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Abstract

Recently, integral invariants and according signatures have been iden-

tified to be useful for shape classification, which is an important research

topic in computer vision, artificial intelligence and pattern recognition.

The modelling of integral invariants and signatures for shape analysis and

in particular the analysis have not attracted attention in the inverse prob-

lems community so far. This paper is to point out a novel research area

in inverse problems. For that purpose we provide an “inverse problems

point of view” of integral invariants and signatures and highlight some

fundamental mathematical perspectives.

Keywords: signatures, integral invariants

1 Introduction

For shape matching and classification, an object, given by its shape, is com-
pared with representatives of classes within a data base. Similar problems are
addressed in many areas of applied sciences such as computer vision, artificial
intelligence and pattern recognition.

The problems are tackled by a-priori assigning each object class within a data
base one or more typical representatives that capture the dominant features
of the class. Then, the particular object under investigation is compared with
the representative shapes using an appropriate notion of similarity. Common
distance measures, such as the Hausdorff distance, are not appropriate, since
they do not take into account the significance of dominant features.

We consider descriptors of shapes which emphasize on peaks, edges or ridges.
These features can be expressed by differentials of the shape boundary, which
are invariant under rigid motions. Differentials have been used successfully for
shape matching and classification, but are difficult to handle numerically, since
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they are unstable with respect to noise. Alternatively, integral invariants de-
scriptors have been proposed by Manay et al. [6]. In comparison with differential
invariants, a significant advantage of integral invariants is that the integration
kernel can be adapted to capture either global or local features. Consequently,
they can be used to distinguish object features on different scales.

Although integral invariants have proven to be successful in practical appli-
cations for object classification and shape matching, from a point of view of
inverse problems, important issues have not been addressed so far. This paper
is to point out some of the open questions in inverse problems theory, to high-
light the relation to other inverse problems, as well as to introduce this novel
area to the inverse problems community.

The first question – from an inverse problems point of view probably the most
important one – is the theoretical possibility of reconstructing a shape from its
integral invariant. A positive answer implies that an integral invariant uniquely
determines a shape, and thus can be considered as a token. This question is
even more involved when only partial data of integral invariants of an object are
available; such a handicap can be observed if the object is partially occluded
during recording or the data of integral invariants has been damaged. The
second question concerns stability and the effect of noise on the shape matching
and classification process. For this purpose appropriate distance measures of
integral invariants have to be determined.

The outline of this paper is as follows. In Section 2 we introduce integral in-
variants and further two particular examples of integral invariants in details. In
Section 3 we introduce shape signatures derived from integral invariants, which
are considered to be useful for object classification. In the last part (Section
4) of this paper we present mathematical formulations of inverse problems is-
sues related to integral invariants and signatures. Some solutions and solution
concepts are presented in Section 5.

2 Integral Invariants

In this section we introduce a mathematical framework of integral invariants.
For the sake of simplicity of presentation, we restrict attention to integral invari-
ants of two dimensional objects, although most of the definitions and results for
integral invariants for higher dimensional objects can be derived analogously.
Let Ω ⊂ R

2 be a simply connected bounded domain with finite perimeter. We
assume that the boundary can be parameterized by a continuous and injective
curve γ : S

1 → R
2. By γ̄ we denote the barycenter of the area enclosed by γ.

The two dimensional Lebesgue measure is denoted by L2.

We define integral invariants as follows:
Definition 2.1:
Let f : R≥0 × R

2 → R such that for every r ≥ 0 the function f(r, ·) is locally
integrable. Moreover, assume that for every compact set K ⊂ R

2 and r0 ≥ 0

lim
r→r0

∫

K

|f(r,x) − f(r0,x)| dL2(x) = 0. (1)
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We define I[γ] : S
1 → R by

I[γ](t) :=

∫

R(γ(t)−γ̄)(Ω−γ̄)

f(‖γ(t) − γ̄‖,x) dL2(x), (2)

where Rv ∈ SO(2) denotes the rotation satisfying

Rvv = ‖v‖e1.

The function I[γ] is called integral invariant of the curve γ, and f the kernel
function of the invariant.

To fix the notation we have selected the reference point as the barycenter γ̄,
which guarantees that I[γ] is invariant with respect to rigid motions. In what
follows, for any other choice of the reference point which guarantees invariance
with respect to rigid motions, the results can be derived analogously. For in-
stance the barycenter of the convex hull of the curve is an equally suitable choice.
We also note that (1) implies continuity of the function I[γ](·).

Examples:

1. Let r > 0 and define f : R≥0 × R
2 → R by

f(s,x) := χBr(s·e1)(x). (3)

With this kernel function the corresponding integral invariant can be writ-
ten as

Ir
Circle[γ](t) := L2

(

Ω ∩ Br

(

γ(t)
))

= χΩ ∗ χBr(0)

(

γ(t)
)

. (4)

The integral invariant Ir
Circle is called circular area integral invariant (see

Figure 1).

It has been shown in [4] that for a two times differentiable curve γ the cir-
cular area integral invariant Ir

Circle[γ] and the curvature κ of γ are related
as follows:

Ir
Circle[γ](t) =

π

2
r2 −

κγ(t)

3
r3 + O

(

r4
)

. (5)

In general, if γ is not twice differentiable, then we have

Ir
Circle[γ](t) =

δ

2
r2 −

κ−
γ (t) + κ+

γ (t)

6
r3 + O

(

r4
)

, (6)

where δ denotes the aperture of the circular sector centered at the non-
smooth point of the curve, and κ−

γ , κ+
γ denote the curvature to the right

and left, respectively (see [7]).

2. Let ε > 0 and Ω be star-shaped with respect to its barycenter γ̄. We
consider f : R≥0 × R

2 → R defined by

f(s,x) := χ[− ε
2 ,

ε
2 ]

(

arccos

(

〈e1,x〉

‖x‖

))

, (7)

which is independent of s and equals the characteristic function of a cone
with aperture ε and rotation axis e1. We call the corresponding integral
invariant Iε

Cone cone area integral invariant (see Figure 1).
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Figure 1: (Visualization of different integral invariants) Left: Circle area
integral invariant. For each point located on the curve γ the area of intersection
of Ω with a ball of radius r is measured. Right: Cone area integral invariant.
For each value of the angle ϕ the area of intersection of a cone with aperture ε
and the domain Ω is measured.

In the definitions of the circular and cone area integral invariants, the parameters
r and ε, respectively, control the sensitivity of each invariant with respect to
local variations in γ. Large parameters guarantee that the invariants are less
sensitive to local variations (cf. Table 1). Moreover, from this table it becomes
evident that Iε

Cone is less sensitive than Ir
Circle to local variations of the curve.

The higher stability of Iε
Cone results from the fact that the barycenter is less

affected by small changes of the curve than the center of the ball of integration,
both being the reference point for the corresponding integral invariant. Thus,
from a point of view of stability the cone area integral invariant is preferable;
the use of Iε

Cone, however, is restricted to star-shaped domains. Furthermore, in
the case of incomplete data it is impossible to determine the barycenter of the
domain, and then the cone area integral invariant turns out to be useless.

3 Shape Signatures

Integral invariants are invariant with respect to rotations and translations but
suffer from the dependence of the parameterization of the curve γ. Without a
specification of the parameterization the integral invariant is not suitable for
shape classification. In particular, a different choice of the starting point of
the parameterization results in a shift of the integral invariant I[γ], which is
undesirable for shape classification and matching. To get rid of the effects of
reparameterization, Manay et al. [6] defined signatures based on integral invari-
ants, which are curves, where I[γ] is plotted against its derivative I[γ]′. Thus,
they followed the standard approach for defining differential signatures (cf. [2])
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Table 1: (Circular versus cone area integral invariant) Top row: Four
test curves. The curve in the second image is perturbed with ±2.5% (third
image) and ±5% uniformly distributed noise (fourth image). Middle row: Cone
area integral invariant Iε

Cone[γ] for the four different test curves and two values
of ε. Bottom row: Circular area integral invariant Ir

Circle[γ] for different values
of r.
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where the curvature κ is plotted against κ′. In these definitions the derivatives
of integral and differential invariants, respectively are required, which have to
be provided numerically. Since the stable numerical computation of derivatives
is quite demanding we introduce a slightly different concept of signatures.
Definition 3.1:
A signature of a curve γ is the set

{(

I1[γ](t), I2[γ](t)
)

: t ∈ S
1
}

, (8)

where I1[γ], I2[γ] denote two arbitrary integral invariants.

The signature does not depend on the parameterization of the curve γ. As an
advantage to previous approaches no numerical derivatives are required. There-
fore, the approach is expected to be more robust with respect to curve pertur-
bations than the original definition given by Manay.

From the invariants introduced in Section 2 we can generate two different classes
of signatures of an object (cf. Table 2 and 3):

1. We may use just one class of invariants, but with different parameters,
such as

{(

Ir1

Circle[γ](t), Ir2

Circle[γ](t)
)

: t ∈ S
1
}

, r1, r2 > 0, r1 6= r2,
{(

Iε1

Cone[γ](t), Iε2

Cone[γ](t)
)

: t ∈ S
1
}

, ε1, ε2 > 0, ε1 6= ε2,
(9)

respectively.

2. We may combine cone and circular invariants

{(

Ir
Circle[γ](t), Iε

Cone[γ](t)
)

: t ∈ S
1
}

, r, ε > 0 , (10)

or any two different classes of integral invariants.

Both types of signatures form closed curves that may contain self-intersections
or segments that are passed through several times.

4 An Inverse Problems Point of View on Invari-

ants and Shape Signatures

From an inverse problems point of view, in classification applications, questions
to be addressed concern the identifiability of a shape or some properties of the
integral invariant or signature, respectively.

The integral invariant as defined in (2) can be regarded as a mapping I :
C0(S1) → C0(S1), where C0(S1) denotes the set of all continuous functions
on S

1 taking values in R
2. Injectivity of this mapping can only be achieved up

to some restrictions, which are highlighted in the following.

1. Since I is invariant with respect to translations and rotations of the curve,
it is evident that I is only injective up to rigid motions.
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Table 2: (First class of signatures) Top row: Two different curves γ(t)
without noise, the second curve with ±2.5% and ±5% uniformly distributed
noise added. Middle row: Corresponding signatures using the cone area integral
invariant Iε

Cone[γ] for two different combinations of apertures ε1 and ε2. Bottom

row: Corresponding signatures using the circular area integral invariant Ir
Circle[γ]

for two different combinations of radii r1 and r2.
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Table 3: (Second class of signatures) Top row: Two different curves γ(t)
without noise, the second curve with ±2.5% and ±5% uniformly distributed
noise added. Bottom row: Corresponding signatures using the cone area inte-
gral invariant Iε

Cone[γ] and the circular area integral invariant Ir
Circle[γ] for two

different combinations of ε and r.

2. The choice of the parameters defining the integral invariants affects the
possibility of differing between shapes. For instance, if ε = 2π, the function
Iε
Cone is constant with function value the total area of Ω. Therefore, in this

situation the functional can only be used to discriminate between objects
of different size. Similarly, if r ≥ diamΩ, then Ir

Circle equals the constant
curve t 7→ L2(Ω).

3. In applications, a difficulty for shape classification by integral invariants is
the dependence on the choice of the parameterization of the curve. In fact,
assume that J : S

1 → R is topologically equivalent to the invariant I[γ],
that is, there exists a homeomorphism η of S

1 such that J ◦η = I[γ]. Then
I[γ] = I[γ ◦ η−1] ◦ η. Therefore, J = I[γ ◦ η−1], is the integral invariant
of the reparameterized curve γ ◦ η−1. Consequently, we may only obtain
injectivity results if the parameterization of the boundary of Ω is specified,
e.g. by prescribing γ(0) and γ̇(0). A natural choice for parameterizing an
arbitrary domain Ω is the arclength parameterization and for a starshaped
domain an angular parameterization with respect to the barycenter.

Taking into account the considerations above, we formulate some inverse prob-
lems related to shape classification with integral invariants.
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Problem 4.1:
Denote by C0

arc(S
1) the set of all arclength parameterized closed curves γ in R

2

satisfying γ(0) = 0 and γ̇(0) = e1, and by

C0
angle(S

1) :=
{

γ ∈ C0(S1) : γ(t) = ‖γ(t)‖(cos t, sin t), γ̄ = 0
}

(11)

the set of all angular parameterized closed curves with barycenter γ̄ = 0.

• Let 0 < ε < 2π. Is the function Iε
Cone restricted to C0

angle(S
1) injective?

• Let r > 0. Denote by C0
r (S1) the set of all curves γ in R

2 satisfying

max
{

‖γ(t) − γ(s)‖ : t, s ∈ S
1
}

> r. (12)

Is the function Ir
Circle restricted to C0

arc(S
1) ∩ C0

r (S1) injective?

• Is it possible to reconstruct a curve from its integral invariant numerically
in a stable way?

• Is it possible to identify features from its invariant? If it is possible, how
can this additional information be used to tackle the problem of incomplete
data? If applicable, can an algorithm be derived that partially recovers
the object of interest?

Discussing the injectivity of the mapping, which assigns to each Jordan curve its
signature is more complicated. Signatures have been introduced in Definition 3.1
as mere point sets to derive a shape characterization which is independent of
the parameterization. In most applications, though, at least some information
on the parameterization is still present, namely the direction in which this point
set is passed through and the number of times one specific point in the signature
is attained. This can be modelled by assuming that we only know the mapping
t 7→

(

I1[γ](t), I2[γ](t)
)

up to a reparameterization. Therefore, we define the
quotient space

C0
T (S1) := C0(S1)/∼, (13)

where two mappings β1, β2 are equivalent, if there exists a homeomorphism η
of S

1 such that β1 = β2 ◦ η. For given integral invariants I1 and I2, and a curve
γ we can thus define

Σ([γ]) :=
[(

I1[γ], I2[γ]
)]

, (14)

where [γ] and
[(

I1[γ], I2[γ]
)]

denote the equivalence classes in C0
T (S1) of the

curves γ and (I1[γ], I2[γ]) ∈ C0(S1).

Problem 4.2:
Let I1, I2 be integral invariants.

• For which choices of I1, I2 and subsets X ⊂ C0
T (S1) of admissible curves

is the mapping Σ : X → C0
T (S1) injective?

• Does there exist a numerical algorithm for reconstructing a curve (up to
reparameterization) from its signature?

• Similar to the case of integral invariants: Is it possible to identify features
in the signature which are correlated to features of the equivalence class of
a curve? If there exists a correlation, how can this be taken into account
for identifying curves from incomplete signatures?

9



As a prerequisite step for integral invariants calculation, the shape has to be
extracted from data which contains the object of interest. By this extraction
perturbations and noise are introduced in the shape. To measure the influence
of data errors in the shape representation of integral invariants and signatures,
appropriate distance measures for objects and the integral invariants have to be
introduced.

Problem 4.3:
Let γ1, γ2 be Jordan curves.

• What is a reasonable distance measure between two curves, for instance a
noisy, perturbed curve and a representative of a class in a data base?

• Does there exist a continuous dependence of the invariants and signatures
from the curves?

There is also a variety of integral invariants for surfaces and a number of appli-
cations where these have proven to be very useful (see [7]). Thus, the concepts
which we have presented here only for planar curves should be extended to
surfaces in spaces of dimension n ≥ 3.

5 Relation to the Literature on Inverse Prob-

lems and Partial Solutions

It is shown in [3] that Iε
Cone is injective on C0

angle(S
1) if and only if ε/2π is irra-

tional. Therefore we expect that the signatures corresponding to cone integral
invariants Iε1

Cone, Iε2

Cone are unique, if ε1 6= ε2 and εi/2π irrational for i = 1, 2.
However, a rigorous proof is missing so far.

From the results in [4] (see also (5)) it follows that the circular invariant Ir
Circle

approximates the curvature of γ as r → 0. Since the curvature uniquely de-
termines an arclength parameterized curve up to rigid motions, it follows that
Ir
Circle is injective in the limit as r → 0. In [3] we have used the Landweber

iteration method for reconstructing the original curve γ ∈ C0
arc(S

1) ∩ C0
r (S1)

from its circular area integral invariant Ir
Circle for r > 0. Numerical experiments

have shown that injectivity of that function for positive fixed radii can hold,
but the proof is still missing.

There exists a relation between the circular integral invariant and the spherical
Radon transform R[f ] : R

2 × R≥0 → R, which is defined by

R[f ](x, r) := r−1

∫

S1

f(x + rσ) dL1(σ) (15)

for a function f : R
2 → R. Indeed, we have

Ir
Circle[γ](t) =

∫ r

0

R[χΩ]
(

γ(t), s
)

dL1(s). (16)

For the spherical Radon transform there exist injectivity results, which show
that for certain subsets S ⊂ R

2 it is possible to reconstruct a function f with
compact support from its spherical Radon transform restricted to S × R≥0

10



(cf. [1]). In other words, it is enough to know R[f ] for a relatively small subset
S of R

2 but all radii r, in order to be able to identify f . In [8], identifyability
of f from data {R[f ](x, r) : x ∈ R

2, r1 < r < r2} for appropriate r1, r2 ∈ R≥0

has been shown.

Considering (16) the circular area integral invariant Ir
Circle represents the aver-

age of the spherical Radon transform over an interval [0, r] evaluated at x ∈ ∂Ω.
Thus, a lot less information is given than required for the two injectivity results
mentioned above. However, we additionally know, that the function to be recon-
structed is a characteristic function. This information is not taken into account
in the standard references on injectivity of the spherical Radon transform [1].
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