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The Levenberg–Marquardt iteration for
numerical inversion of the power density operator

Guillaume Bal, Wolf Naetar, Otmar Scherzer and John Schotland

Abstract. In this paper we develop a convergence analysis in an infinite dimensional set-
ting of the Levenberg–Marquardt iteration for the solution of a hybrid conductivity imag-
ing problem. The problem consists in determining the spatially varying conductivity �
from a series of measurements of power densities for various voltage inductions. Although
this problem has been very well studied in the literature, convergence and regularizing
properties of iterative algorithms in an infinite dimensional setting are still rudimentary.
We provide a partial result under the assumptions that the derivative of the operator, map-
ping conductivities to power densities, is injective and the data is noise-free. Moreover,
we implemented the Levenberg–Marquardt algorithm and tested it on simulated data.

Keywords. Inverse problems, nonlinear ill-posed problems, iterative regularization,
elliptic equations, hybrid imaging.
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1 Introduction

A common problem in hybrid imaging consists in the determination of the spa-
tially varying conductivity � > 0 in a domain � � Rn from m measurements of
power densities E i .�/ D � jrui .�/j

2 (i D 1; : : : ; m) inside � (resulting from m

different injected currents fi ). That is, the potentials ui satisfy the elliptic equation

div.�rui / D 0 in �;

ui D fi on @�:
(1.1)

This problem is relevant, for example, in Acousto-Electrical Tomography (AET)
[3, 13, 21] and Impedance-Acoustic Tomography (IAT) [8].

We investigate the solution of this nonlinear inverse problem in an infinite di-
mensional setting. We apply the Levenberg–Marquardt iteration [9], a well-known
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266 G. Bal, W. Naetar, O. Scherzer and J. Schotland

iteration method which we recap in the next section. Using recent results about the
linearized power density operator [5], we analyze local convergence conditions of
the iteration method (for sufficiently smooth � and noise-free data E i ) and provide
a partial result.

There are a number of theoretical results available on the problem of estimating
� from power densities (and some additional boundary information). In a paper by
Capdeboscq, Fehrenbach, de Gournay and Kavian [7] it was shown that in R2, the
conductivity � is uniquely determined by measurements

F .�/ D .� jru1j
2; � jru2j

2; �ru1ru2/

if
det.ru1;ru2/ � c > 0 in � (1.2)

(certain Dirichlet boundary conditions are known to enforce this condition; see,
e.g., [2]). Note that �ru1ru2 can easily be obtained from a third measurement
of the power density using the polarization identity. The paper [6] extended this
result to R3 and [17] to arbitrary dimension (where the above determinant condi-
tion (1.2) is much harder to fulfil) and additionally showed Lipschitz-stability of
the reconstruction for sufficiently regular conductivities. Using the same interior
measurements as above, Lipschitz-stability of the linearized problem

F 0.�/WL2.�/! L2.�/

(where � 2 C1.�/ and � � R2) modulo the kernel of the linearized power den-
sity operator was shown by Kuchment and Steinhauer [15]. What may be recon-
structed in the setting of only one measurement � jruj2 is analyzed in [4].

Numerically, the problem has been treated in [3, 7, 8, 14, 16].
The paper is organized as follows: First, we introduce the Levenberg–Marquardt

iteration and its convergence conditions. Then, we linearize the power density op-
erator E with Dirichlet boundary conditions in a suitable topology, analyze its
stability and injectivity and discuss convergence of the iteration method. In the
last two sections, we describe our numerical implementation of the Levenberg–
Marquardt method and present numerical results.

2 Iterative solution scheme

2.1 The Levenberg–Marquardt iteration

Let us denote by Eı D .Eıi /iD1;:::;m the (noisy) measurements according to m
different initializations. We want find � such that E.�/ � Eı . To solve, we use an
iterative regularization method in a Hilbert space setting. In [10–12] several such
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The Levenberg–Marquardt iteration 267

methods for solving a general operator equation F.�/ � yı , where F WX ! Y

and X , Y are Hilbert spaces, are given. We use a Newton-type method, since
these methods are usually converging faster than pure gradient descent methods.
Newton’s method itself is defined by

�kC1 D �k C F
0.�k/

�1.yı � F.�k//:

If the operator F 0.�k/ is not left-invertible (this can be the case for E.�/ if there
are not enough measurements, as we shall see in the next sections), one may use
Tikhonov regularization:

�kC1 D arg min
�

®
ky � F.�k/ � F

0.�k/.� � �k/k
2
Y C ˛kk� � �kk

2
X

¯
:

The resulting iteration method

�kC1 D �k C .F
0.�k/

�F 0.�k/C ˛k Id/�1F 0.�k/
�.yı � F.�k//; (2.1)

where ˛k > 0 are regularization parameters, is called the Levenberg–Marquardt
method.

Hanke [9] suggests choosing ˛k as the solutions of

kyı � F.�k/ � F
0.�k/.�kC1.˛k/ � �k/kY D qky

ı
� F.�k//kY (2.2)

for some 0 < q < 1. He shows that with the above choice of parameters and the
initial value �0 sufficiently close to the desired solution, the Levenberg–Marquardt
method converges monotonically to a solution �ı of F.�ı/ D yı , provided the
Fréchet derivative F 0 is uniformly bounded in a ball B�.�ı/ containing the initial
value �0 and

kF.�/ � F. Q�/ � F 0.�/.� � Q�/kY � Ck� � Q�kXkF.�/ � F. Q�/kY (2.3)

for all �; Q� 2 B�.�ı/.

2.2 Linearization

We now prove Fréchet differentiability of the power density operator

E.�/ D div.�ru/

(where u solves (1.1) for some boundary condition f D fi ).
Let � � Rn. We assume that � is positive and in the space H l.�/ for l > n

2
,

which implies that H l.�/ is a Banach algebra with respect to pointwise multipli-
cation [1]. For f 2 H lC 1

2 .@�/, (1.1) then has a unique solution u.�/ 2 H lC1.�/

(see [19]), so EWH l.�/! H l.�/.
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268 G. Bal, W. Naetar, O. Scherzer and J. Schotland

Let L� WH l ! H l�2; f 7! div.�rf /. By formal differentiation one can see
that the directional derivative u0.�/� is given by

L�u
0.�/� D � div.�ru/ in �;

u0.�/� D 0 on @�:
(2.4)

Obviously, u0.�/WH l.�/! H lC1.�/ is linear with respect to � . It is also boun-
ded for the given norms considering

ku0.�/�kH lC1.�/ � Ckdiv.�ru/kH l�1.�/ � Ck�kH l .�/kukH lC1.�/: (2.5)

Here we used the regularity estimates in [19] for the first and the Banach algebra
property for the last inequality. Since the constant in the regularity estimates is a
bounded function of � if � is bounded from below (e.g., in a sufficiently small
ball around the solution), u0.�/ is actually uniformly bounded there. Now, let
Ru.�; �/ D u.� C �/ � u.�/ � u

0.�/� be the first order Taylor remainder of u.
For small � we get

L�C�Ru.�; �/ D �L�u
0.�/� in �:

As in (2.5) we obtain

kRu.�; �/kH lC1.�/ � CkL�u
0.�/�kH l�1.�/

� Ck�kH l .�/ku
0.�/�kH lC1.�/ � Ck�k

2
H l .�/

(2.6)

since u0.�/ is bounded. This shows that u0.�/ as defined in (2.4) is actually the
Fréchet derivative of uWH l.�/! H lC1.�/.

For the power density operator EWH l.�/! H l.�/; � 7! � jru.�/j2, formal
differentiation gives the directional derivative

E 0.�/� D jruj2� C 2�ruru0.�/�:

Its uniform boundedness follows from the uniform boundedness of u0.�/ and the
Banach algebra property of H l.�/.

For the first order Taylor remainder RE.�; �/, we get

RE.�; �/ WD E.� C �/ � E.�/ � E 0.�/�

D .� C �/jr.uC u0.�/� CRu.�; �//j
2
� � jruj2

� jruj2� � 2�ruru0.�/�

D .� C �/r.2uC 2u0.�/� CRu.�; �//rRu.�; �/

C .� C �/jru0.�/� j2 C 2�ruru0.�/�:
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The Levenberg–Marquardt iteration 269

Now, by (2.6) and (2.5)

kRE.�; �/kH l .�/ � C.kRu.�; �/kH lC1.�/ C k�k
2
H l .�/

C k�k2
H l .�/

/

� Ck�k2
H l .�/

(2.7)

so
kRE.�; �/kH l .�/ D o.k�kH l .�//;

showing that E 0.�/ is the Fréchet derivative of EWH l.�/! H l.�/ at � .

2.3 Stability and injectivity

In this section, we recap stability and injectivity of the linearized operator, follow-
ing the treatment in [5].

We may write the linearization of EWH l.�/! H l.�IRm/; � 7! .E i /iD1;:::;m
as the following system:

r � ı�rui Cr � �rıui D 0;

ı� jrui j
2
C 2�rui � rıui D ıE i :

(2.8)

The last line provides the Fréchet derivative ıE i D dE i �ı� seeing ıui D dui �ı�
as a function of ı� given by solving the first line with Dirichlet conditions.

Ellipticity. Let us assume as before that � and rui are in the space H l.�/ for
l > n

2
. Then Dirichlet conditions for ıui render the above system elliptic provided

that qi .x; �/ D 0 for all 1 � j � m implies � D 0, where

qi .x; �/ D 2. OFi � �/
2
� j�j2; OFi D

rui

jrui j
:

This theory is independent of dimension and is based on the theory of elliptic
redundant systems of equations with boundary conditions satisfying the Lopatin-
skii conditions; see [5, 19]. Similar ellipticity conditions are found in [15]. From
such a theory, we obtain for s D l with l > n

2
, and coefficients � 2 H s.�/ and

ui 2 H
sC1.�/, the following stability estimate:

kı� � ı Q�kH s.�/ C kıu � ı QukH sC1.�IRm/

� CkıE � ı QEkH s.�IRm/ C C2kıu � ı QukL2.�IRm/:
(2.9)

Here, ıE is the collection of terms ıE i and ıu the collection of ıui . The presence
of the term withC2 indicates the fact that the systems may not be invertible. Rather,
it is Fredholm, and hence invertible up to a finite dimensional kernel of (smooth)
functions. This is reminiscent of the behavior of �C q.x/, which is invertible up
to a finite dimensional kernel, although it is invertible (with Dirichlet conditions)
for most values of q.x/.
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270 G. Bal, W. Naetar, O. Scherzer and J. Schotland

Injectivity of modified systems. Whether we can choose C2 D 0 above is not
known in general. Injectivity results are known in the presence of more measure-
ments than necessary for ellipticity; see, e.g., [14] in the linearized setting and
[6, 17] in the nonlinear setting.

In the setting of two measurements in dimension n D 2 and three measurements
in dimension n D 3, results of injectivity were obtained in [5] for modified systems
of equations. Let us denote v D .ı�; ¹ıuiº/ and recast the system (2.8) as

Av D S :

Then assuming that full Cauchy data are known for v on @�, we may replace the
above system by

AtAv D AtS in �;

v D @�v D 0 on @�:
(2.10)

This system was proved in [5] to admit a unique solution on sufficiently small
domains; in other words, (2.9) holds with C2 D 0.

A different modification of (2.8) also leading to a fourth-order system similar
to (2.10) is also proved to be injective; see [5, equation (35)].

These systems are difficult to implement numerically. We therefore wish to
solve the system as written in (2.8). Knowing that very similar systems are in-
deed shown to be injective in the aforementioned work, it seems reasonable to
assume that C2 D 0 in (2.9) for m large enough, i.e., that the linearized opera-
tor A is left-invertible. With this assumption, we get that dE is an operator from
H s.�/ to H s.�IRm/ with a bounded left-inverse when s > n

2
.

We then obtain an optimal stability estimate of the form

C�1s kı� � ı Q�kH s.�/ � kıE � ı QEkH s.�IRm/ � Cskı� � ı Q�kH s.�/: (2.11)

2.4 Convergence analysis

In this subsection we analyse whether the convergence conditions given in Sec-
tion 2.1 can be shown to hold for the power density operator

EWH l.�/! H l.�IRm/

with a suitable number of measurements m. Note that we require noise-free data
here (the noise cannot be assumed to fulfil differentiability constraints).

To get local convergence of the Levenberg–Marquardt iteration, it suffices to
show that (2.3) holds (we already saw that the operator is uniformly bounded close
to a solution). Given Lipschitz-type stability, i.e.,

k�1 � �2kH l .�/ � C
0
kE.�1/ � E.�2/kH l .�IRm/; (2.12)

the estimate (2.3) can easily be obtained from (2.7).
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The Levenberg–Marquardt iteration 271

Using the stability estimates (2.11) for the linearized operator, we can get such
an estimate locally, since for �1; �2 2 B�.�ı/ (a ball with sufficiently small diam-
eter in the H l.�/-norm) we have

C 0k�2 � �1kH l .�/ � C
�1
s k�2 � �1kH l .�/ � Ck�2 � �1k

2
H l .�/

� kE 0.�1/.�1 � �2/kH l .�IRm/ � Ck�2 � �1k
2
H l .�/

� kE.�2/ � E.�1/kH l .�IRm/

by using norm equivalence for the second inequality and

kE 0.�1/.�2 � �1/kH l .�IRm/ � kE.�2/ � E.�1/kH l .�IRm/ � Ck�2 � �1k
2
H l .�/

;

which is obtained by applying the reverse triangle inequality to (2.7), for the third
estimate.

From (2.7) we finally get

kRE.�; �/kH l .�IRm/ � Ck�kH l .�/kE.� C �/ � E.�/kH l .�IRm/ (2.13)

for sufficiently small � . Applying the general results in [9] now gives us local con-
vergence (in the noise-free case) of the Levenberg–Marquardt iteration applied to
EWH l.�/! H l.�IRm/.

Note that for the stability estimate (2.11) we assumed injectivity of (2.8) (and
thus E 0.�/). For one measurement, this may not hold, for example, it is easily seen
that if� is the unit circle in R2, the boundary voltage f .x; y/ D ax C by (where
. ab / is a unit vector) and � D 1, the function f (with corresponding linearized
potential .u0.�/f /.x; y/ D �1

4
.x2 C y2/C 1

4
) is in Ker E 0.�/; see also [4].

Generically, one may however expect injectivity to hold if enough data are avail-
able.

3 Numerical solution

The following subsections contain some numerical work to demonstrate the feasi-
bility of our ideas. For simplicity, we work in two dimensions, so we take� � R2.
Furthermore, we now allow the presence of noise. As noise cannot be assumed
to be differentiable, we have to consider (in contrast to the previous section) the
power density operator to map into L2.�/. Since l D 2 is the smallest integer for
which H l.�/ is a Banach algebra, we take EWH 2.�/! L2.�/.

3.1 Calculation of the adjoint

For the iterative algorithm, we require an expression for the adjoint of E 0.�/,
which we now derive.
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272 G. Bal, W. Naetar, O. Scherzer and J. Schotland

First, we consider the case m D 1 of a single measurement. Larger values of
m are treated with an additional summation. Since E 0.�/WH 2.�/! L2.�/ is a
bounded operator, we know that E 0.�/�WL2.�/! H 2.�/ is bounded as well
(see [20]).

First note that the adjoint operator of E 0.�/WH 2.�/! L2.�/ can be written
as

E 0.�/�WL2.�/! H 2.�/;

E 0.�/�z D i� QE 0.�/�z;

where QE
0
.�/� is the L2.�/-adjoint of E.�/ and i� the adjoint of the embedding

i WH 2.�/! L2.�/.
We start by finding an expression for QE

0
.�/� on H 2.�/ � L2.�/. To this end,

let V D V.�; u.�// with V WH 2.�/! H 2
0 .�/ be the linear operator defined by

L�Vz D � div.z�ru.�// in �;

V z D 0 in @�:

Note that z� is also in H 2.�/, so V is mapped into L2.�/.
For z 2 H 2 we now get that for the second summand of E 0.�/˝

�ruru0.�/�; z
˛
L2.�/

D �
˝
�ru0.�/�;rVz

˛
L2.�IR2/

D h�;rurVziL2.�/

by partial integration and the definitions of V and u0.�/. Since the first summand
is self-adjoint, we conclude

E 0.�/�WH 2.�/! H 2.�/;

E 0.�/�z D i�.jru.�/j2z C 2ru.�/rVz/:
(3.1)

As the operator E 0.�/� is bounded on L2.�/, (3.1) can be continuously ex-
tended to w 2 L2.�/, e.g., by taking

E 0.�/�w WD lim
�!0

E 0.�/�ˆ�w

where ˆ�w D �� � w is the mollification operator corresponding to some molli-
fier �.

For the operator EWH 2.�/! L2.�IRm/; � 7! .E i /iD1;:::;m we similarly get
(with Vj D V.�; uj .�//),

E 0.�/�WH 2.�IR2/! H 2.�/;

E 0.�/�z D i�
mX
jD1

jruj .�/j
2zj C 2ruj .�/ � rVjwj :

(3.2)
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The Levenberg–Marquardt iteration 273

Note that E 0 can also be continuously extended to L2.�IR2/ by mollifying and
taking the limit.

To calculate i�WL2.�/! H 2.�/, we make the additional assumption that

� 2 H 2
N .�/ D

²
x 2 H 2.�/ W

@x

@�
D 0

³
;

a closed subspace of H 2.�/ since . @
@�
ı trace/WH 2.�/! L2.@�/ is bounded.

With the inner product

hx; yiH2
N .�/

D hx; yiL2.�/ C ˇ
2
h�x;�yiL2.�/

for some ˇ > 0, i�y is the solution of the Neumann problem

.IdCˇ2��/i�y D y;

@�i�y

@�
D 0 on @�;

@i�y

@�
D 0 on @�

(3.3)

since for all x 2 H 2
N .�/, y 2 L

2.�/ we get that˝
x; i�y

˛
H2

N .�/
D
˝
x; i�y

˛
L2.�/

C ˇ2
˝
�x;�i�y

˛
L2.�/

D
˝
x; .IdCˇ2��/i�y

˛
L2.�/

C ˇ2
Z
@�

@x

@�
�i�y �

@�i�y

@�
x dS

D hx; yiL2.�/ D hix; yiL2.�/ :

The fourth order PDE (3.3) is equivalent to the system of second order equations

i�y C ˇ2�z D y;

�i�y � z D 0;

@z

@�
D 0 on @�;

@i�y

@�
D 0 on @�:

(3.4)

For a cruder approximation (which should give a faster solution), we could use
H 1 or L2 adjoints (where we have i D i� D Id). For the inner product

hx; yiH1.�/ D hx; yiL2.�/ C ˇ hrx;ryiL2.�/;
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274 G. Bal, W. Naetar, O. Scherzer and J. Schotland

the adjoint of Qi WH 1.�/! L2.�IR2/ (by a proof similar to the above) maps
y 2 L2.�/ to the solution of

.Id�ˇ2�/Qi�y D y;

@Qi�y

@�
D 0 on @�:

(3.5)

3.2 Implementation

For F D E with a given (single) measurement Eı , equation (2.1) for the k-th
Levenberg–Marquardt step �k reads�

lim
�!0

i�M� C ˛k Id
�
�k D E 0.�k/

�.Eı � E.�k// (3.6)

where, with u D u.�k/, ˛k D ˛, � D �k and � D �k ,

M�� D jruj
2ˆ�.jruj

2� C 2�ruru0.�/�/

C 2rurVˆ�.� jruj
2/C 4rurVˆ�.�ruru

0.�/�/:

Now, let � be fixed. By introducing auxiliary variables z1; z2; z3 and y1; y2; y3

(for expressions which are a solution of a PDE) and using (3.4), equation (3.6) can
be written as

z3 C ˛�� D E 0.�/�.Eı � E.�//;

�z3 � z2 D 0; @z3=@� D 0 on @�;

ˇ2�z2 C z3 � z1 D 0; @z2=@� D 0 on @�;

jruj2ˆ�.jruj
2�� C 2�rury

1/C 2rury2 C 4rury3 � z1 D 0; (3.7)

div.ˆ�.�rury1/�ru/C L�y3 D 0; y3 D 0 on @�;

div.ˆ�.��jruj2/�ru/C L�y2 D 0; y2 D 0 on @�;

div.��ru/C L�y1 D 0; y1 D 0 on @�:

We then obtain �k in (3.6) from �� by letting � ! 0 (for numerical purposes
the continuous extension, i.e., the mollification and the limit can be ignored, as
it leaves the discretization unchanged in the limit � ! 0). Since its discretization
does not contain inverse matrices (and thus can be solved using sparse matrix op-
erations only), the system (3.7) is more amenable to numerical treatment than dis-
cretizing (3.6) directly. When using L2 or H 1 adjoints, similar (smaller) systems
can be generated.
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The Levenberg–Marquardt iteration 275

For multiple measurements E , using the exact same approach leads to the sys-
tem

z3 C ˛�� D E 0.�/�.Eı � E.�//;

�z3 � z2 D 0; @z3=@� D 0 on @�;

ˇ2�z2 C z3 � z1 D 0; @z2=@� D 0 on @�;

mX
jD1

jruj j
2ˆ�.jruj j

2�� C 2�rujry
1
j /

C 2rujry
2
j C 4rujry

3
j � z

1
D 0;

(3.8)

div.ˆ�.�rujry1j /�ruj /C L�y
3
j D 0; y3j D 0 on @�;

div.ˆ�.��jruj j2/�ruj /C L�y2j D 0; y2j D 0 on @�;

div.��ruj /C L�y1j D 0; y1j D 0 on @�;

so three equations (and auxiliary variables) have to be added per additional mea-
surement. We again obtain �k from �� by letting � ! 0.

4 Results

In our numerical solution we directly implemented the systems (3.7) and (3.8)
to obtain Levenberg–Marquardt steps. For discretization of the partial differential
equations we used a self-written linear finite elements framework in MATLAB.
The triangular mesh (with 42849 nodes and 85007 elements) was created using
DistMesh (see [18]). All calculations were done on a workstation computer.

To test the reconstruction algorithm, we generated simulated data

Eı D .Eı1;E
ı
2;E

ı
3/

on the unit circle with the boundary conditions

f1.x; y/ D x; f2.x; y/ D y and f3.x; y/ D
1
p
2
.x � y/

(and added Gaussian noise with standard deviation 1 to avoid an inverse crime).
For reconstruction, we set �0 � 1, ˇ D 10�3 and chose ˛k D 1

2k (with a min-
imum of 10�8) a priori. Choosing ˛k according to the criterion (2.2) would be
possible (e.g., by reducing ˛k until the condition is met), but numerically expen-
sive.

Note that for two or more measurements, regularization is technically is not
necessary since the operator can be assumed to be invertible (the linearized and
discretized equations were solvable with ˛k D 0 in all instances we tested), but
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(a) Conductivity � (b) Power density Eı1

(c) Power density Eı2 (d) Power density Eı3

Figure 1. Conductivity and simulated measurements with boundary conditions
f1.x; y/ D x, f2.x; y/ D y and f3.x; y/ D 1p

2
.x � y/ and Gaussian noise. The

color axis was manually set to 1-10, the range of � .

advantageous for the iteration scheme since it helps ensure that iterates remain in
a trust region and thus feasible (i.e., positive). Additionally, we enforce a minimal
conductivity of 10�12 on the iterates.

We used the standard MATLAB sparse solver mldivide to solve the linearized
and discretized equations.

The results of our numerical experiments seen in Figures 2 and 3 show that
from two measurements, even in the presence of significant noise, very good re-
constructions are possible. The third measurement, which considerably increases
the runtime, mostly serves to slightly reduce the noise. The H 1-approximation of
the H 2 adjoint works well without loss of accuracy. The L2-approximation, on
the other hand, does not converge properly. From the difference images, we can
see that in the main remaining error in the H 1 or H 2 reconstructions with tow or
more measurements is due to smoothing (which can be alleviated by running more
iterations or lowering ˇ).
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(a) L2 adjoints, data Eı2 (b) L2 adjoints, data .Eı1;E
ı
3/ (c) L2 adjoints, data

.Eı1;E
ı
2;E

ı
3/

(d) H1 adjoints, data Eı2 (e) H1 adjoints, data .Eı1;E
ı
3/ (f) H1 adjoints, data

.Eı1;E
ı
2;E

ı
3/

(g) H2 adjoints, data Eı2 (h) H2 adjoints, data .Eı1;E
ı
3/ (i) H2 adjoints, data

.Eı1;E
ı
2;E

ı
3/

Figure 2. Reconstructed conductivities after fifteen iterations of the Levenberg–
Marquardt algorithm using different adjoints and one, two or three measurements.
The color axis was manually set to 1–10, the range of the original conductivity to
ease comparison.
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(a) L2 adjoints, data Eı2 (b) L2 adjoints, data .Eı1;E
ı
3/ (c) L2 adjoints, data

.Eı1;E
ı
2;E

ı
3/

(d) H1 adjoints, data Eı2 (e) H1 adjoints, data .Eı1;E
ı
3/ (f) H1 adjoints, data

.Eı1;E
ı
2;E

ı
3/

(g) H2 adjoints, data Eı2 (h) H2 adjoints, data .Eı1;E
ı
3/ (i) H2 adjoints, data

.Eı1;E
ı
2;E

ı
3/

Figure 3. Difference images j�est � � j corresponding to the reconstructions in Fig-
ure 2. The color axis was manually set to 0–3.

While the given algorithms could in theory be directly translated to R3 (a higher
degree of regularity would be necessary to get a Banach algebra and/or map into
L2.�/), the drastically increased number of elements would make the computa-
tional effort for high-resolution reconstructions unreasonable. To reduce the effort,
one could either switch to Landweber-like methods or use a combination of nested
grids and iterative linear solvers as in [7].
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