A Total Variation Based, Locally Adaptive Algorithm for Image Restoration

Markus Grasmair
Computational Science Center
University of Vienna
Austria

Bratislava,
December 2, 2009
Outline

1. Total Variation Regularization
 - Definition
 - Parameter Selection

2. Locally Adaptive Parameter Selection
 - A Dual Variable as Regularity Measure
 - Proposed Algorithm
 - Application to Deblurring Problems

3. Numerical Examples
 - Denoising
 - Deblurring

4. Conclusion
Denoising

Remove noise from some given image \(f : \Omega \rightarrow \mathbb{R}^d \).

Assume that

\[
f = u + n^\delta,
\]

with \(u \) a clean image and \(n^\delta \) noise.

Goal: reconstruct \(u \) from the given data \(f \).

Basic assumptions:

- Noise characterized by fast oscillations.
- Image consists of well separated uniform regions.
Assume that the noise satisfies
\[\| n^\delta \|_2^2 = \int_{\Omega} |n^\delta(x)|^2 \, dx \approx \delta^2. \]

Minimize
\[|Du(\Omega)| :\approx \int_{\Omega} |\nabla u(x)| \, dx \]
subject to the constraint
\[\| u - f \|_2^2 = \int_{\Omega} (u(x) - f(x))^2 \, dx = \delta^2. \]
Equivalent formulation: Minimize

\[T(u; \alpha) := \frac{1}{2} \int_{\Omega} (u(x) - f(x))^2 \, dx + \alpha |Du|(\Omega) \]

and choose \(\alpha > 0 \) such that \(u_\alpha := \arg \min_u T(u; \alpha) \) satisfies

\[\|u_\alpha - f\|_2^2 = \delta^2. \]

For simplicity, the regularization parameter \(\alpha > 0 \) is often chosen a–priori.

We therefore obtain an *unconstrained* minimization problem.
Locally Adaptive TV Regularization

Example

Noisy Image

Denoised Image
Implicit assumptions:

- Noise level is known.
- Noise is identically and independently distributed.
- Significant objects in the image are of comparable scale (area times contrast per perimeter).

If assumptions are violated:

- Oversmoothing in some parts, loss of small scale structures.
- Too little smoothing in other parts, image still noisy.
Nonconstant Noise

Noisy Image

TV-Regularization, $\alpha = 20$
Nonconstant Noise

Noisy Image

TV-Regularization, $\alpha = 30$
Nonconstant Noise

Noisy Image

TV-Regularization, $\alpha = 40$
Nonconstant Noise

Noisy Image

Proposed Method
Instead of a number $\alpha \in (0, +\infty)$, use a continuous regularization function

$$\alpha : \Omega \to (0, +\infty),$$

and minimize

$$\mathcal{T}(u; \alpha) := \frac{1}{2} \int_{\Omega} (u(x) - f(x))^2 \, dx + \int_{\Omega} \alpha(x) \, d|Du|.$$

Problem: Definition of the regularization function.
Existing Methods with Non-constant α

- Start with large regularization parameter α and compute u_α.
- Compute the residual $u_\alpha - f$ on patches $\Omega_i \subset \Omega$.
- Test, whether $u_\alpha - f$ resembles Gaussian noise on Ω_i. If not, locally decrease α on Ω_i.
- Repeat, until $u_\alpha - f$ everywhere resembles noise.

Similar ideas in Frigaard & Scherzer (2006), and in Gilboa, Sochen & Zeevi (2006) for texture preserving TV-regularization.
Several methods with anisotropic total variation term:

Berkels, Burger et al. (2006): TV-regularization with rotating ℓ^1-TV term.

Existing Methods with Non-constant α

Parameter choice based on scale recognizing properties of total variation regularization:

$$\text{Scale} = \frac{\text{Contrast} \times \text{Area}}{\text{Perimeter}}.$$

Fix target scale S and iteratively adapt the regularization parameter, until no features of scale less than S are left.

Only method able to deal with unknown noise level.
Outline

1. Total Variation Regularization
 - Definition
 - Parameter Selection

2. Locally Adaptive Parameter Selection
 - A Dual Variable as Regularity Measure
 - Proposed Algorithm
 - Application to Deblurring Problems

3. Numerical Examples
 - Denoising
 - Deblurring

4. Conclusion
Minimizing $\mathcal{T}(\cdot; \alpha)$ is equivalent to solving the dual problem:

$$\mathcal{J}(V) := \frac{1}{2} \int_{\Omega} (\text{div} \, V(x) + f(x))^2 \, dx \rightarrow \min,$$

$V \in L^\infty(\Omega; \mathbb{R}^n \times \mathbb{R}^d), \quad \|V/\alpha\|_\infty \leq 1, \quad V \cdot \nu = 0 \text{ on } \partial \Omega.$

Here $\text{div} \, V$ and the equation $V \cdot \nu = 0$ are understood componentwise in case $d > 1$.

That is,

V_α solves the dual problem $\iff u_\alpha := f + \text{div} \, V_\alpha \in \arg \min \mathcal{T}(\cdot; \alpha).$
Interpretation

The dual variable V_α corresponds to the direction of ∇u_α,

$$V_\alpha(x) = \alpha(x) \frac{\nabla u_\alpha(x)}{|\nabla u_\alpha(x)|}.$$

Variations of $V_\alpha/\alpha \leftrightarrow$ oscillations of u_α.

Goal of parameter adaptation:
Use the regularity of V_α/α as a measure of the regularity of u_α.
Iteratively adapt α until the variations of V_α/α look uniform over the whole image.
Consider smooth convolution kernel $\eta : \mathbb{R}^n \to \mathbb{R}$.

Define local mean $M_\eta(V_\alpha/\alpha) : \Omega \to \mathbb{R}^{n \times d}$:

$$M_\eta(V/\alpha) := \eta \ast (V_\alpha/\alpha) .$$

Define local variance $\text{Var}_\eta(V_\alpha/\alpha) : \Omega \to [0, 1]$:

$$\text{Var}_\eta(V_\alpha/\alpha) := \eta \ast (\|M_\eta(V_\alpha/\alpha) - V_\alpha/\alpha\|^2) .$$

Iteratively adapt α until $\text{Var}_\eta(V_\alpha/\alpha) \approx \text{const.}$
Example for Local Variance

Denoised Image

Local Variance
Choose some final target variation $0 < \theta < 1$ and update α until $\text{Var}_\eta (V_\alpha / \alpha) \approx \theta$:

If $\text{Var}_\eta (V_\alpha / \alpha)(x) < \theta$: decrease $\alpha(x)$.
If $\text{Var}_\eta (V_\alpha / \alpha)(x) > \theta$: increase $\alpha(x)$.

Chosen update:

$$\alpha_{\text{new}}(x) := \alpha(x) \cdot \frac{\text{Var}_\eta (V_\alpha / \alpha)(x) + \theta}{2\theta}.$$

For better stability: convolve α_{new} with some smooth kernel ρ.
Outline

1. Total Variation Regularization
 - Definition
 - Parameter Selection

2. Locally Adaptive Parameter Selection
 - A Dual Variable as Regularity Measure
 - Proposed Algorithm
 - Application to Deblurring Problems

3. Numerical Examples
 - Denoising
 - Deblurring

4. Conclusion
Proposed Algorithm

1. Choose target variation $0 < \theta < 1$.

 The smaller θ, the smoother the output image:
 - $\theta = 1$ will result in f as output.
 - $\theta = 0$ will result in a constant image.
Proposed Algorithm

1. Choose target variation $0 < \theta < 1$.
2. Choose initial regularization function $\alpha_1 : \Omega \rightarrow \mathbb{R}_{>0}$, set $i = 1$.

Locally Adaptive TV Regularization
Locally Adaptive Parameter Selection
Proposed Algorithm

Markus Grasmair
Locally Adaptive TV Regularization
Proposed Algorithm

1. Choose target variation $0 < \theta < 1$.
2. Choose initial regularization function $\alpha_1 : \Omega \rightarrow \mathbb{R}_{>0}$, set $i = 1$.
3. Compute

$$V_i := \arg \min_{V} \| f + \text{div } V \|^2_2$$

subject to the constraints

$$\| V/\alpha_i \|_\infty \leq 1 \quad \text{and} \quad V \cdot \nu = 0 \text{ on } \partial \Omega .$$

4. If

$$\| \text{div } V_i - \text{div } V_{i-1} \| < \varepsilon$$

stop the iteration, else

$$i \rightarrow i + 1$$

and go to 3.

5. Define the smoothed image $u := f + \text{div } V_i$.
Proposed Algorithm

1. Choose target variation $0 < \theta < 1$.
2. Choose initial regularization function $\alpha_1 : \Omega \rightarrow \mathbb{R}_{>0}$, set $i = 1$.
3. Compute $V_i = \arg \min_V \| f + \text{div} \ V \|^2_2$ subject to $\| V/\alpha_i \|_\infty \leq 1$.
4. Compute

$$\text{Var}_\eta(V_i/\alpha_i) = \eta \ast (| \eta \ast (V_\eta/\alpha) - V_\alpha/\alpha|^2) .$$
Proposed Algorithm

1. Choose target variation $0 < \theta < 1$.
2. Choose initial regularization function $\alpha_1 : \Omega \rightarrow \mathbb{R}_{>0}$, set $i = 1$.
3. Compute $V_i = \arg \min_V \| f + \text{div} V \|_2^2$ subject to $\| V / \alpha_i \|_\infty \leq 1$.
4. Compute $\text{Var}_\eta (V_i / \alpha_i)$.
5. Compute the update of α_i as

$$\tilde{\alpha}_{i+1} := \alpha_i \cdot \frac{\text{Var}_\eta (V_i / \alpha_i) + \theta}{2\theta}$$

and

$$\alpha_{i+1} := \rho \ast \tilde{\alpha}_{i+1}.$$
Proposed Algorithm

1. Choose target variation $0 < \theta < 1$.
2. Choose initial regularization function $\alpha_1 : \Omega \rightarrow \mathbb{R}_{>0}$, set $i = 1$.
3. Compute $V_i = \arg \min_V \| f + \operatorname{div} V \|_2^2$ subject to $\| V / \alpha_i \|_\infty \leq 1$.
4. Compute $\operatorname{Var}_\eta(V_i/\alpha_i)$.
5. Compute $\alpha_{i+1} := \rho \ast (\alpha_i(\operatorname{Var}_\eta(V_i/\alpha_i) + 1)) / 2\theta$.
6. If $\| \operatorname{div} V_i - \operatorname{div} V_{i-1} \| < \varepsilon$ stop the iteration, else $i \mapsto i + 1$ and go to 3.
Proposed Algorithm

1. Choose target variation $0 < \theta < 1$.
2. Choose initial regularization function $\alpha_1 : \Omega \to \mathbb{R}_{>0}$, set $i = 1$.
3. Compute $V_i = \arg\min_V \| f + \text{div } V \|_2^2$ subject to $\| V/\alpha_i \|_\infty \leq 1$.
4. Compute $\text{Var}_\eta(V_i/\alpha_i)$.
5. Compute $\alpha_{i+1} := \rho \ast (\alpha_i(\text{Var}_\eta(V_i/\alpha_i) + 1)) / 2\theta$.
6. If $\|\text{div } V_i - \text{div } V_{i-1}\| < \varepsilon$ stop the iteration, else $i \mapsto i + 1$ and go to 3.
7. Define the smoothed image $u := f + \text{div } V_i$.
Computation of $V_i = \arg\min_V \mathcal{J}$ can be carried out by an iterative projected gradient method:

- Start with $V_i^{(0)} := V_{i-1} / \max\{1, |V_{i-1}|/\alpha_i\}$.
- Alternatingly compute (with $0 < \tau < 1/4$)
 \[
 \tilde{V}_i^{(k+1)} := V_i^{(k)} + \tau \nabla (f + \text{div } V_i^{(k)}),
 \]
 and project back:
 \[
 V_i^{(k+1)} := \frac{\tilde{V}_i^{(k+1)}}{\max\{1, |\tilde{V}_i^{(k+1)}|/\alpha_i\}}.
 \]
Outline

1. Total Variation Regularization
 - Definition
 - Parameter Selection

2. Locally Adaptive Parameter Selection
 - A Dual Variable as Regularity Measure
 - Proposed Algorithm
 - Application to Deblurring Problems

3. Numerical Examples
 - Denoising
 - Deblurring

4. Conclusion
Let X be a Hilbert space $K : L^2(\Omega) \rightarrow X$ a (compact) bounded linear operator. For given noisy data $f \in X$, solve the equation

$$Ku = f$$

by minimizing

$$\mathcal{T}(u; \alpha) := \frac{1}{2} \| Ku - f \|_2^2 + \int_{\Omega} \alpha(x) d|Du| .$$

Application of the proposed method is also possible here.
Locally Adaptive TV Regularization

Locally Adaptive Parameter Selection

Application to Deblurring Problems

Iterative Solution Method for Standard TV

Minimize

$$T(u; \alpha) := \frac{1}{2} \| Ku - f \|_2^2 + \int_{\Omega} \alpha(x) \, d|Du|$$

by the iteration

$$w_k = u_k + \mu K^* (f - Ku_k),$$

$$u_{k+1} = \arg \min_u \left(\frac{1}{2} \| u - w_k \|_2^2 + \int_{\Omega} \mu \alpha(x) \, d|Du| \right),$$

where $\mu \| K^* K \| < 1$.

Markus Grasmair
Locally Adaptive TV Regularization
Modified Algorithm

1. Choose target variation $0 < \theta < 1$, choose initial regularization function $\alpha_1 : \Omega \rightarrow \mathbb{R}_{>0}$, set $i = 1$ and $w_1 := \mu K^* f$.
Modified Algorithm

1. Choose target variation $0 < \theta < 1$, choose initial regularization function $\alpha_1: \Omega \to \mathbb{R}_{>0}$, set $i = 1$ and $w_1 := \mu K^*f$.

2. Compute

$$V_i := \arg \min_{V} \|w_i + \text{div } V\|_2^2$$

subject to the constraints

$$\|V/\mu \alpha_i\|_{\infty} \leq 1 \quad \text{and} \quad V \cdot \nu = 0 \text{ on } \partial \Omega.$$

Again, a projected gradient descent method is used.
Modified Algorithm

1. Choose target variation $0 < \theta < 1$, choose initial regularization function $\alpha_1 : \Omega \to \mathbb{R}_{>0}$, set $i = 1$ and $w_1 := \mu K^* f$.

2. Compute $V_i = \arg \min_V ||w_i + \text{div } V||_2^2$ subject to $\|V/\mu \alpha_i\|_\infty \leq 1$.

3. Compute

$$\text{Var}_\eta(V_i/\mu \alpha_i) = \eta \ast \left(|\eta \ast (V_\eta/\mu \alpha) - V_\alpha/\mu \alpha|^2 \right).$$
Locally Adaptive TV Regularization

Locally Adaptive Parameter Selection

Application to Deblurring Problems

Modified Algorithm

1. Choose target variation $0 < \theta < 1$, choose initial regularization function $\alpha_1 : \Omega \to \mathbb{R}_{>0}$, set $i = 1$ and $w_1 := \mu K^* f$.

2. Compute $V_i = \arg \min_V \| w_i + \text{div } V \|_2^2$ subject to $\| V/\mu \alpha_i \|_\infty \leq 1$.

3. Compute $\text{Var}_\eta(V_i/\mu \alpha_i)$.

4. Compute the update of α_i as

 $$\tilde{\alpha}_{i+1} := \alpha_i \cdot \frac{\text{Var}_\eta(V_i/\mu \alpha_i) + \theta}{2\theta}$$

 and

 $$\alpha_{i+1} := \rho \cdot \tilde{\alpha}_{i+1}.$$
Locally Adaptive TV Regularization

Locally Adaptive Parameter Selection

Application to Deblurring Problems

Modified Algorithm

1. Choose target variation $0 < \theta < 1$, choose initial regularization function $\alpha_1: \Omega \rightarrow \mathbb{R}_{>0}$, set $i = 1$ and $w_1 := \mu K^* f$.

2. Compute $V_i = \arg \min_V \| w_i + \text{div } V \|_2^2$ subject to $\| V / \mu \alpha_i \|_\infty \leq 1$.

3. Compute $\text{Var}_\eta(V_i / \mu \alpha_i)$.

4. Compute $\alpha_{i+1} := \rho * (\alpha_i(\text{Var}_\eta(V_i / \mu \alpha_i) + 1)) / 2\theta$.

5. Define

$$u_{i+1} = w_i + \text{div } V_i, \quad w_{i+1} = u_{i+1} + \mu K^*(f - K u_{i+1}) .$$
Choose target variation $0 < \theta < 1$, choose initial regularization function $\alpha_1: \Omega \to \mathbb{R}_{>0}$, set $i = 1$ and $w_1 := \mu K^* f$.

2. Compute $V_i = \arg \min_V \| w_i + \text{div} \, V \|_2^2$ subject to $\| V/\mu \alpha_i \|_\infty \leq 1$.

3. Compute $\text{Var}_\eta(V_i/\mu \alpha_i)$.

4. Compute $\alpha_{i+1} := \rho \star \left(\alpha_i(\text{Var}_\eta(V_i/\mu \alpha_i) + 1) \right)/2\theta$.

5. Define

$$u_{i+1} = w_i + \text{div} \, V_i, \quad w_{i+1} = u_{i+1} + \mu K^* (f - K u_{i+1}) .$$

6. If $\| u_i - u_{i+1} \| < \varepsilon$ stop the iteration, else $i \mapsto i + 1$ and go to 3.
Outline

1. Total Variation Regularization
 - Definition
 - Parameter Selection

2. Locally Adaptive Parameter Selection
 - A Dual Variable as Regularity Measure
 - Proposed Algorithm
 - Application to Deblurring Problems

3. Numerical Examples
 - Denoising
 - Deblurring

4. Conclusion
Gray Level Image

Noise free Image

Regularization with $\theta = 0.7$
Locally Adaptive TV Regularization

Numerical Examples

Denoising

Gray Level Image

Gaussian noise, $\sigma = 10$

Regularization with $\theta = 0.7$
Gray Level Image

Gaussian noise, $\sigma = 30$
Regularization with $\theta = 0.7$
Gaussian noise, $\sigma = 50$

Regularization with $\theta = 0.7$
Locally Adaptive TV Regularization

Numerical Examples

Denoising

Colour Image

Noise free Image

Regularization with $\theta = 0.8$
Gaussian noise, $\sigma = 30$

Regularization with $\theta = 0.8$
Denoising

Colour Image

Gaussian noise, $\sigma = 50$

Regularization with $\theta = 0.8$
Locally Adaptive TV Regularization

Numerical Examples

Denoising

Colour Image

Gaussian noise, $\sigma = 100$

Regularization with $\theta = 0.8$
Non-constant Noise

Noisy Image

Regularization with $\theta = 0.7$
Application to Deconvolution

Noise free, blurred image

Regularization with $\theta = 0.7$
Application to Deconvolution

Blurred, noisy image, $\sigma = 2$
Regularization with $\theta = 0.7$
Application to Deconvolution

Blurred, noisy image, $\sigma = 5$
Regularization with $\theta = 0.7$
Outline

1. Total Variation Regularization
 - Definition
 - Parameter Selection

2. Locally Adaptive Parameter Selection
 - A Dual Variable as Regularity Measure
 - Proposed Algorithm
 - Application to Deblurring Problems

3. Numerical Examples
 - Denoising
 - Deblurring

4. Conclusion
Summary

- Variations of a dual variable as regularity measure for the minimizer of TV regularization.
- Iterative adaptation of the regularization function α, until a uniform smoothness of the solution is reached.
- Ability to deal with unknown noise levels, varying within an image.
- Extension to deblurring problems (and general inverse problems).