⊂ Ck+`+1(S1;R2) of
γ0 and unique `-times continuously Fréchet differentiable mappings m, p : V →
Diffk(S1) satisfying the equations F (γ, pγ) = 0 = F (γ,mγ). The formula for the
directional derivative of p at γ in direction σ now follows from the fact that

0 = ∂γF (γ, pγ)(σ) = 2〈γ(pγ)− γ, σ(pγ)− σ〉+ 2p′γ(σ)〈γ(pγ)− γ, γ̇(pγ)〉 ,
which is a simple application of the chain rule. The formula for m′γ(σ) can be
derived analogously.

Theorem 3.5. For each k ≥ 0 and ` ≥ 1 there exists a neighborhood V ⊂
Ck+`+1(S1;R2) of the circle of radius R > r/2 such that the following hold:

1. For each γ ∈ V the circular integral invariant Ir[γ] can be written as

Ir[γ](ϕ) =
1

2

∫ pγ

mγ

〈γ(ψ)− γ, γ̇(ψ)⊥〉dψ+
r2

2
arccos

(
〈γ(pγ)− γ, γ(mγ)− γ〉

r2

)
. (1)

2. The circular integral invariant

Ir : V → Ck(S1;R) ,

γ 7→ Ir[γ] ,

is `-times continuously Fréchet differentiable. Its derivative in direction σ ∈
Ck+`+1(S1;R2) is given by

2I ′r[γ](σ)

= 2

∫ pγ

mγ

〈σ(ψ), γ̇(ψ)⊥〉dψ

− 〈σ, γ(pγ)⊥ − γ(mγ)⊥〉+ 〈γ(pγ)− γ, σ(pγ)⊥〉 − 〈γ(mγ)− γ, σ(mγ)⊥〉

+ 〈γ(pγ)− γ, γ̇(pγ)⊥〉 〈σ − σ(pγ), γ(pγ)− γ〉
〈γ̇(pγ), γ(pγ)− γ〉

− 〈γ(mγ)− γ, γ̇(mγ)⊥〉 〈σ − σ(mγ), γ(mγ)− γ〉
〈γ̇(mγ), γ(mγ)− γ〉

− r2√
r4 − 〈γ(pγ)− γ, γ(mγ)− γ〉2

·

·
(
〈σ − σ(pγ), γ(pγ)− γ〉
〈γ̇(pγ), γ(pγ)− γ〉

〈γ̇(pγ), γ(mγ)− γ〉

+ 〈σ(pγ)− σ, γ(mγ)− γ〉+ 〈γ(pγ)− γ, σ(mγ)− σ〉

+
〈σ − σ(mγ), γ(mγ)− γ〉
〈γ̇(mγ), γ(mγ)− γ〉

〈γ(pγ)− γ, γ̇(mγ)〉
)
.
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Proof. Under the given assumptions for R, r and V, Formula (1) can be easily de-
duced from Figure 1. A term by term investigation of Formula (1), using Lemma 3.3
and Lemma 3.4, shows that Ir is of class C` on V.

γ
(
pγ(ϕ)

)

γ(ϕ)

r
γ
(
mγ(ϕ)

)

2ϑ(ϕ)

γ

Figure 1. Sketch of the derivation of the analytical formula for
the circular integral invariant assuming two points of intersection.

To calculate the differential of Ir we treat the two terms of Formula (1) separately.
For the first term we obtain

∂γ

∫ pγ

mγ

〈γ(ψ)− γ, γ̇(ψ)⊥〉dψ

=

∫ pγ

mγ

〈σ(ψ)− σ, γ̇(ψ)⊥〉+ 〈γ(ψ)− γ, σ̇(ψ)⊥〉dψ

+ 〈γ(pγ)− γ, γ̇(pγ)⊥〉p′γ(σ)− 〈γ(mγ)− γ, γ̇(mγ)⊥〉m′γ(σ)

=

∫ pγ

mγ

〈σ(ψ)− σ, γ̇(ψ)⊥〉dψ −
∫ pγ

mγ

〈γ̇(ψ), σ(ψ)⊥〉dψ

+ 〈γ(pγ)− γ, σ(pγ)⊥〉 − 〈γ(mγ)− γ, σ(mγ)⊥〉

+ 〈γ(pγ)− γ, γ̇(pγ)⊥〉p′γ(σ)− 〈γ(mγ)− γ, γ̇(mγ)⊥〉m′γ(σ)

=

∫ pγ

mγ

2〈σ(ψ), γ̇(ψ)⊥〉dψ − 〈σ, γ(pγ)⊥ − γ(mγ)⊥〉

+ 〈γ(pγ)− γ, σ(pγ)⊥〉 − 〈γ(mγ)− γ, σ(mγ)⊥〉

+ 〈γ(pγ)− γ, γ̇(pγ)⊥〉p′γ(σ)− 〈γ(mγ)− γ, γ̇(mγ)⊥〉m′γ(σ) .

A simple application of the chain rule yields for the second term

− ∂γ
r2

2
arccos

(
〈γ(pγ)− γ, γ(mγ)− γ〉

r2

)
=
〈γ̇(pγ)p′γ(σ) + σ(pγ)− σ, γ(mγ)− γ〉+ 〈γ(pγ)− γ, γ̇(mγ)m′γ(σ) + σ(mγ)− σ〉

2r−2
√
r4 − 〈γ(pγ)− γ, γ(mγ)− γ〉2

.

Using the formulas for the intersection parameters, we obtain the desired result.
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In the special case where γ equals the unit circle the lemma above reduces to:

Lemma 3.6. Let γ ∈ Ck+`+1(S1;R2), k ≥ 0, ` ≥ 1, be the constant speed parame-
terized unit circle, that is,

γ(ϕ) =
(
cos(ϕ), sin(ϕ)

)
,

and let r < 2. Then the derivative of Ir[γ] in direction σ ∈ Ck+`+1(S1;R2) with

σ(ϕ) = a(ϕ)γ̇(ϕ)⊥ + b(ϕ)γ̇(ϕ)

is given by

I ′r[γ](σ)(ϕ) =

∫ ϕ+ϑ

ϕ−ϑ
a(ψ) dψ − 2 sin(ϑ)a(ϕ) =

(
χ[−ϑ,ϑ] ∗ a

)
(ϕ)− 2 sin(ϑ)a(ϕ)

with

ϑ := arccos

(
1− r2

2

)
.

The proof of this lemma is postponed to the appendix.

4. Proof of the Main Theorem.

Proof. We have already shown in Section 3 that Ir is of class C`.
We now show the local injectivity of I ′r. Without loss of generality we may assume

that R = 1. Let V be the neighborhood of the unit circle defined in Theorem 3.5.
The formula for I ′r implies that for every γ ∈ V ⊂ Ck+`+1(S1;R2) the mapping
I ′r[γ] is bounded as a mapping from Ck(S1;R2) to Ck(S1;R). Thus, I ′r[γ] has a
unique bounded extension Jr[γ] : Ck(S1;R2)→ Ck(S1;R). Moreover, the mapping
Jr is continuous with respect to the Ck+`+1-topology seen as a mapping from V to
L
(
Ck(S1;R2), Ck(S1;R)

)
. In addition, we denote for γ ∈ V by J̃r[γ] the restriction

of Jr[γ] to TγCk.
Denote now by γ0 : S1 → R2 the constant speed parameterized unit circle. Define

for given σ ∈ Tγ0Ck the function Aσ : S1 → R by

Aσ(ϕ) := 〈σ(ϕ), γ̇0(ϕ)⊥〉 .

Because γ0 is a C∞-curve, it follows that Aσ is Ck. Using Lemma 2.4 it follows
that Aσ(0) = 0 and ∂ϕ(Aσ)(0) = 0. Define now the space

Ak(S1;R) :=
{
a ∈ Ck(S1;R) : a(0) = ȧ(0) = 0

}
.

Then it follows that A is a bounded linear mapping from Tγ0Ck to Ak(S1;R).
In addition, it follows from Lemma 2.4 that A is boundedly invertible with A−1

given by

A−1a = aγ̇⊥0 + bγ̇0

with

b(ϕ) = ḃ(0)ϕ+

∫ ϕ

0

a(τ) dτ and ḃ(0) =
1

2π

∫ 2π

0

a(τ) dτ .

The expression for ḃ(0) is due to the periodicity of b, which implies that

0 = b(0) = b(2π) = 2πḃ(0) +

∫ 2π

0

a(τ) dτ .

Therefore A is in fact an isomorphism between Tγ0Ck and Ak(S1;R).
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According to Lemma 3.6, the mapping J̃r[γ0] evaluated at σ = aγ̇⊥0 +bγ̇0 ∈ Tγ0Ck
can be written as

J̃r[γ0](σ) = χ[−ϑ,ϑ] ∗ a− 2 sin(ϑ)a .

Thus J̃r[γ0] can be decomposed into

J̃r[γ0] = B ◦ ı ◦A ,

where the operator B : Ck(S1;R)→ Ck(S1;R) is given by

Ba = χ[−ϑ,ϑ] ∗ a− 2 sin(ϑ)a

and ı is the embedding from Ak(S1;R) into Ck(S1;R). Lemma 6.1 (see Appendix)
implies that the mapping σ 7→ χ[−ϑ,ϑ] ∗ a is compact and thus B is a compact per-
turbation of the identity. Therefore the Riesz–Schauder theory (see [17, Chap. X.5])
implies that B has a closed range.

Next we compute the kernel of B. To that end we consider the mapping in the
Fourier basis. A short calculation shows that in this basis the operator B is the
diagonal operator that maps a sequence of (complex) Fourier coefficients (cj)j∈Z to
the sequence (djcj)j∈Z, where

dj =


2
(
1− sin(ϑ)

)
if j = 0 ,

0 if j = ±1 ,[
2 sin(jϑ)

j − 2 sin(ϑ)
]

else.

Because sin(ϑ) 6= 1 and sin(jϑ) 6= j sin(ϑ) whenever j ∈ Z \ {−1, 0, 1} (see Lemma
6.2 in the Appendix), it follows that the kernel of B consists of the functions a of
the form a(ϕ) = c−1 exp(−iϕ) + c1 exp(iϕ) for some c−1, c1 ∈ C.

In the next step we show that the kernel of J̃r[γ0] = B ◦ ı◦A is trivial. Therefore
assume that a = c−1 exp(−i·) + c1 exp(i·) ∈ Ak(S1;R) ∩ KerB. Because a(0) = 0,
it follows that c−1 + c1 = 0; because ȧ(0) = 0, it follows that −c−1 + c1 = 0.
Together, this shows that c−1 = c1 = 0, implying that the intersection of KerB
with Ak(S1;R) is trivial. Since A is an isomorphism this proves the injectivity of

J̃r[γ0].

We have thus shown that J̃r[γ0] = B ◦ ı ◦ A is strongly closed and injective.
Now note that the set of strongly closed and injective, bounded linear functionals
between two Banach spaces X and Y is open with respect to the norm topology on
L(X,Y ). Because of the continuity of Jr and therefore J̃r, this proves the existence

of a neighborhood γ0 ∈ U ⊂ Ck+2 such that J̃r[γ] is injective for every γ ∈ U . In
particular, this proves the injectivity of I ′r[γ] for every γ ∈ U .

For proving the local injectivity, let γ, γ̃ ∈ Ck+6 ∩ U . Because the mapping
Ir : V ⊂ Ck+3(S1;R2)→ Ck(S1;R) is of class C2, it has a Taylor expansion of the
form

Ir[γ̃] = Ir[γ] + I ′r[γ](γ̃ − γ) +

∫ 1

0

(1− t)I ′′r [γ + t(γ̃ − γ)](γ̃ − γ, γ̃ − γ) dt.

Thus

‖Ir[γ̃]− Ir[γ]‖k ≥ ‖I ′r[γ](γ̃ − γ)‖k −
∥∥∥∫ 1

0

(1− t)I ′′r [γ + t(γ̃ − γ)](γ̃ − γ, γ̃ − γ) dt
∥∥∥
k

≥ ‖I ′r[γ](γ̃ − γ)‖k −
∫ 1

0

∥∥∥I ′′r [γ + t(γ̃ − γ)](γ̃ − γ, γ̃ − γ)
∥∥∥
k
dt
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Because Ir : Ck+3 → Ck is of class C2, it follows that I ′′r : Ck+3 → L2(Ck+3, Ck) is
continuous. Thus there exists a convex neighborhood V1 of the circle with respect
to the Ck+3-norm and a constant c1 such that ‖I ′′r [γ̂]‖L2(Ck+3,Ck) ≤ c1 for every
γ̂ ∈ V1. Consequently,

‖Ir[γ̃]− Ir[γ]‖k ≥ ‖I ′r[γ](γ̃ − γ)‖k − c1‖γ̃ − γ‖2k+3 (2)

for every γ, γ̃ ∈ V1.
Since I ′r can be extended to a continuous mapping Jr : V → L(Ck, Ck), for every

ε > 0 there exists a neighbourhood Vε of the constant speed parameterized unit
circle γ0 such that ‖Jr[γ]− Jr[γ0]‖ < ε for every γ ∈ Vε. In particular, we have for
γ ∈ Vε

‖I ′r[γ](γ̃ − γ)‖k = ‖Jr[γ](γ̃ − γ)‖k
≥ ‖Jr[γ0](γ̃ − γ)‖k − ε‖γ̃ − γ‖k
= ‖I ′r[γ0](γ̃ − γ)‖k − ε‖γ̃ − γ‖k.

(3)

Since Ck is a smooth submanifold of Ck(S1;R2), there exists a neighborhood
V2 ⊂ Ck(S1;R2) of γ0 and a smooth diffeomorphism Φ: V2 → Φ(V2) ⊂ Ck(S1;R2)
such that

Φ[γ0] = 0, Φ(V2 ∩ Ck) ⊂ Tγ0Ck, and Φ′[γ0] = Id .

In order to show that such a map exists, let Ψ: V2 ⊂ Ck(S1;R2) → Ck(S1;R2)
be any submanifold chart centered at γ0. That is, there exists a closed linear
subspace E ⊂ Ck(S1;R2) such that Ψ(V2 ∩ Ck) = Ψ(V2) ∩ E . Then the mapping
Φ := Ψ′[γ0]−1 ◦Ψ has the desired properties.

Thus the continuous invertibility of I ′r[γ0] on Tγ0Ck seen as a mapping from Ck

to Ck implies that there exists c2 > 0 such that for every γ, γ̃ ∈ V2 ∩ Ck we have

‖I ′r[γ0](γ̃ − γ)‖k ≥ ‖I ′r[γ0](Φ(γ̃)− Φ(γ))‖k − ‖I ′r[γ0](γ̃ − γ − Φ(γ̃) + Φ(γ))‖k
≥ c2‖Φ(γ̃)− Φ(γ)‖k − c3‖γ̃ − γ − Φ(γ̃) + Φ(γ)‖k

(4)

with c3 := ‖I ′r[γ0]‖k+3,k.
Developing Φ(γ̃) in a Taylor expansion at γ, we obtain after possibly choosing a

smaller neighbourhood

Φ(γ̃) = Φ(γ) + Φ′[γ](γ̃ − γ) +R(γ, γ̃)

with

‖R(γ, γ̃)‖k ≤ c4‖γ − γ̃‖2k
for some c4 > 0 independent of γ. Inserting this Taylor expansion into (4) yields

‖I ′r[γ0](γ̃ − γ)‖k ≥ c2‖Φ′[γ](γ̃ − γ)‖k − c3‖(Id−Φ′[γ])(γ̃ − γ)‖k
− (c2 + c3)‖R(γ, γ̃)‖k

≥ c2‖γ̃ − γ‖k − (c2 + c3)‖(Id−Φ′[γ])(γ̃ − γ)‖k
− c4(c2 + c3)‖γ − γ̃‖2k

≥
(
c2 − c5‖Id−Φ′[γ]‖k,k − c6‖γ − γ̃‖k

)
‖γ − γ̃‖k.

Because Φ is smooth and Φ′[γ0] = Id, it follows that there exists a neighbourhood
V3 of γ0 such that

‖I ′r[γ0](γ̃ − γ)‖k ≥ c7‖γ − γ̃‖k (5)

for every γ, γ̃ ∈ V3 ∩ Ck.
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Collecting the inequalities (2), (3), and (5), we obtain

‖Ir[γ̃]− Ir[γ]‖k ≥ (c7 − ε)‖γ − γ̃‖k − c1‖γ − γ̃‖2k+3 (6)

for every γ, γ̃ ∈ V1 ∩ Vε ∩ V2 ∩ Ck+3.
In order to obtain the desired result, we use the interpolation inequality (see [6,

Theorem 2.2.1, p. 143])

‖γ − γ̃‖2k+3 ≤ c8‖γ − γ̃‖k‖γ − γ̃‖k+6.

Choosing ε > 0 in (6) sufficiently small, we obtain the estimate

‖Ir[γ̃]− Ir[γ]‖k ≥ (c9 − c8‖γ − γ̃‖k+6)‖γ − γ̃‖k
for every γ, γ̃ ∈ V1 ∩ Vε ∩ V2 ∩ Ck+6. Thus there exists a neighbourhood Ũ ⊂ Ck+6

of the circle γ0 and a constant C > 0 such that

‖Ir[γ̃]− Ir[γ]‖k ≥ C‖γ − γ̃‖k
for every γ, γ̃ ∈ Ũ .

5. Conclusion. In this article, we have shown an injectivity result for the circular
integral invariant on a Ck+6 neighborhood Ũ of the circle. Note, however, that the
derived result does not prove the continuous invertibility of the invariant on Ũ .

The classical approach for proving such a result would be the usage of the inverse
function theorem. To that end, however, we would require that the mapping Ir
was continuously Fréchet differentiable and its derivative I ′r an isomorphism of the
corresponding tangent spaces. Although our results prove that I ′r can be extended

to an isomorphism J̃r of Tγ0Ck, we cannot use the inverse function theorem, as the
mapping Ir is not Fréchet differentiable (and not even Gâteaux differentiable) from
Ck to Ck — in fact, our results do not even prove that Ir maps Ck curves into Ck

integral invariants. Conversely, seen as a mapping from Ck+2 to Ck, the tangent
mapping, though injective, cannot be a surjection near the circle.

Another issue are the rather stringent smoothness assumptions. We believe that
it is possible to relax these assumptions, as it seems probable that Ir is twice
weakly differentiable as a mapping from Ck+2 to Ck, which would indicate a possible
uniqueness result on a Ck+4-neighborhood of the circle.

Acknowledgment. The authors want to thank Peter Michor and Günther Hör-
mann for their comments and suggestions, which helped to improve the article. We
thank the referee for the careful reading of the article and for pointing out a mistake
in the proof of the original main theorem.

6. Appendix.

Lemma 6.1. For every k ≥ 0, the mapping a 7→ Kϑa := χ[−ϑ,ϑ] ∗ a is compact as

a mapping from Ck(S1;R) to Ck(S1;R).

Proof. Denoting by B1 the unit ball in Ck(S1;R), we have to show that the image
of B1 under Kϑ is precompact in Ck(S1;R). Applying the Arzelà–Ascoli Theorem
(see [17, Chap. III.3]), we have to show that Kϑ(B1) is bounded and the first k
derivatives of the functions in Kϑ(B1) are equicontinuous. The boundedness of
Kϑ(B1) is obvious, Kϑ being a bounded linear mapping (of norm 2ϑ). Now assume
that a ∈ B1. Then ∂jϕ(Kϑa)(ϕ) = a(j−1)(ϕ+ϑ)−a(j−1)(ϕ−ϑ). Because ‖a(j)‖∞ ≤ 1
for all 1 ≤ j ≤ k, it follows that ∂ϕ(Kϑa) is Lipschitz continuous with Lipschitz
constant at most 2. Hence Kϑ(B1) is a precompact set.
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Lemma 6.2. Let 0 < ϑ < π and j ∈ Z \ {−1, 0, 1}. Then sin(jϑ) 6= j sin(ϑ).

Proof. Assume first that 0 < ϑ ≤ π/2. We show that in this case the equation
sin(s) = s sin(ϑ)/ϑ has the only solutions s = 0 and s = ±ϑ. First note that the
strict concavity of the sine function on the interval [0, π] implies that on this interval
we only have two solutions, namely 0 and ϑ. Moreover, the concavity of the sine
implies that sin(ϑ)/ϑ ≥ sin(π/2)/(π/2) = 2/π, and therefore π sin(ϑ)/ϑ ≥ 2. This,
however, implies that the equation sin(s) = s sin(ϑ)/ϑ cannot have any solutions for
s > π, as the right hand side is strictly larger than 2. The fact that −ϑ is the only
negative solution follows by symmetry. In particular, setting s = jϑ, this proves
the assertion in the case 0 < ϑ ≤ π/2.

Now assume that π/2 < ϑ < π and let ψ := π − ϑ. Then

sin(ϑ) = sin(π − ψ) = sin(ψ) .

Now, if j is odd, then

sin(jϑ) = sin(jπ − jψ) = sin(π − jψ) = sin(jψ) .

Thus j sin(ϑ) = sin(jϑ), if and only if j sin(ψ) = sin(jψ). Because 0 < ψ < π/2,
the first part of the proof can be applied, showing that j sin(ϑ) 6= sin(jϑ) unless
j = ±1.

On the other hand, if j is even, we have

sin(jϑ) = sin(jπ − jψ) = sin(−jψ) = − sin(jψ) .

Thus, j sin(ϑ) = sin(jϑ), if and only if j sin(ψ) = − sin(jψ). Now note that
the equation − sin(s) = s sin(ψ)/ψ has only the trivial solution s = 0, because
sin(ψ)/ψ ≥ 2/π and the left hand side is negative for 0 < s < π. As a conse-
quence, the equation j sin(ψ) = − sin(jψ) only holds for j = 0, which concludes the
proof.

6.1. Proof of Lemma 3.6.

Proof. Let γ ∈ Ck+2(S1;R2) be the constant speed parameterized unit circle. Then

γ(ϕ) =
(
cos(ϕ), sin(ϕ)

)
, γ̇(ϕ) =

(
− sin(ϕ), cos(ϕ)

)
,

γ(ϕ)⊥ =
(
sin(ϕ),− cos(ϕ)

)
, γ̇(ϕ)⊥ =

(
cos(ϕ), sin(ϕ)

)
.

Because γ is the unit circle, there exists ϑ ∈ S1 such that

pγ(ϕ) = ϕ+ ϑ , mγ(ϕ) = ϕ− ϑ .

Obviously, all assumptions of Lemma 3.5 are satisfied. It remains to calculate all
the terms that appear in the expression of the Fréchet derivative in Lemma 3.5 for
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the special case of the unit circle. In particular, we obtain

r2 = ‖γ(pγ)− γ‖2 = 2
(
1− cos(ϑ)

)
,

〈γ(pγ)− γ, γ(mγ)− γ〉 = −2 cos(ϑ)
(
1− cos(ϑ)

)
,

〈γ̇(pγ), γ(mγ)− γ〉 = sin(ϑ)
(
1− 2 cos(ϑ)

)
,

〈γ̇(pγ)⊥, γ(pγ)− γ〉 = 1− cos(ϑ) ,

〈γ̇(pγ), γ(pγ)− γ〉 = sin(ϑ) ,

〈γ̇, γ(pγ)− γ〉 = sin(ϑ) ,

〈γ̇⊥, γ(pγ)− γ〉 = cos(ϑ)− 1 ,

〈γ̇(pγ)⊥, γ(mγ)− γ〉 = cos2(ϑ)− cos(ϑ)− sin2(ϑ) ,

〈γ̇⊥, γ(mγ)− γ〉 = cos(ϑ)− 1 ,

〈γ̇(mγ), γ(pγ)− γ〉 = − sin(ϑ)
(
1− 2 cos(ϑ)

)
,

〈γ̇(mγ)⊥, γ(mγ)− γ〉 = 1− cos(ϑ) ,

〈γ̇(mγ), γ(mγ)− γ〉 = − sin(ϑ) ,

〈γ̇, γ(mγ)− γ〉 = − sin(ϑ) ,

〈γ̇(mγ)⊥, γ(pγ)− γ〉 = cos2(ϑ)− cos(ϑ)− sin2(ϑ) ,

〈γ̇, γ(pγ)− γ(mγ)〉 = 2 sin(ϑ) .

In the following we treat the derivative in direction aγ̇⊥ and bγ̇ separately. For the
derivative in normal direction aγ̇⊥ we get

2I ′r[γ](aγ̇⊥) = 2

∫ pγ

mγ

a(ψ)dψ − a〈γ̇⊥, γ(pγ)⊥ − γ(mγ)⊥〉

− a(pγ)〈γ(pγ)− γ, γ̇(pγ)〉+ a(mγ)〈γ(mγ)− γ, γ̇(mγ)〉

+ 〈γ(pγ)− γ, γ̇(pγ)⊥〉 〈aγ̇
⊥ − a(pγ)γ̇(pγ)⊥, γ(pγ)− γ〉
〈γ̇(pγ), γ(pγ)− γ〉

− 〈γ(mγ)− γ, γ̇(mγ)⊥〉 〈aγ̇
⊥ − a(mγ)γ̇(mγ)⊥, γ(mγ)− γ〉
〈γ̇(mγ), γ(mγ)− γ〉

− r2√
r4 − 〈γ(pγ)− γ, γ(mγ)− γ〉2

·

·
(
〈aγ̇⊥ − a(pγ)γ̇(pγ)⊥, γ(pγ)− γ〉

〈γ̇(pγ), γ(pγ)− γ〉
〈γ̇(pγ), γ(mγ)− γ〉

+ 〈a(pγ)γ̇(pγ)⊥ − aγ̇⊥, γ(mγ)− γ〉+ 〈γ(pγ)− γ, a(mγ)γ̇(mγ)⊥ − aγ̇⊥〉

+
〈aγ̇⊥ − a(mγ)γ̇(mγ)⊥, γ(mγ)− γ〉

〈γ̇(mγ), γ(mγ)− γ〉
〈γ(pγ)− γ, γ̇(mγ)〉

)
.
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Inserting the expressions for γ equal to the unit circle that have been calculated
previously, we obtain

2I ′r[γ](aγ̇⊥)

= 2

∫ ϕ+ϑ

ϕ−ϑ
a(ψ)dψ

− sin(ϑ)
(
a(pγ) + 2a+ a(mγ)

)
− (cos(ϑ)− 1)2

sin(ϑ)

(
a(pγ) + 2a+ a(mγ)

)
− 1

sin(ϑ)

((
a+ a(pγ)

)(
cos(ϑ)− 1

)(
1− 2 cos(ϑ)

)
− 2a(cos(ϑ)− 1)

+
(
a(pγ) + a(mγ)

)(
cos2(ϑ)− cos(ϑ)− sin2(ϑ)

)
+
(
a+ a(mγ)

)(
cos(ϑ)− 1

)(
1− 2 cos(ϑ)

))
= 2

∫ ϕ+ϑ

ϕ−ϑ
a(ψ)dψ

+
cos(ϑ)− 1

sin(ϑ)

(
2a(pγ) + 4a+ 2a(mγ)− 2a(pγ) + 4 cos(ϑ)a− 2a(mγ)

)
= 2

∫ ϕ+ϑ

ϕ−ϑ
a(ψ)dψ + 4a

(cos(ϑ)− 1)(cos(ϑ) + 1)

sin(ϑ)

= 2

∫ ϕ+ϑ

ϕ−ϑ
a(ψ)dψ − 4a sin(ϑ) .

Inserting the formulas above in the expression for I ′r[γ](bγ̇) yields

2I ′r[γ](bγ̇) = 2

∫ pγ

mγ

b(ψ)〈γ̇(ψ), γ̇(ψ)⊥〉dψ

− 〈bγ̇, γ(pγ)⊥ − γ(mγ)⊥〉+ 〈γ(pγ)− γ, b(pγ)γ̇(pγ)⊥〉

− 〈γ(mγ)− γ, b(mγ)γ̇(mγ)⊥〉+ 〈γ(pγ)− γ, γ̇(pγ)⊥〉 〈bγ̇ − b(pγ)γ̇(pγ), γ(pγ)− γ〉
〈γ̇(pγ), γ(pγ)− γ〉

− 〈γ(mγ)− γ, γ̇(mγ)⊥〉 〈bγ̇ − b(mγ)γ̇(mγ), γ(mγ)− γ〉
〈γ̇(mγ), γ(mγ)− γ〉

− r2√
r4 − 〈γ(pγ)− γ, γ(mγ)− γ〉2

·

·
(
〈bγ̇ − b(pγ)γ̇(pγ), γ(pγ)− γ〉

〈γ̇(pγ), γ(pγ)− γ〉
〈γ̇(pγ), γ(mγ)− γ〉

+ 〈b(pγ)γ̇(pγ)− bγ̇, γ(mγ)− γ〉+ 〈γ(pγ)− γ, b(mγ)γ̇(mγ)− bγ̇〉

+
〈bγ̇ − b(mγ)γ̇(mγ), γ(mγ)− γ〉

〈γ̇(mγ), γ(mγ)− γ〉
〈γ(pγ)− γ, γ̇(mγ)〉

)
= 0− 0 +

(
1− cos(ϑ)

)(
b(pγ)− b(mγ) + b− b(pγ)− b+ b(mγ)

)
−
((

1− 2 cos(ϑ)
)(
b− b(pγ) + b(pγ)− b(mγ) + b(mγ)− b

)
+ (b− b)

)
= 0 .

Therefore,

I ′r[γ](aγ̇⊥ + bγ̇) = χ[−ϑ,ϑ] ∗ a− 2 sin(ϑ)a .
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