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Chapter 1

Fourier Transform

Many phenomena are periodic in time. Examples are amperage and voltage
of alternate current (AC). Mathematically, such quantities are described by
periodic functions.

Definition 1.1. A function f is called periodic if there exists a number
T ∈ R, called period , such that for all t ∈ R

f(t+ T ) = f(t) . �

In engineering often the term frequency, is used when periodic functions are
involved, which is closely related to the period of the function.

Definition 1.2. Let f be a periodic function with period T ∈ R. Then 1/T
is called the frequency of f . The unit of measurement of frequency is [Hz]
(Hertz):

1s−1 = 1Hz . �

To become more familar with the notion of periodicity we consider next the
movement of a particle on a circle with arbitrary radius r > 0.

Definition 1.3. Let φ(t) ∈ (−π, π] denote the angular position of a particle
on a circle with arbitrary radius r > 0 at time t, i.e.,

(

sin
(
φ(t)
)
, cos

(
φ(t)
))

∈ S
1 ⊂ R

2 .

1
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The angular velocity ν of a moving particle is the ratio of the variation of
the angle, ∆φ, relative to variation of time, ∆t, i.e.,

ν :=
∆φ

∆t
.

In the limit, differential calculus shows that

ν(t) = φ′(t) , (1.1)

where φ′ denotes the derivative of φ. �

Definition 1.4. Let T ∈ R denote the required time of a particle with
constant angular velocity on a circle for a full cycle. Then

ω :=
2π

T

is called angular frequency . �

The movement of the particle, seen as a function of time, requires T ∈ R

time units for a full cycle (equal to the period). Assuming a uniform motion
of the particle with constant velocity v we obtain

T =
2πr

v
. (1.2)

The angular velocity ν according to v is given by

ν =
v

r
.

From (1.2) we infer that
2π

ν
=

2πr

v
= T .

Remark 1.5. Notice that in case of a movement on a circle the term angu-
lar frequency is somehow missleading: it is a re-scaled frequency (2π/T in
contrast to 1/T ) and coincides with the mean angular velocity. �

Example 1.6. A typical example of a non-constant, periodic function is
given by

t→ A sin(ωt+ α) ,

where |A| denotes the amplitude and α the phase shift . As the period of this
function equals 2π/ω, we see that ω equals the angular frequency. �
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1.1 Trigonometric Polynomials

Trigonometric polynomials are used to approximate periodic functions. First
we introduce common abbreviations for functions used throughout this lec-
ture notes:

Definition 1.7. For k ∈ Z we define

expk : R → C , θ 7→ exp(ikθ) ,

sink : R → R , θ 7→ sin(kθ) ,

cosk : R → R , θ 7→ cos(kθ) .

�

Definition 1.8. For n ∈ N0 let

PT [n] := span{expk : −n ≤ k ≤ n}

be the set of linear combinations of functions expk, −n ≤ k ≤ n. Every
element p ∈ PT [n],

p(θ) =
n∑

k=−n

αk exp(ikθ) , αk ∈ C , (1.3)

is called trigonometric polynomial of degree n. �

We recall that for θ ∈ (−π, π) and k, l ∈ N the functions sink and cosk are
orthogonal with respect to the inner product of L2((−π, π);R), that is, for
all k, l ∈ N ∫ π

−π

sin(kθ) cos(lθ) dθ = 0 ,

and, in addition, for all k, l ∈ N with k 6= l
∫ π

−π

sin(kθ) sin(lθ) dθ = 0 =

∫ π

−π

cos(kθ) cos(lθ) dθ .

From the orthogonality relations it follows that the set of functions

{cosk, sink : k ∈ N}

consists of linearly independent functions. Therefore, the same is true for
the set of the respective periodic extensions of these functions to R.
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Let p ∈ PT [n] with coefficients

αk =
ak
2

− i
bk
2
, ak ∈ R, bk ∈ R, −n ≤ k ≤ n .

Then, since exp(ikθ) = cos(kθ) + i sin(kθ), the trigonometric polynomial p
of degree n can be written as

p(θ) =
n∑

k=−n

(
ak
2
cos(kθ) +

bk
2
sin(kθ)

)

+

i

n∑

k=−n

(

−bk
2
cos(kθ) +

ak
2
sin(kθ)

)

.

The linear independence of the sine and cosine functions occurring in the
imaginary part of p implies that the trigonometric polynomial of degree n is
real valued if and only if

n∑

k=−n

bk cos(kθ) = 0 and
n∑

k=−n

ak sin(kθ) = 0 .

This is the case if and only if bk = −b−k and ak = a−k, or equivalently,

αk = ᾱ−k for 0 ≤ k ≤ n ,

where ᾱ−k denotes the complex conjugate of α−k. In particular we see that

b0 = 0 .

Thus

p(θ) =
n∑

k=−n

(
ak
2
cos(kθ) +

bk
2
sin(kθ)

)

=
a0
2

+
−1∑

k=−n

(
ak
2
cos(kθ) +

bk
2
sin(kθ)

)

+
n∑

k=1

(
ak
2
cos(kθ) +

bk
2
sin(kθ)

)
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=
a0
2

+
n∑

k=1

(
a−k

2
cos(−kθ) + b−k

2
sin(−kθ)

)

+
n∑

k=1

(
ak
2
cos(kθ) +

bk
2
sin(kθ)

)

.

That is, a real valued trigonometric polynomial of degree n can be represented
by

p(θ) =
a0
2

+
n∑

k=1

ak cos(kθ) +
n∑

k=1

bk sin(kθ) , (1.4)

with
a0 = 2α0 ,

ak = 2Re(αk) , 1 ≤ k ≤ n ,

bk = −2 Im(αk) , 1 ≤ k ≤ n .

The theorem below states that each square integrable (complex valued)
function f defined on (−π, π) can be approximated by trigonometric poly-
nomials. For proving this theorem we need the following lemma:

Lemma 1.9. Let {φn : n ∈ N} be a countable, complete orthonormal basis
of the Hilbert space X. Denote by 〈 , 〉 the inner product and by ‖·‖ the
corresponding norm on X. Then, for every f ∈ X and N ∈ N

fN =
N∑

n=1

αnφn , αn := 〈f, φn〉 (1.5)

is the best approximation of f on the set

XN := span {φn : n = 1, . . . , N} .

More precisely, for every g ∈ XN with g 6= fN we have

‖f − g‖ > ‖f − fN‖ .

Proof. We use elementary identities of inner products on Hilbert spaces:
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For every g =
∑N

n=1 βnφn ∈ XN with βn = 〈g, φn〉 we have

‖f − g‖2 = 〈f − g, f − g〉
= 〈f, f〉 − 〈f, g〉 − 〈g, f〉+ 〈g, g〉

= ‖f‖2 −
N∑

n=1

(αnβ̄n + βnᾱn) +
N∑

n=1

|βn|2

= ‖f‖2 −
N∑

n=1

|αn|2 +
N∑

n=1

|βn − αn|2 .

The right hand side of this identity is minimal if and only if βn = αn for
n = 1, . . . , N . In that case fN and g coincide, which shows that fN is the
best approximation of f on XN . �

Theorem 1.10. The family of functions

1√
2π

expk , −n ≤ k ≤ n , (1.6)

is an orthonormal basis on PT [n] with respect to the inner product of the
Hilbert space L2((−π, π);C).

The best approximation of a function f ∈ L2((−π, π);C) on PT [n] with
respect to the L2((−π, π);C)–norm is

fb(θ) =
n∑

k=−n

αk exp(ikθ)

with coefficients

αk =
1

2π

∫ π

−π

f(θ) exp(−ikθ) dθ , −n ≤ k ≤ n . (1.7)

Proof. First, note that the inner product of L2((−π, π);C) is defined as

〈f, g〉L2((−π,π);C) :=

∫ π

−π

f(θ)ḡ(θ) dθ .
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Thus, for −n ≤ j, k ≤ n we have

1

2π
〈expk, expj〉L2((−π,π);C) =

1

2π

∫ π

−π

exp(ikθ) exp(−ijθ) dθ

=







1

2π

∫ π

−π

dθ = 1 , if k = j ,

1

2π

1

i(k − j)
exp
(
i(k − j)θ

)
∣
∣
∣

π

−π
= 0 , if k 6= j .

This proves the first assertion. The second part is an immediate consequence
of Lemma 1.9. �

Definition 1.11. Let f ∈ L2((−π, π);C) and k ∈ Z. The terms

αk :=
1

2π

∫ π

−π

f(θ) exp(−ikθ)dθ (1.8)

are called Fourier coefficients of the function f . �

Notice that the coefficients αk of the best approximation are independent of
n. Therefore, by taking the limit n→ ∞ the sequence of best approximations
converges formally to a series.

Definition 1.12. Let f ∈ L2((−π, π);C) and αk, k ∈ Z, its Fourier coeffi-
cients defined in (1.8). The series defined by

∞∑

k=−∞

αk expk := lim
n→∞

n∑

k=−n

αk expk (1.9)

is called Fourier series of f . �

Remark 1.13. The Fourier series of a function f ∈ L2((−π, π);C) is usually
written as

f =
∞∑

k=−∞

αk expk . (1.10)

WARNING: In this notation the argument is suppressed, because otherwise
one could think of pointwise convergence of this series to the function f ,
which is not guaranteed. In fact, one can show that the formal Fourier
series of f ∈ L2((−π, π);C) converges with respect to the L2–norm to the
function f , but convergence in the quadratic mean does not imply pointwise
convergence in general! We refer to Remark 1.16 for details on pointwise and
uniform convergence of the Fourier series. �
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For the convergence of the Fourier series in the L2–sense the following
characterization of the space L2((−π, π);C) is essential:

Theorem 1.14. Let f be integrable. Then f ∈ L2((−π, π);C) if and only if
∑∞

k=−∞ |αk|2 <∞.

Next we estimate the error of f to its best approximating trigonometric
polynomial fb with respect to the L2–norm, showing that L2–convergence
of the Fourier series to f is guaranteed (cf. Remark 1.13). Using that
1/
√
2π expk, −∞ ≤ k ≤ ∞ is an orthonormal system on L2((−π, π);C),

it follows that

‖f − fb‖2
L2((−π,π);C)

=
∑

|k|>n

|αk|2
∫ π

−π

exp(ikθ) exp(−ikθ) dθ = 2π
∑

|k|>n

|αk|2 .

(1.11)
In addition, in the sequel of this lecture notes we sometimes assume that

we can do some calculations with the formal Fourier series, such as, e.g.,
differentiation:

f ′ = i

∞∑

k=−∞

kαk expk . (1.12)

Lemma 1.15. Define

B :=

{
1√
2π
,

1√
π
cosk ,

1√
π
sink : 1 ≤ k ≤ n

}

and

PR

T [n] := span{b : b ∈ B} .

The elements b ∈ B are orthonormal with respect to the inner product
of the space L2((−π, π);R). The best approximation fb of a function f ∈
L2((−π, π);R) on PR

T [n] with respect to the L2((−π, π);R)–norm is given by

fb(θ) =
1

2π

∫ π

−π

f(τ) dτ +
1

π

n∑

k=1

(∫ π

−π

f(τ) cos(kτ)dτ

)

cos(kθ)

+
1

π

n∑

k=1

(∫ π

−π

f(τ) sin(kτ)dτ

)

sin(kθ) .
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If fb is viewed as an element of the space PT [n] the corresponding Fourier
coefficients αk = ak/2− ibk/2 satisfy

a0 =
1

π

∫ π

−π

f(θ) dθ

ak =
1

π

∫ π

−π

f(θ) cos(kθ)dθ , 1 ≤ k ≤ n ,

bk =
1

π

∫ π

−π

f(θ) sin(kθ)dθ , 1 ≤ k ≤ n .

Fourier analysis is concerned with the analysis of convergence of the
Fourier series. In the sequel we give three basic results on convergence of the
Fourier series.

Remark 1.16. The following theorems and the corresponding proofs can be
found in [4]:

• Let f ∈ L2((−π, π);C) and 2π–periodic. Assume that at the point θ
the four limits 1

f(θ+), f(θ−), lim
t→0+

f(θ + t)− f(θ+)

t
, lim

t→0+

f(θ − t)− f(θ−)

t
,

exist. Then the Fourier series of f at the point θ converges to

1

2

(
f(θ+) + f(θ−)

)
.

• Let f be continuous on R and 2π–periodic. We denote by fn the best
approximation on PT [n] of f |(−π,π), i.e, the approximation by the finite
sum (of order n) based on the Fourier coefficients of f (cf. Theorem
1.10). Then

lim
N→∞

1

N

N∑

n=0

fn

converges uniformly on [−π, π] to f .

• Let f be 2π–periodic and piecewise continuously differentiable on the
interval [−π, π]. Then its Fourier series converges uniformly to f on
every compact interval where f is continuous. �

1f(θ+) = limh>0→0 f(θ + h) and f(θ−) = limh<0→0 f(θ − h).
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Example 1.17. We calculate the Fourier series of the characteristic function
f := χ[a,b] of the interval [a, b] ⊆ [−π, π]. The Fourier coefficients of χ[a,b] are
given by

αk =
1

2π

∫ b

a

exp(−ikθ) dθ , k ∈ Z .

Define
c := (a+ b)/2 , d := (b− a)/2 .

Thus, c+ d = b and c− d = a. Then for k = 0 we obtain

α0 = (b− a)/2π = d/π

and for k 6= 0

αk =
1

2π

1

−ik
exp(−ikθ)

∣
∣
∣
∣

θ=b

θ=a

= − 1

2kπi
exp(−ikc)

(
exp(−ikd)− exp(ikd)

)

= − 1

2kπi
exp(−ikc)

(
cos(kd)− i sin(kd)− cos(kd)− i sin(kd)

)

=
1

π
exp(−ikc)

sin(kd)

k
.

Thus, the Fourier series of χ[a,b] is given by

∞∑

k=−∞

αk exp(ikθ) =
d

π
+

1

π

∑

k∈Z\{0}

exp(−ikc)
sin(kd)

k
exp(ikθ)

=
d

π
+

1

π

∞∑

k=1

sin(kd)

k

(

exp
(
ik(θ − c)

)
+ exp

(
− ik(θ − c)

))

=
d

π
+

2

π

∞∑

k=1

sin(kd)

k
cos
(
k(θ − c)

)
.

Let fb be the best approximation of χ[a,b] in PT [n]. Then, by taking into
account that |αk| = |α−k|, it follows from (1.11) that

‖f − fb‖2
L2((−π,π);C)

= 4π
∞∑

k=n+1

|αk|2 =
4

π

∞∑

k=n+1

sin2(kd)

k2
.



1.1. TRIGONOMETRIC POLYNOMIALS 11

The right hand side can be estimated by

4

π

∞∑

k=n+1

k−2 ≈ 4

π

∫ ∞

n

t−2 dt =
4

π
n−1 = O(1/n) . �

Real Sine and Cosine Expansions

In this section we show that depending on the function f to be investigated
it is possible to reduce the Fourier expansion of f to cosine or sine terms,
respectively.

Definition 1.18. A function f is called odd if for all values θ in the domain

f(θ) = −f(−θ) .

Similarly, a function g is called even if for all values θ in the domain

g(θ) = g(−θ) . �

In the following we assume f, g ∈ L2((−π, π);R) to be 2π–periodic. First we
study the case of an odd function f . We observe that

∫ π

−π

f(τ) dτ = 0

and, in addition, as f cosk is odd too, for all k ∈ N

ak =
1

π

∫ π

−π

f(τ) cos(kτ) dτ = 0.

As a consequence, the Fourier series expansion of an odd function only con-
sists of sine terms:

f =
∞∑

k=1

bk sink ,

where

bk =
2

π

∫ π

0

f(τ) sin(kτ) dτ .
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In the last identity we used the fact that for an odd function f the term
f sink is an even function, and therefore

∫ π

−π

f(τ) sin(kτ) dτ = 2

∫ π

0

f(τ) sin(kτ) dτ .

Now we consider the case of an even function g. Similarly to the case of
an odd function, we see that g cosk is even too, and g sink is odd. Thus, we
obtain

ak =
1

π

∫ π

−π

g(τ) cos(kτ) dτ =
2

π

∫ π

0

g(τ) cos(kτ) dτ.

and

bk =
1

π

∫ π

−π

g(τ) sin(kτ) dτ = 0 .

As a consequence, the Fourier series expansion of an even function only
consists of cosine terms:

g =
a0
2

+
∞∑

k=1

ak cosk ,

where

ak =
2

π

∫ π

0

g(τ) cos(kτ) dτ .

In order to expand a function f defined on the interval (0, π) into a
Fourier series, f has to be extended to a quadratically integrable function
on (−π, π) (and, subsequently, may be expanded to a 2π- periodic function
on R). Denoting the extended 2π-periodic function by g we know that it
coincide with the original function f on (0, π). Depending on whether f was
extended even or odd onto (−π, π) the Fourier expansion of g only consists
of cosine or sine terms.

1.2 Sobolev Spaces

H1((−π, π);C) is the space of periodic, square integrable functions, with
square integrable (weak) first derivative2. With f, g ∈ H1((−π, π);C) we

2
Weak derivative just refers to the fact that it is not a continuous function.
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associate the inner product

〈f, g〉H1((−π,π);C) :=

∫ π

−π

f(τ)ḡ(τ) dτ +

∫ π

−π

f ′(τ)ḡ′(τ) dτ

and the norm

‖f‖2
H1((−π,π);C)

:= 〈f, f〉2H1((−π,π);C) = ‖f‖2
L2((−π,π);C)

+ ‖f ′‖2

L2((−π,π);C)
.

For every function f ∈ H1((−π, π);C) with Fourier coefficients αk, k ∈ Z,
there exists

f ′ =
∞∑

k=−∞

βk expk =
∞∑

k=−∞

ikαk expk (1.13)

satisfying

f(θ) = f(−π) +
∫ θ

−π

f ′(t) dt .

Since f is 2π-periodic it follows that

f(−π) = f(π) = f(−π) +
∫ π

−π

f ′(t) dt .

This implies that

β0 =
1

2π

∫ π

−π

f ′(θ) dθ = 0 .

Remark 1.19. In 1D every function f belonging toH1((−π, π);C) is bound-
ed and continuous. Thus, one can evaluate f at a specific point. �

Below, we give a complete characterization of the functions in the Sobolev
space H1((−π, π);C).
Theorem 1.20. Let f ∈ L2((−π, π);C) with Fourier coefficients {αk}. Then
f ∈ H1((−π, π);C) if and only if

∞∑

k=−∞

k2 |αk|2 <∞ .

Moreover,
1

2π
‖f‖2

H1((−π,π);C)
=

∞∑

k=−∞

(k2 + 1) |αk|2 .
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Proof. For f ∈ H1((−π, π);C) the Fourier coefficients of the derivative f ′ ∈
L2((−π, π);C) are given by ikαk. From Theorem 1.14 it follows that

∞∑

k=−∞

k2|αk|2

is convergent and according to the proof of Theorem 1.10 (criterion of or-
thogonality) we see that

∞∑

k=−∞

(k2 + 1) |αk|2 =
∞∑

k=−∞

k2 |αk|2 +
∞∑

k=−∞

|αk|2

=
1

2π

(

‖f ′‖2
L2((−π,π);C)

+ ‖f‖2
L2((−π,π);C)

)

=
1

2π
‖f‖2H1((−π,π);C) .

Now assume that
∑∞

k=−∞ k2 |αk|2 is convergent. Then, according to Theorem
1.14 the function

g =
∞∑

k=−∞

ikαk expk

is an element of L2((−π, π);C). The antiderivative G of g is absolutely con-
tinuous and, consequently, an element of L2((−π, π);C) too:

G =
∞∑

k=−∞

βk expk , βk =
1

2π

∫ π

−π

G(θ) exp(−ikθ) dθ .

Thus, using partial integration we obtain for k 6= 0

2πβk =

∫ π

−π

G(θ) exp(−ikθ) dθ =
exp(−ikθ)

−ik
G(θ)

∣
∣
∣

π

−π
−
∫ π

−π

exp(−ikθ)

−ik
g(θ) dθ

=
1

ik

∫ π

−π

∞∑

l=−∞

ilαl exp(ilθ) exp(−ikθ) dθ

=
1

ik

∞∑

l=−∞

ilαl

∫ π

−π

exp(ilθ) exp(−ikθ) dθ

=
2πikαk

ik
= 2παk .
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Therefore, the Fourier coefficients of f and G coincide for k 6= 0, which
implies that G equals f up to a constant. This shows that f is differentiable
with weak derivative g, i.e., f ∈ H1((−π, π);C). �

Definition 1.21. Let s > 0. The function space

Hs((−π, π);C) :=
{

f ∈ L2((−π, π);C) :f =
∞∑

k=−∞

αk expk ,

∞∑

k=−∞

|k|2s |αk|2<∞
}

is called the Sobolev space of periodic functions of order s. �

Theorem 1.22. Let f, g ∈ Hs((−π, π);C), s > 0, with Fourier coefficients
{αk} , {βk}, respectively. Then

〈f, g〉Hs((−π,π);C) := 2π
∞∑

k=−∞

(|k|2s + 1)αkβ̄k

is an inner product on Hs((−π, π);C).

Remark 1.23. Below we summarize some basic properties of Sobolev spaces
of periodic functions:

1. For 0 < s < r we have

Hr((−π, π);C) ⊆ Hs((−π, π);C) .

In particular, for s > 1 we see that

Hs((−π, π);C) ⊆ H1((−π, π);C) ,

which shows that every function f ∈ Hs((−π, π);C), s ≥ 1, has a
weak derivative f ′ ∈ Hs−1((−π, π);C). More general, every function
f ∈ Hs((−π, π);C), has ⌊s⌋ weak derivatives, i.e.,

f ′, f ′′, . . . , f ⌊s⌋ ∈ L2((−π, π);C) .

2. For f ∈ Hs((−π, π);C), s > 1/2, its Fourier series converges uniformly
on [−π, π] and, in addition, f is continuous.
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3. Every function f ∈ H1((−π, π);C) is Hölder-continuous with constant
C = ‖f‖H1((−π,π);C) and exponent α = 1/2, i.e., for all θ1, θ2 ∈ (−π, π)

|f(θ1)− f(θ2)| ≤ ‖f‖
H1((−π,π);C)

|θ1 − θ2|1/2 . �

Proof. Because f ∈ L2((−π, π);C) we have the identity

f(θ) =
∞∑

k=−∞

αk exp(ikθ) almost everywhere.

Let
fn(θ) =

∑

|k|≤n

αk exp(ikθ) (everywhere!) .

ad 2.: Using Cauchy-Schwarz inequality we get for almost all θ ∈ [−π, π]
that

∣
∣
∣
∣
f(θ)− fn(θ)

∣
∣
∣
∣
≤

∞∑

|k|=n+1

|αk exp(ikθ)| =
∞∑

|k|=n+1

k−s(ks |αk|)

≤





∞∑

|k|=n+1

k−2s





1/2



∞∑

|k|=n+1

k2s |αk|2




1/2

≤ 1√
2π

‖f‖
Hs((−π,π);C)





∞∑

|k|=n+1

k−2s





1/2

.

Since the functions fn are continuous on [−π, π] and converge uniformly, the
limiting function f is continuous as well, and thus the above inequality holds
everywhere.

Since (
∑∞

k=0 k
−2s)

1/2
is convergent,

(
∑∞

|k|=n+1 k
−2s
)1/2

→ 0 for n→ +∞,

and the assertion follows. �

1.3 Trigonometric Interpolation

We study the numerical approximation of a periodic function f by trigono-
metric polynomials. In practice the Fourier coefficients have to be approx-
imated numerically on a computer system. For the approximation of the
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coefficients used in the trigonometric polynomial it is common to use the
trapezoidal quadrature formula. The resulting polynomial is called trigono-
metric interpolation polynomial to indicate the use of the approximating
coefficients. The reason for the name affix interpolation will become more
clear in the sequel of this section (cf. Theorem 1.32).

First for N ∈ N we define h := 2π/N and the knots on the interval [−π, π)

θν := νh− π , 0 ≤ ν ≤ N − 1 . (1.14)

We assume f to be 2π–periodic. Then we get from the trapezoidal formula
the approximation

αk =
1

2π

∫ π

−π

f(θ) exp(−ikθ) dθ

≈ 1

N

N−1∑

ν=0

f(θν) exp(−ikθν) .

Definition 1.24. Let f ∈ L2((−π, π);C), N ∈ N and θν , 0 ≤ ν ≤ N − 1 as
defined in (1.14). Then for k ∈ Z

α̂k :=
1

N

N−1∑

ν=0

f(θν) exp(−ikθν) (1.15)

is called the kth approximated Fourier coefficient of f . �

We introduce now interpolating trigonometric polynomials and justify this
name in the following.

Definition 1.25. Let n,N ∈ N with n ≤ N/2. Assume f ∈ Hs((−π, π);C),
s > 1/2, with approximating Fourier coefficients α̂k. Then the trigonometric
polynomials defined as

p̂n(θ) :=
n∑

k=−n

α̂k exp(ikθ) if n < N/2 ,

p̂n(θ) :=
n∑

k=1−n

α̂k exp(ikθ) if n = N/2 .

(1.16)

are called interpolating trigonometric polynomials of order n. �
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Remark 1.26. The interpolating trigonometric polynomial in 1.16 can have
at most N coefficients; in the first case the polynomial has 2n+1 coefficients
and in the second case exactly N = 2n coefficients. In the following we prove
that the trigonometric interpolation polynomial of order n not only provides
the best approximation of a function f with respect to the discrete inner
product 〈〈 , 〉〉 but also, if n is proper choosen, interpolates given function
values f(θν) for all ν = 0, 1, . . . , N − 1. �

For deriving the interpolation property it is convenient to introduce the
following discrete inner product.

Definition 1.27. Let N ∈ N and s > 1/2. For ψ, φ ∈ Hs((−π, π);C) we
define the Hermitian bilinear form

〈〈φ, ψ〉〉 := 1

N

N−1∑

ν=0

φ(θν)ψ̄(θν) , θν :=
2πν

N
− π , (1.17)

which is called the discrete inner product of ψ and φ. The associate norm is
defined by

|||φ|||2 := 〈〈φ, φ〉〉 := 1

N

N−1∑

ν=0

|φ(θν)|2 . (1.18)

�

Remark 1.28. Notice that by the last definition the approximating Fourier
coefficients of f (see Definition 1.24) can be written as

α̂k = 〈〈f, expk〉〉 . �

Lemma 1.29. Let N ∈ N and s > 1/2. For j, k ∈ Z we have

〈〈expj, expk〉〉 =
{

(−1)j−k j − k = lN for l ∈ Z ,

0 else .
(1.19)

In particular, on the space

P̂T [N ] := span{expk : −N/2 < k ≤ N/2} (1.20)

the functions
{expk : −N/2 < k ≤ N/2} (1.21)

are an orthonormal system with respect to the discrete inner product defined
in (1.17).
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Proof. Let j, k ∈ Z. Then

〈〈expj, expk〉〉 =
1

N

N−1∑

ν=0

exp(ijθν) exp(−ikθν)

=
1

N
exp
(
− iπ(j − k)

)
N−1∑

ν=0

exp
(
2πi(j − k)ν/N

)

=
(−1)j−k

N

N−1∑

ν=0

(

exp
(
2πi(j − k)/N

))ν

.

Thus,

〈〈expj, expk〉〉 =







(−1)j−k

N

N−1∑

ν=0

(
exp(2πil)

)ν
= (−1)j−k , j − k = lN, l ∈ Z ,

(−1)j−k

N

1− exp
(
2πi(j − k)

)

1− exp
(
2πi(j − k)/N

) = 0 , else.

�

We emphasize that the orthonormal system (1.21) defined in Lemma 1.29
has exactly N elements, independent whether N is even or odd.

Theorem 1.30. Let n < N/2 and p̂n as in (1.16). Let f ∈ Hs((−π, π);C)
with s > 1/2. Then for every trigonometric polynomial pn ∈ PT [n]\{p̂n} of
degree n we have

N−1∑

ν=0

|p̂n(θν)− f(θν)|2 <
N−1∑

ν=0

|pn(θν)− f(θν)|2 .

Proof. Assume n < N/2. Then the functions exp(ikθ), −n ≤ k ≤ n are an
orthonormal basis of PT [n] with respect to the discrete inner product 〈〈 , 〉〉.
By Theorem 1.9 and the identity α̂k = 〈〈expk, f〉〉 the best approximation of
f on PT [n], with respect to 〈〈·, ·〉〉, is given by

n∑

k=−n

〈〈expk, f〉〉 expk =
n∑

k=−n

α̂k expk = p̂n .
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Using that

|||f − p̂n|||2 = 〈〈p̂n − f, p̂n − f〉〉 = 1

N

N−1∑

ν=0

|p̂n(θν)− f(θν)|2

the assertion follows. �

Remark 1.31. Notice that Theorem 1.30 states that the trigonometric in-
terpolation polynomial of order n defined in (1.16) provides the best approx-
imation of f with respect to the discrete inner product 〈〈 , 〉〉. In general, the
interpolation error

∑N−1
ν=0 |p̂n(θν)− f(θν)|2 does not vanish. However, if we

choose
n = nmax := ⌊N/2⌋ (1.22)

then the trigonometric interpolation polynomial p̂n interpolates the function
values f(θν), ν = 0, 1, . . . , N − 1, and, as a consequence, the interpolation
error vanishes. �

Theorem 1.32. Let N ∈ N and nmax be maximal as defined in (1.22). Then
the trigonometric interpolation polynomial p̂nmax

defined in (1.16) interpolates
f at all knots θν, ν = 0, . . . , N − 1, i.e., |||f − p̂nmax

||| = 0.

Proof. According to Lemma 1.29 the functions expk, −N/2 < k ≤ N/2
are an orthonormal basis on P̂T [N ] with respect to the discrete inner product
〈〈 , 〉〉. Thus, the vectors vk = [expk(θν)]

N−1
ν=0 ∈ C

N , −N/2 < k ≤ N/2 are an
orthonormal basis of CN . Consequently, the vector [f(θν)]

N−1
ν=0 is represented

by a unique linear combination of the basis vectors vk. We define the index
set I := {k ∈ N : −N/2 < k ≤ N/2} and obtain

[f(θν)]
N−1
ν=0 =

∑

k∈I

c̃kvk , c̃k ∈ C .

Hence, the trigonometric polynomial

p̃(θ) :=
∑

k∈I

c̃k exp(ikθ)

belonging to the space P̂T [N ] satisfies

〈〈p̃− f, p̃− f〉〉 = 0 ,
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which shows that |||p̃ − f ||| = 0, and as a consequence (cf. Theorem 1.9), p̃
is the best approximation of f on P̂T [N ]. One the other hand we know that

p̂nmax
is a best approximation of f on P̂T [N ], with respect to the discrete inner

product, too (cf. Theorem 1.30 and a similar proof in case of N = 2nmax).
Thus p̃ = p̂nmax

and |||f − p̂nmax
||| = 0. �

The following Lemma is useful for deriving error estimates for trigono-
metric interpolation polynomials. It gives also a remarkable insight in the
relation between Fourier coefficients and approximating Fourier coefficients
of a function.

Lemma 1.33. Let f ∈ Hs((−π, π);C), s > 1/2 with approximating Fourier
coefficients α̂k as defined in (1.15). Then

α̂k =
∞∑

l=−∞

(−1)lNαk+lN .

Proof. According to Remark 1.23 the Fourier series of f is uniformly con-
vergent. Then from Lemma 1.29 it follows that

α̂k =
1

N

N−1∑

j=0

( ∞∑

ν=−∞

αν exp(iνθj)

︸ ︷︷ ︸

formal Fourier series of f

)

exp(−ikθj)

=
∞∑

ν=−∞

αν〈〈expν , expk〉〉

=
∑

ν∈Z
ν−k=lN

(−1)ν−kαν

=
∞∑

l=−∞

(−1)lNαk+lN .

�

So far we have derived L2 estimates for the Fourier series, and showed best
approximation properties with respect to a discrete Euclidean inner product.
Now, we consider L∞ estimates which show a different behavior.



22 CHAPTER 1. FOURIER TRANSFORM

Theorem 1.34. Let f ∈ Hs((−π, π);C), s > 1/2, and denote by p̂n the
trigonometric interpolation polynomial of f as defined in (1.16). Then

‖f − p̂n‖L∞((−π,π);C) ≤ 2

(
2s

π(2s− 1)

)1/2

n1/2−s ‖f‖Hs((−π,π);C) .

Proof. For convenience we define the index set

I := {k ∈ N : −N/2 < k < 1− n or n < k ≤ N/2} .

The uniform convergence of the Fourier series (cf. Remark 1.23) implies that
f(θ) =

∑∞
j=−∞ αj exp(ijθ), which can be expanded to

∑

l∈Z

∑

−N/2<k≤N/2

αk+lN exp(i(k + lN)θ) =
∑

l∈Z

n∑

k=1−n

αk+lN exp
(
i(k + lN)θ

)

+
∑

l∈Z

∑

k∈I

αk+lN exp
(
i(k + lN)θ

)
.

Then, from the definition of the trigonometric interpolation polynomial p̂n
(see Definition 1.25) and Lemma 1.33, it follows that

f(θ)− p̂n(θ) =
n∑

k=1−n

∑

l∈Z

αk+lN

(

exp
(
i(k + lN)θ

)
− (−1)lN exp(ikθ)

)

+
∑

k∈I

∑

l∈Z

αk+lN

(

exp
(
i(k + lN)θ

))

.

For 1− n ≤ k ≤ n we have
∣
∣exp

(
i(k + lN)θ

)
− (−1)lN exp(ikθ)

∣
∣ = 0 if l = 0 ,

∣
∣exp

(
i(k + lN)θ

)
− (−1)lN exp(ikθ)

∣
∣ ≤ 2 else .

This shows that

|f(θ)− p̂n(θ)| ≤
n∑

k=1−n

∑

l∈Z
l 6=0

2 |αk+lN |+
∑

k∈I

∑

l∈Z

|αk+lN |

≤
n∑

k=1−n

∑

l∈Z
l 6=0

2 |αk+lN |+
∑

k∈I

∑

l∈Z

2 |αk+lN |

= 2

(
−n∑

ν=−∞

|αν |+
∞∑

ν=n+1

|αν |
)
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≤ 2
∑

|ν|≥n

|αν |

= 2
∑

|ν|≥n

|ν|−s (|ν|s) |αν |) .

Then, from the Cauchy–Schwarz inequality it follows that

|f(θ)− p̂n(θ)|2 ≤ 4
∑

|ν|≥n

|ν|−2s
∑

|ν|≥n

|ν|2s |αν |2

≤ 8

(

n−2s +

∫ ∞

n

t−2sds

)
∑

|ν|≥n

|ν|2s |αν |2

≤ 4

π

(

n−2s +
n1−2s

2s− 1

)

‖f‖2Hs((−π,π);C)

≤ 4

π

2s

2s− 1
n1−2s ‖f‖2

Hs((−π,π);C)
.

�

Remark 1.35. The estimate of Theorem 1.34 is order optimal. The Sobolev
space Hs((−π, π);C) with s < 1/2 contains discontinuous functions. Con-
sequently, an element of this space cannot be uniformly approximated by
trigonometric polynomials (since they are continuous). This is reflected
in Theorem 1.34 above showing that the error estimates become worse for
s → 1/2. Better error estimates can be derived using other norms: For a
2π–periodic function f ∈ Cs(R), s ∈ N, one can show that

‖f − p̂n‖L∞((−π,π);R)
≤ Cn−s log(n)

∥
∥f (s)

∥
∥
L∞((−π,π);R)

.

For a proof of this result we refer to [6]. �

The following result shows that this approximation is optimal in the following
sense:

Theorem 1.36. Let s > 1/2. For every function g ∈ Hs((−π, π);C)
∣
∣
∣
∣
∣

∫ π

−π

g(θ)dθ − 2π

N

N−1∑

ν=0

g(θν)

∣
∣
∣
∣
∣
≤ cs‖g‖Hs((−π,π);C)h

s ,

where h = 2π/N , θν as defined in (1.14) and cs is a positive constant only
depending on s.
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Proof. Let α̂k be the approximating Fourier coefficients and αk be the Fouri-
er coefficients of the function g ∈ Hs((−π, π);C), s > 1/2. Since s > 1/2 the
Fourier series of g is uniformly convergent, i.e., g =

∑∞
k=−∞ αk expk. Utiliz-

ing Definition 1.24 of the approximating Fourier coefficients and Lemma 1.33
shows that

1

N

N−1∑

ν=0

g(θν) = α̂0 = α0 +
∑

l∈Z
l 6=0

(−1)lNαlN .

From the definition of the Fourier coefficients it follows that for k = 0 we
obtain the mean value of the corresponding function, i.e.,

2πα0 =

∫ π

−π

g(θ) exp(i0θ) dθ =

∫ π

−π

g(θ)dθ .

Therefore, by using the Cauchy–Schwarz inequality for infinite sums and the
definition of the norm on the space Hs((−π, π);C) (see Theorem 1.22), we
obtain

∣
∣
∣
∣

∫ π

−π

g(θ)dθ − 2π

N

N−1∑

j=0

g(θj)

∣
∣
∣
∣
≤ 2π

∑

l∈Z
l 6=0

|αlN | = 2π
∑

l∈Z
l 6=0

∣
∣(lN)−s(lN)sαlN

∣
∣

≤ 2π






∑

l∈Z
l 6=0

|l|−2sN−2s






1/2




∑

l∈Z
l 6=0

|lN |2s |αlN |2





1/2

≤ 2π

N s






∑

l∈Z
l 6=0

|l|−2s






1/2
(
∑

l∈Z

(|lN |+ 1)2s |αlN |2
)1/2

=
2π

N s

(

2
∞∑

l=1

l−2s

)1/2
1√
2π

‖g‖Hs((−π,π);C)

=
2
√
π

N s

(
∞∑

l=1

l−2s

)1/2

‖g‖
Hs((−π,π);C)

.

For s > 1/2 the series
∑∞

l=1 l
−2s is convergent, and thus the assertion fol-

lows. �
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1.4 Gibbs–Phenomena

Errors which occure when one approximates a discontinuous function by
its Fourier series expansion are called Gibbs-phenomena. Exemplarily we
consider the approximation of the Heavyside function defined as

f(t) :=

{

−1, −π < t < 0 ,

+1, 0 ≤ t < π .

Since f is an odd function, its Fourier series expansion only consists of sine
terms and is given by

f(t) =
4

π

∞∑

n=1

1

2n− 1
sin
(
(2n− 1)t

)
.

We define the N–th partial sum fN by

fN(t) :=
4

π

N∑

n=1

1

2n− 1
sin
(
(2n− 1)t

)
.

Since
sin
(
(2n− 1)t

)

2n− 1
=

∫ t

0

cos
(
(2n− 1)τ

)
dτ ,

the N–th partial sum can be rewritten as

fN(t) =
4

π

∫ t

0

N∑

n=1

cos
(
(2n− 1)τ

)
dτ .

Applying the addition theorem for the sine function and reducing the arising
telescoping sum we obtain

2 sin(τ)
N∑

n=1

cos
(
(2n− 1)τ

)
=

N∑

n=1

(

sin
(
(2n− 1 + 1)τ

)
+ sin

(
(1− 2n+ 1)τ

))

=
N∑

n=1

sin(2nτ)− sin
(
(2n− 2)τ

)

= sin(2Nτ),
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and, as a consequence, we end up with

N∑

n=1

cos
(
(2n− 1)τ

)
=

sin(2Nτ)

2 sin(τ)
.

Thus, fN can be rewritten as

fN(t) =
2

π

∫ t

0

sin(2Nτ)

sin(τ)
dτ .

Since

f ′
N(t) =

2

π

sin(2Nt)

sin(t)
,

the extrema of fN are located at tk := πk/(2N). Ordering the maxima
consecutively the first maximum is at t1 = π/(2N) and

fN

( π

2N

)

=
2

π

∫ π/2N

0

sin(2Nτ)

sin(τ)
dτ .

For N sufficiently large we have in [0, π/2N ]

sin(τ) ≈ τ

and, consequently,

fN

( π

2N

)

≈ 2

π

∫ π/2N

0

sin(2Nτ)

τ
dτ =

2

π

∫ π

0

sin(x)

x
dx ≈ 1.17898 .

Thus, the first maximum of the approximation fN exceeds the actual function
value +1 of f at the point π/(2N). Relative to the height of the discontinuity
of f the overshoot of the approximation is about 9%.

Gibbs–phenomena are well investigated. For instance, one can show that
the relative overshoot of the approximation by finite Fourier sums with re-
spect to the height of the discontinuity is always about 9%, independent of
the order N of the approximation fN . In addition, one can prove that the
first extremum of the approximation before and after the discontinuity is
indeed an overshoot or an undershoot, respectively (depending on whether
the function value increases or decreases by the discontinuity).

Gibbs–phenomena also perfectly show that, in general, the Fourier series
expansion approximates a function f best in the L2–norm but not necessarily
in the L∞–norm.
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Figure 1.1: Gibbs-Phenomenon: Approximation of the 2π-periodic extended
Heavyside function (blue) by its Fourier series expansion up to order N (red).
Independent of the order of approximation Gibbs-Phenomenon occurs due
to the discontinuity of the underlying function. The relative overshoot and
undershoot, respectively, is about 9% of the height of the discontinuity. Left:
Approximation of order N = 5. Right: Approximation of order N = 50.

1.5 Fast Fourier Transform

In the following we assume that 2n = N , n ∈ N. The mapping which maps
the values yj = f(θj), j = 0, . . . , N − 1 of a periodic function f at the
discrete knots θj = 2πj/N , j = 0, . . . , N − 1, to its approximating Fourier
coefficients α̂k, 1−n ≤ k ≤ n, is called discrete Fourier transform (DFT). The
discrete Fourier transform is used to find the best trigonometric interpolation
polynomial, which is a smooth approximation of the function f .

Setting ω = exp(−2πi/N), the discrete Fourier transform can be realized
by the following matrix–vector multiplication











c0
...
cn
cn+1
...

cN−1












:= N












α̂0
...
α̂n

α̂1−n
...

α̂−1












=










ω0 ω0 . . . ω0

ω0 ω1 . . . ωN−1

ω0 ω2 . . . ω2(N−1)

...
...

...

ω0 ωN−1 . . . ω(N−1)2















y0
...

yN−1




 ,

which we write in abbreviated form

c = Fy . (1.23)
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The symmetric, complex valued matrix F is called Fourier matrix . From
Lemma 1.29 it follows that

F ∗F = N · I ,

where F ∗ is the adjoint of F . That is, F/
√
N is a unitary matrix which

satisfies
1√
N
F ∗ =

( F√
N

)−1

=
√
NF−1 . (1.24)

Using (1.23) the approximating Fourier coefficients α̂k can be calculated for
the best trigonometric interpolation polynomial. On the other hand, accord-
ing to (1.24) the fast Fourier transform can be used to calculate yj = p̂n(θj)
of a trigonometric interpolation polynomial with coefficients α̂k. To see that
discrete Fourier transform is basically the same as the inverse discrete Fourier
transform, we first notice that F is symmetric and by (1.23) we see that

y = F−1c =
1

N
F ∗c =

1

N
Fc̄ .

This formula is the basis of the inverse discrete Fourier transform (IDFT).
Both systems (1.23) and (1.5) are solvable by N2 multiplications. Howev-

er, there exist algorithms which only require O
(
N log(N)

)
operations. Such

algorithms are called fast Fourier transform (FFT) and inverse fast Fourier
transform (IFFT), respectively.

To derive the FFT we assume that N = 2p, p ∈ N and set n = N/2. The
basis of the FFT is the following lemma.

Lemma 1.37. Let M = 2m and define

γj :=
M−1∑

ν=0

ην ω
jν
M , j = 0, . . . ,M − 1 ,

with ωM := exp(−i2π/M). Setting ωm = ω2
M we have for l = 0, . . . ,m− 1

γ2l =
m−1∑

ν=0

η(+)
ν ωlν

m , η(+)
ν = ην + ην+m ,

γ2l+1 =
m−1∑

ν=0

η(−)
ν ωlν

m , η(−)
ν = (ην − ην+m)ω

ν
M .
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Proof. For even indices we have

γ2l =
M−1∑

ν=0

ην ω
2lν
M =

m−1∑

ν=0

(

ην ω
2lν
M + ην+m ω

2lν+2lm
M

)

=
m−1∑

ν=0

(

ην ω
2lν
M + ην+m ω

2lν
M

)

=
m−1∑

ν=0

(ην + ην+m)ω
lν
m .

For odd indices we have

γ2l+1 =
m−1∑

ν=0

(

ην ω
(2l+1)ν
M + ην+m ω

(ν+m)(2l+1)
M

)

=
m−1∑

ν=0

(

ην + ην+m ω
(2l+1)m
M

)

ω
(2l+1)ν
M

=
m−1∑

ν=0

(ην − ην+m)ω
ν
M ωlν

m . �

Since γ2l and γ2l+1 have the same form as γl, but only half of the coef-
ficients, the calculation can be performed recursively. In the following we
summarize recursive algorithms for FFT and IFFT:

Algorithm 1: Recursive scheme of the discrete Fourier transform

function γ = dft(η, ω,M);
// Calculates the discrete Fourier transform of the given

vector η ∈ C
M for given M (even) and ω := exp(−i2π/M).

// CAUTION: · indicates componentwise multiplication of two

vectors!

η(+) = η(0 :M/2− 1) + η(M/2 :M − 1);
η(−) =

(
η(0 :M/2− 1)− η(M/2 :M − 1)

)
· [1, ω, . . . , ωM/2−1];

if M = 2 then
γ = [η(+), η(−)];

else
γ(0 : 2 :M − 2) = dft(η(+), ω2,M/2);
γ(1 : 2 :M − 1) = dft(η(−), ω2,M/2);

end
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Algorithm 2: Fast Fourier transform

function c = fft(y,N);
// Calculates the fast Fourier transform of the given

vector y ∈ C
N for given N (even!).

ω = exp(−i2π/N);
c = dft(y, ω,N);

Algorithm 3: Inverse fast Fourier transform

function y = ifft(c,N);
// Calculates the inverse fast Fourier transform of the

given vector c ∈ C
N for given N (even!).

y = fft(c̄, N)/N ;

Numerical complexity of FFT: Let N = 2p, i.e., p = log2(N) and
assume the values ω0, . . . , ωN−1 to be precalculated. Then in every recursive
step N complex adds and N/2 complex multiplications have to be performed.
In total there are p recursive steps required. Thus, the total complexity of
the FFT is given by

N log2(N) complex adds

and
N

2
log2(N) complex multiplications.

Example 1.38. In Figure 1.2 the approximate Fourier coefficients α̂k of the
real valued function f : (−π, π) → R, f(x) := (x − π)2(x + π)2 are shown.
Since f is an even function we know from theory that the imaginary part of
α̂k should vanish. Indeed, the values of the imaginary part shown in Figure
1.2 are in the range of the machine accuracy, and can be seen equal to zero.
The computation was performed with the Matlab built-in functions fft and
fftshift. �

The discrete cosine transform (DCT) provides a transformation between
real functions. The results are comparable by using the FFT on an evenly
extended vector around zero.
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Figure 1.2: Fast Fourier transform (FFT) of the even function f(x) := (x−
π)2(x + π)2 on (−π, π). Left: Signal in the time domain. Center: Real part
of the approximating Fourier coefficients α̂k. Right: Imaginary part of the
approximating Fourier coefficients α̂k. Computation was perfomed with the
Matlab built-in functions fft and fftshift. The function was uniformly
sampled with stepsize equal to 2π/100.

Definition 1.39. Assume f(ν) := f(θCν ) a given signal sampled at the
points θCν := 2ν+1

2N
π, 0 ≤ ν ≤ N − 1. For k ∈ N define

wk :=

{

1/
√
2 if k = 0 ,

1 else .

The transform

α̂C
k :=

√

2

N

N−1∑

ν=0

wkf(θ
C
ν ) cos(kθ

C
ν ) , 0 ≤ k ≤ N − 1 , (1.25)

is called discrete cosine transform (DCT) of the vector f(ν) and

fC
ν :=

√

2

N

N−1∑

k=0

wk α̂
C
k cos(kθCν ) , 0 ≤ ν ≤ N − 1 , (1.26)

the corresponding inverse discrete cosine transform (IDCT) of the vector
α̂C
k . �

Remark 1.40. Notice that in (1.25) the weights wk are independent of the
summation index, whereas in (1.26) the are dependent. Thus, in contrast to
the DFT, the transforms of Definition 1.39 are not symmetric. �
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1.6 Fourier Integral Representation

Let f ∈ L2((−l, l);C). Then, using the transformation

ζ : (−l, l) → (−π, π)

t 7→ ζ(t) :=
tπ

l
.

the square integrable function g ∈ L2((−π, π);C) defined as

g := f ◦ ζ−1

can be expanded into a Fourier series

g(s) = gr(s) + igc(s)

=
ar0
2

+
∞∑

k=1

(
ark cos(ks) + brk sin(ks)

)
+

+ i

(
ac0
2

+
∞∑

k=1

(
ack cos(ks) + bck sin(ks)

)
)

where the coefficients ark and brk denote the Fourier coefficients of the real
part gr, and the coefficients ack and bck denote the Fourier coefficients of the
imaginary part gc of g. Thus, the Fourier series of f is given by

f(t) = g
(
ζ(t)
)

=
ar0
2

+
∞∑

k=1

(

ark cos

(
kπt

l

)

+ brk sin

(
kπt

l

))

+ i

(

ac0
2

+
∞∑

k=1

(

ack cos

(
kπt

l

)

+ bck sin

(
kπt

l

)))

.

The Fourier coefficients ark, 0 ≤ k ≤ ∞ can be expressed as

ark =
1

π

∫ π

−π

gr(ξ) cos(kξ) dξ =
1

π

∫ l

−l

gr
(
πτ

l

)

cos

(
kπτ

l

)
π

l
dτ

=
1

l

∫ l

−l

f r(τ) cos

(
kπτ

l

)

dτ
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where f r denotes the real part of the function f . The other Fourier coeffi-
cients can be derived analogously. By defining

ck := ark + iack =
1

l

∫ l

−l

f(τ) cos

(
kπτ

l

)

dτ , 0 ≤ k ≤ ∞ ,

dk := brk + ibck =
1

l

∫ l

−l

f(τ) sin

(
kπτ

l

)

dτ , 1 ≤ k ≤ ∞ ,

(1.27)

the Fourier series of f can be written as

f(t) =
c0
2
+

∞∑

k=1

ck cos

(
kπt

l

)

+ dk sin

(
kπt

l

)

. (1.28)

Combining (1.27) with (1.28) and using the cosine summation theorem

cos(t) cos(τ) + sin(t) sin(τ) = cos(t− τ)

we obtain for t ∈ (−l, l) the identity

f(t) =
1

2l

∫ l

−l

f(τ) dτ +
∞∑

k=1

1

l

∫ l

−l

f(τ) cos

(
kπ

l
(τ − t)

)

dτ. (1.29)

In the following let f ∈ L1(R;C)∩L2(R;C) and define c := ‖f‖
L1(R;C)

. Then

1

2l

∣
∣
∣
∣

∫ l

−l

f(τ) dτ

∣
∣
∣
∣
≤ 1

2l

∫ l

−l

|f(τ)| dτ ≤ c

2l
→ 0 (l → ∞) .

Setting

ωk :=
kπ

l
, 0 ≤ k ≤ ∞ ,

we find that

∆ωk := ωk+1 − ωk =
π

l
→ 0 (l → ∞) .

Therefore,

∞∑

k=1

1

l

∫ l

−l

f(τ) cos

(
kπ

l
(τ − t)

)

dτ =
1

π

∞∑

k=1

∆ωk−1

∫ l

−l

f(τ) cos
(
ωk(τ − t)

)
dτ.
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The term on the right hand side of the last identity is an approximation of
the double integral

1

π

∫ ∞

0

∫ ∞

−∞

f(τ) cos
(
ω(τ − t)

)
dτ dω .

A formal argument, by letting l → ∞ in (1.29) shows that (this argument
can be justified by methods from harmonic analysis) that for every function
f ∈ L1(R;C) ∩ L2(R;C)

f(t) =
1

π

∫ ∞

0

∫ ∞

−∞

f(τ) cos
(
ω(τ − t)

)
dτ dω . (1.30)

This formula is called the Fourier integral representation of f .

Remark 1.41. The Fourier integral representation of f can be rewritten as

f(t) =

∫ ∞

0

(
a(ω) cos(ωt) + b(ω) sin(ωt)

)
dω, (1.31)

with

a(ω) :=
1

π

∫ ∞

−∞

f(τ) cos(ωτ) dτ ,

b(ω) :=
1

π

∫ ∞

−∞

f(τ) sin(ωτ) dτ .

(1.32)

�

Comparing (1.32) and (1.27) reveals the analogy between Fourier series ex-
pansion and Fourier integral representation. The discrete parameter k in
(1.27) and (1.28) is replaced by the continuous parameter ω in (1.31) and
(1.32), respectively.

1.7 Fourier Transform

Let f ∈ L1(R;C) be differentiable (to simplify the considerations). For fixed
t and τ the function

ω → f(τ) cos
(
ω(τ − t)

)

is even. Thus

ω →
∫ ∞

−∞

f(τ) cos
(
ω(τ − t)

)
dτ
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is even too and, consequently, the Fourier integral representation can be
rewritten as

f(t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞

f(τ) cos
(
ω(t− τ)

)
dτ dω. (1.33)

We now turn our attention to analogous integral expressions involving the
sine function. From

∣
∣sin
(
ω(τ − t)

)∣
∣ ≤ 1 it follows that for every f ∈ L1(R;C)

ω →
∫ ∞

−∞

f(τ) sin
(
ω(t− τ)

)
dτ

is well–defined and odd. Thus it follows that

∫ ∞

−∞

∫ ∞

−∞

f(τ) sin
(
ω(t− τ)

)
dτ dω

:= lim
A→∞

∫ A

−A

∫ ∞

−∞

f(τ) sin
(
ω(t− τ)

)
dτ dω = 0. (1.34)

Both identities (1.33) and (1.34) together imply that

f(t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞

f(τ) exp
(
iω(t− τ)

)
dτ dω , (1.35)

where the outer integral has to be understood in the sense of a Cauchy
principal value.

Formally, the right hand side of (1.35) can be decomposed into two op-
erators, which are called Fourier transform and inverse Fourier transform,
respectively.

Definition 1.42. We define the two operators

(Ff)(ω) := 1√
2π

∫ ∞

−∞

f(τ) exp(−iωτ)dτ (1.36)

and

(F−1f̃)(t) :=
1√
2π

∫ ∞

−∞

f̃(ω) exp(iωt)dω , (1.37)

whenever the right hand side exists. Then Ff is called the Fourier transform
of f and F−1f̃ the inverse Fourier transform of f̃ . �
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Remark 1.43. The definition of the operators F and F−1 is far from being
treated in a unified manner in literature. For instance, one finds that the
Fourier transform is associated with the operator F−1 such that F is its
inverse, and, in addition, often different multiplicative factors appear in the
definitions.

Notice that the considerations for the derivation of the definitions above
are up to a certain degree of heuristic character: Indeed, more advanced
methods from Fourier analysis are necessary in order to prove that F is
invertible with inverse F−1 on some function space (e.g. on L2(R;C)). �

1.8 Fourier Sine and Cosine Transform

In this section we introduce two transforms that are closely related to the
Fourier transform.

Definition 1.44. We define the two operators

(Fsf)(ω) :=

√

2

π

∫ ∞

0

f(τ) sin(ωτ) dτ (1.38)

and

(Fcf)(ω) :=

√

2

π

∫ ∞

0

f(τ) cos(ωτ) dτ , (1.39)

whenever the right hand side exists. Then Fsf is called the Fourier sine
transform of f and Fcf the Fourier cosine transform of f . �

Some of the relations between the operators F , Fc, and Fs are listed below:

1. If f is an even function, then

(Ff)(ω) = 1√
2π

∫ ∞

−∞

f(t) exp(−iωt) dt

=
1√
2π

∫ ∞

−∞

f(t) cos(ωt) dt

= (Fcf)(ω) .
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2. If f is an odd function, then

(Ff)(ω) = 1√
2π

∫ ∞

−∞

f(t) exp(−iωt) dt

=
−i√
2π

∫ ∞

−∞

f(t) sin(ωt) dt

= −i(Fsf)(ω) .

3. In general every function f can be decomposed in the sum of its even
part fe and its odd part fo, i.e.,

fe(x) :=
f(x) + f(−x)

2
and fo(x) :=

f(x)− f(−x)
2

.

Consequently, the Fourier transform can be decomposed into the sum
of the Fourier cosine transform of the even part fe and the Fourier sine
transform of the odd part fo:

√
2π (Ff)(ω) =

∫ ∞

−∞

f(τ) exp(−iωτ) dτ =

∫ ∞

−∞

(fe+fo)(τ) exp(−iωτ) dτ

=

(
∫ ∞

−∞

fe(τ) cos(ωτ) dτ − i

∫ ∞

−∞

fe(τ) sin(ωτ) dτ+

∫ ∞

−∞

fo(τ) cos(ωτ) dτ − i

∫ ∞

−∞

fo(τ) sin(ωτ) dτ

)

= 2

(
∫ ∞

0

fe(τ) cos(ωτ) dτ − i

∫ ∞

0

fo(τ) sin(ωτ) dτ

)

Thus, we obtain

Ff = Fcfe − iFsfo .

1.9 Properties of the Fourier Transform

In this section we study some basic properties of the Fourier transform. First,
we show some properties that are independent of the function space where
the Fourier transform is defined on. Second, we study some theorems valid for
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the function space L1(R;C) and conclude the section with the investigation
of the Fourier transform on the function space L2(R;C).

The following lemma can be shown independent of the underlying func-
tion space of the Fourier transform.

Lemma 1.45. For a 6= 0 we define fa(t) := f(at) and f[b](t) := f(t − b),
b ∈ R. Then

(Ffa)(ω) =
1

|a|(Ff)
(ω

a

)

(1.40)

and
(Ff[b])(ω) = exp(−iωb)(Ff)(ω) . (1.41)

Proof. Let a 6= 0 and b ∈ R. Using the definition of the Fourier transform
we obtain

(Ffa)(ω) =
1√
2π

∫ ∞

−∞

f(aτ) exp(−iωτ) dτ

=
1

|a|
1√
2π

∫ ∞

−∞

f(y) exp
(

− i
ω

a
y
)

dy

=
1

|a|(Ff)
(ω

a

)

,

and

(Ff[b])(ω) =
1√
2π

∫ ∞

−∞

f(τ − b) exp(−iωτ) dτ

= exp(−iωb)
1√
2π

∫ ∞

−∞

f(y) exp(−iωy) dτ

= exp(−iωb)(Ff)(ω) .

�

Next, we focus on the function space L1(R;C).

Theorem 1.46. Let f ∈ L1(R;C). Then Ff is continuous and satisfies

lim
|ω|→∞

(Ff)(ω) = 0 .

Proof. Since f ∈ L1(R;C) we see that its Fourier transform exists for all
ω ∈ R as ∣

∣
∣
∣

∫ ∞

−∞

f(τ) exp(−iωτ) dτ

∣
∣
∣
∣
≤
∫ ∞

−∞

|f(τ)| dτ <∞ .
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Let ω1, ω2 ∈ R be arbitrary. From

(Ff)(ω1)− (Ff)(ω2) =
1√
2π

∫ ∞

−∞

f(τ)
(
exp(−iω1τ)− exp(−iω2τ)

)
dτ

we obtain immediately that

|(Ff)(ω1)− (Ff)(ω2)| ≤
‖f‖

L1(R;C)√
2π

max
τ∈R

|exp(−iω1τ)− exp(−iω2τ)| .

Since the complex valued exponential function is 2π-periodic it follows that

max
τ∈R

|exp(−iω1τ)− exp(−iω2τ)| = max
τ∈[−π,π]

|exp(−iω1τ)− exp(−iω2τ)| .

For ω1 → ω2 the function exp(−iω1τ) converges uniformly to exp(−iω2τ)
for τ ∈ [−π, π]. Thus the Fourier transform is continuous and the first part
of the assertion is proven.

For the second part of the proof we first notice that for ω 6= 0 we obtain

(Ff)(ω) =
∫ ∞

−∞

f(τ) exp(−iωτ) dτ = − exp(−iπ)

∫ ∞

−∞

f(τ) exp(−iωτ) dτ

= −
∫ ∞

−∞

f(τ) exp
(
− iω(τ + π/ω)

)
dτ

= −
∫ ∞

−∞

f(τ − π/ω) exp(−iωτ) dτ

and, as a consequence, we see that

2 |(Ff)(ω)| =
∣
∣
∣
∣

∫ ∞

−∞

(
f(τ)− f(τ − π/ω)

)
exp(−iωτ) dτ

∣
∣
∣
∣

≤
∫ ∞

−∞

|f(τ)− f(τ − π/ω)| dτ .

Since f ∈ L1(R;C) we infer from Lebesgue theory that

lim
|ω|→∞

∫ ∞

−∞

|f(τ)− f(τ − π/ω)| dτ = 0 ,

which shows that
lim

|ω|→∞
(Ff)(ω) = 0 . �
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Remark 1.47. Notice that the proof of Theorem 1.46 shows actually that
the Fourier transform of an L1-function is uniformly continuous. Indeed,
using that for τ ∈ [−π, π]

∣
∣
∣
∣

∫ ω1

ω2

−iτ exp(−iωτ) dω

∣
∣
∣
∣
≤ |τ | |ω1 − ω2| ≤ π |ω1 − ω2|

uniform continuity follows immediately. �

Theorem 1.48. Let n ∈ N0. Assume f ∈ L1(R;C) and for 0 ≤ k ≤ n

gk(t) := tkf(t) ∈ L1(R;C) .

Then (Ff)(ω) is n-times differentiable and for 0 ≤ k ≤ n the k-th derivative
of the Fourier transform of f equals

(Ff)(k)(ω) = (−i)k√
2π

∫ ∞

−∞

f(τ)τ k exp(−iωτ) dτ = (−i)k(Fgk)(ω) .

Moreover, for 0 ≤ k ≤ n we have

lim
|ω|→∞

(Ff)(k)(ω) = 0 .

Proof. First we define F (ω, t) := f(t) exp(−iωt) and notice that F (·, t) is
differentiable for almost every t ∈ R. Thus, for 0 ≤ k ≤ n and almost every
t ∈ R

∣
∣
∣
∣

∂F (k)

∂ωk
(ω, t)

∣
∣
∣
∣
=
∣
∣f(t) exp(−iωt)(−it)k

∣
∣ = |t|k |f(t)| =: gk(t) .

By assumption gk, 0 ≤ k ≤ n is integrable. Thus, we have shown that for
every 0 ≤ k ≤ n the k-th derivative of F with respect to ω is uniformly
dominated by the function gk, i.e., for 0 ≤ k ≤ n

∀ω ∈ R :

∣
∣
∣
∣

∂F (k)

∂ωk
(ω, t)

∣
∣
∣
∣
≤ gk(t) for almost every t ∈ R .

As a consequence, integration and differentiation in

(Ff)(k) = dk

dωk
(Ff)(ω) = 1√

2π

dk

dωk

∫ ∞

−∞

f(τ) exp(−iωτ) dτ

can be interchanged, which proves the assertion immediately. The second
assertion follows from Theorem 1.46 using the fact that tkf(t) ∈ L1(R;C).�
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The above theorems are based on the assumption f ∈ L1(R;C). In the
following we study some results in the case of f ∈ L2(R;C).

Theorem 1.49 (Plancherel). Let f ∈ L2(R;C). Then the Fourier trans-
form of f as defined in (1.36) exists. In addition, the inverse Fourier trans-
form (cf. Definition 1.42) exists for all functions f ∈ L2(R;C) too and

1√
2π

∫ ∞

−∞

(Ff)(ω) exp(iωt) dω = f(t) ,

that is, (F−1Ff)(t) = f(t). Moreover,

‖Ff‖
L2(R;C)

= ‖f‖
L2(R;C)

(1.42)

which is called the isometric property of the Fourier transform on L2(R;C).

Proof. The proof of this theorem can be found in [3]. �

Theorem 1.50 (Convolution). Let k ∈ L1(R;C) and f ∈ L2(R;C). The
convolution of k with f is defined as

(k ∗ f)(t) :=
∫ ∞

−∞

k(t− τ) f(τ) dτ .

and satisfies k ∗ f ∈ L2(R;C) with

‖k ∗ f‖
L2(R;C)

≤ ‖k‖
L1(R;C)

‖f‖
L2(R;C)

.

Moreover,
(
F(k ∗ f)

)
(ω) =

√
2π(Fk)(ω)(Ff)(ω) .

Proof. We have

(
F(k ∗ f)

)
(ω) =

(

F
(∫ ∞

−∞

k(t− τ)f(τ) dτ

))

(ω)

=
1√
2π

∫ ∞

−∞

∫ ∞

−∞

k(t− τ)f(τ) dτ exp(−iωt) dt

=
1√
2π

∫ ∞

−∞

∫ ∞

−∞

k(y) exp(−iωy)f(τ) exp(−iωτ) dτ dy

=
1√
2π

∫ ∞

−∞

k(y) exp(−iωy) dy

∫ ∞

−∞

f(τ) exp(−iωτ) dτ

=
√
2π(Fk)(ω)(Ff)(ω) .
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Since

|(Fk)(ω)| ≤ 1√
2π

∫ ∞

−∞

|k(t) exp(−iωt)| dt ≤ 1√
2π

‖k‖
L1(R;C)

it follows from the isometry property of the Fourier-Transform on L2(R;C)
(see (1.42) that

‖k ∗ f‖
L2(R;C)

= ‖F(k ∗ f)‖
L2(R;C)

=
√
2π‖(Fk)(Ff)‖

L2(R;C)

≤
√
2π‖Fk‖

L∞(R;C)
‖Ff‖

L2(R;C)

≤ ‖k‖
L1(R;C)

‖f‖
L2(R;C)

.

Notice that we also used that Fk is continuous with (Fk)(ω) → 0 as |ω| → ∞
(see Theorem 1.46) and, as a consequence, ‖Fk‖

L∞(R;C)
exists. �



Chapter 2

Sampling and Aliasing

In this chapter we focus on a well known theorem in the area of signal process-
ing: the Shannon sampling theorem. It states that under certain conditions
it is possible to reconstruct a band limited function from discrete sampling
points. To that end, we first introduce the family of functions of interest.

Definition 2.1. A function f ∈ L2(R;C) is called b–band limited , b > 0, if
for ω /∈ [−b, b]

(Ff)(ω) = 0 . �

Theorem 2.2 (Shannon Sampling Theorem). Let f ∈ L2(R;C) be b–
band limited, b > 0. For h ≤ π

b
the function f is uniquely determined from

the samples f(hk), k ∈ Z. More precisely,

f(t) =
∑

k∈Z

f(hk) sinc
(π

h
(hk − t)

)

in L2(R;C) . (2.1)

In addition, the Fourier transform of f is given by

(Ff)(ω) = h√
2π

∑

k∈Z

f(hk) exp(−iωhk) . (2.2)

If g is b–band limited too, then

∫ ∞

−∞

f(ν)ḡ(ν) dν = h
∑

k∈Z

f(hk)ḡ(hk) . (2.3)

43
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Proof. The family of functions
{

uk(ω) =
1√
2a

exp

(

iπω
k

a

)

: k ∈ Z

}

is a complete orthonormal system in L2((−a, a);C). That is, any function
ρ ∈ L2((−a, a);C) can be expanded into a Fourier series with respect to the
system {uk : k ∈ Z}:

ρ =
∑

k∈Z

ρkuk ,

with

ρk =

∫ a

−a

ρ(ν)ūk(ν) dν =
1√
2a

∫ a

−a

ρ(ν) exp

(

− iπν
k

a

)

dν .

For ρ vanishing outside (−a, a) we have

ρk =

√
π√
a

1√
2π

∫ ∞

−∞

ρ(ν) exp

(

− iπν
k

a

)

dν =

√
π

a
(F−1ρ)

(

− πk

a

)

.

This shows that

ρ(ω) =
π

a

1√
2π

∑

k∈Z

(F−1ρ)

(

− πk

a

)

exp

(

iπω
k

a

)

.

Since f is assumed to be b–band limited and h ≤ π/b we can identify ρ with
Ff and a = π

h
in the calculations above and obtain

(Ff)(ω) = h√
2π

∑

k∈Z

f(−hk) exp(iωhk) = h√
2π

∑

k∈Z

f(hk) exp(−iωhk) ,

which proves assertion (2.2).
Since f is b–band limited it follows from (2.2)

f(t) =

(

F−1
(

(Ff)χ(−π
h
,π
h)

))

(t) =
1√
2π

∫ ∞

−∞

(Ff)χ(−π
h
,π
h)
(ω) exp(iωt) dω

=
1√
2π

∫ ∞

−∞

h√
2π

∑

k∈Z

f(hk) exp(−iωhk)χ(−π
h
,π
h)
(ω) exp(iωt) dω

=
h

2π

∑

k∈Z

f(hk)

∫ ∞

−∞

exp
(
iω(t− hk)

)
χ(−π

h
,π
h)
(ω) dω

=
h

2π

∑

k∈Z

f(hk)

∫ π/h

−π/h

exp
(
iω(t− hk)

)
dω
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=
h

2π

∑

k∈Z

f(hk)
2i sin

(
(hk − t)π/h

)

i(hk − t)

=
∑

k∈Z

f(hk) sinc
(

(hk − t)
π

h

)

,

which proves assertion (2.1).
In order to prove (2.3) we use

∫ ∞

−∞

f(t)(Fg)(t) dt = 1√
2π

∫ ∞

−∞

f(t)

∫ ∞

−∞

g(ω) exp(−iωt) dω dt

=
1√
2π

∫ ∞

−∞

g(ω)

∫ ∞

−∞

f(t) exp(−iωt) dt dω

=

∫ ∞

−∞

g(ω)(Ff)(ω) dω

and

(Fg)(ω) = 1√
2π

∫ ∞

−∞

ḡ(t) exp(iωt) dt = (F−1ḡ)(ω) .

This shows
∫ ∞

−∞

(Ff)(ω)(Fg)(ω) dω =

∫ ∞

−∞

(Ff)(ω)(F−1ḡ)(ω) dω

=

∫ ∞

−∞

f(t)
(
F(F−1ḡ)

)
(t) dt

=

∫ ∞

−∞

f(t)ḡ(t) dt .

By (2.2) we have

(Ff)(ω) =
√
h
∑

k∈Z

f(hk)
exp(−iωhk)√

2π

√
h ,

(Fg)(ω) =
√
h
∑

k∈Z

g(hk)
exp(−iωhk)√

2π

√
h ,

and as the family of functions

{
exp(ihkω)√

2π

√
h : k ∈ Z

}
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is a complete orthonormal system on L2
((
− π

h
, π
h

)
;C
)
, we obtain

∫ ∞

−∞

f(t)ḡ(t) dt =

∫ ∞

−∞

(Ff)(ω)(Fg)(ω) dω = h
∑

k∈Z

f(hk)ḡ(hk) . �

Remark 2.3 (Nyquist condition). The condition h ≤ π
b
is called Nyquist

condition. It guarantees that a function f can be uniquely recovered from
the discrete samples hk, k ∈ Z, if the sampling rate h is less or equal to π

b
,

when b denotes the highest occuring frequency in the signal.

The Shannon Sampling Theorem 2.2 was established in 1948. Still nowa-
days it provides the basis of many applications, such as compact disc players.
It is commonly accepted that the highest frequency recognized by human be-
ings is about 20000Hz. Thus, according to the Shannon Sampling Theorem
a sampling rate of 40000Hz is required. Compact disc players use a sampling
rate of 44.100Hz, where the additional oversampling is used for error correc-
tion. One has to acknowledge that there is a different meaning of frequency
for time signals and when we identify Fourier coefficients with frequency
components. The n-th frequency component refers to the parts of the signal
that have n-oscillations on the interval (−π, π). That is it actually shows
the angular frequency. A frequency of the time series of 20000Hz means an
angular frequency of b = 20000∗2π, which can be considered the band width
of the music signal. The bandwidth b requires then a sampling frequency
h ≤ π/b = 1/40000Hz. �

Remark 2.4 (Aliasing). Aliasing occurs if an analog signal is reconstruct-
ed from rarely sampled data, i.e., if h > π

b
. To illustrate aliasing we consider

a ”wild–west” movie. A spinning wheel is recognized by human beings as
moving forward if the rotation is relatively slow. If the rotational speed is
increasing, then it is recognized to rotate ”backwards”. The camouflage is
due to the fact that humans perceive (analog) sample pictures which are
connected to the movie.
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Figure 2.1: A slowly rotating wheel: actual and perceived sequences are
corresponding.
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Figure 2.2: A fast rotating wheel: actual and perceived sequences are not
corresponding.

Figures 2.1 and 2.2 show samples of a wheel rotating clockwise. The
human perception system continuously connects corresponding sectors with
minimal distance. Thus, in the case of a slow rotation the perceived rotation
corresponds with the actual rotation (cf. Figure 2.1). If the rotational speed
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increases the rotation is recognized by humans to be in counter–clockwise
direction (cf. Figure 2.2). �



Chapter 3

Wavelets

In this chapter we introduce another transform widely used in image process-
ing: the wavelet transform. We first present the basic idea behind wavelets
by their motivation through local Fourier analysis. Finally we focus on the
construction of compactly supported, orthonormal wavelet bases.

3.1 Windowed Fourier Transform

Definition 3.1. For a given function g the windowed Fourier transform of
f is defined by

φ(ω, s) :=

∫ ∞

−∞

f(t)g(t− s) exp(−iωt) dt = 〈f, g(ω,s)〉L2(R;C) , (3.1)

with
g(ω,s)(t) := g(t− s) exp(iωt) , (3.2)

whenever the integral exists. The function g is called the window function.�

The function g(ω,s) depends on two arguments, the position in time (s) and
the frequency (ω). The windowed Fourier transform φ(ω, s) describes the
local behavior of the function f at location s and for frequency ω.

Lemma 3.2. The operator

T : L2(R;C) → L2(R2;C)

f 7→ φ(ω, s) = 〈f, g(ω,s)〉L2(R;C)

(3.3)

49
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Figure 3.1: Example of a window function: g(t) = π−1/4 exp(−t2/2).

is linear and, in addition, its operator norm is given by

‖T‖ =
√
2π‖g‖

L2(R;C)
.

Proof. Using the notation h(s) := ḡ(−s) and jω(s) := f(s) exp(−iωs), for
each ω ∈ R it follows that

∫ ∞

−∞

∫ ∞

−∞

|φ(ω, s)|2 dω ds =
∫ ∞

−∞

∫ ∞

−∞

∣
∣
∣
∣

∫ ∞

−∞

f(t)ḡ(t− s) exp(−iωt) dt

∣
∣
∣
∣

2

dω ds

=

∫ ∞

−∞

∫ ∞

−∞

∣
∣
∣
∣

∫ ∞

−∞

f(t)h(s− t) exp(−iωt) dt

∣
∣
∣
∣

2

dω ds

=

∫ ∞

−∞

∫ ∞

−∞

|(h ∗ jω)(s)|2 dω ds

=

∫ ∞

−∞

∫ ∞

−∞

∣
∣F−1F(h ∗ jω)(s)

∣
∣
2
dω ds .

(3.4)
Using the isometry property of the Fourier transform (cf. Theorem 1.49)

‖Fψ‖
L2(R;C)

= ‖ψ‖
L2(R;C)

=
∥
∥F−1ψ

∥
∥
L2(R;C)

,
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we obtain for (3.4)

∫ ∞

−∞

∫ ∞

−∞

|φ(ω, s)|2 dω ds =
∫ ∞

−∞

∫ ∞

−∞

∣
∣F−1F(h ∗ jω)(s)

∣
∣
2
dω ds

=

∫ ∞

−∞

∫ ∞

−∞

|F(h ∗ jω)(ω̂)|2 dω̂ dω

= 2π

∫ ∞

−∞

∫ ∞

−∞

|Fh(ω̂)Fjω(ω̂)|2 dω̂ dω .

(3.5)

Now we calculate Fjω and Fh. From the definition of the Fourier transform
it follows that

Fjω(ω̂) =
1√
2π

∫ ∞

−∞

f(t) exp
(
− i(ω + ω̂)t

)
dt = Ff(ω + ω̂) ,

and

|Fh(ω̂)|2 = 1

2π

∣
∣
∣
∣

∫ ∞

−∞

ḡ(−t) exp(−iω̂t) dt

∣
∣
∣
∣

2

=
1

2π

∣
∣
∣
∣

∫ ∞

−∞

ḡ(t) exp(iω̂t) dt

∣
∣
∣
∣

2

=
1

2π

∣
∣
∣
∣

∫ ∞

−∞

g(t) exp(−iω̂t) dt

∣
∣
∣
∣

2

= |Fg(ω̂)|2 .
Using these two identities we can further transform (3.5) and obtain

2π

∫ ∞

−∞

∫ ∞

−∞

|Fh(ω̂)Fjω(ω̂)|2 dω dω̂

= 2π

∫ ∞

−∞

∫ ∞

−∞

|Fg(ω̂)|2 |Ff(ω + ω̂)|2 dω dω̂

= 2π

∫ ∞

−∞

|Fg(ω̂)|2
∫ ∞

−∞

|Ff(ω + ω̂)|2 dω dω̂

= 2π

∫ ∞

−∞

|Fg(ω̂)|2 dω̂
∫ ∞

−∞

|Ff(ω)|2 dω

= 2π‖g‖2
L2(R;C)

‖f‖2
L2(R;C)

.

This shows the assertion. �
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In application the signal is analyzed with the windowed Fourier transform
by discretizing the phase space with the points

(mω0 , ns0)(m,n)∈Z2 .

As a consequence, the window function in a discrete point (m,n) is defined
by

gm,n(t) := g(mω0,ns0)(t) = g(t− ns0) exp(imω0t) , (3.6)

which motivates the following definition:

Definition 3.3. The discrete windowed Fourier transform is defined as the
mapping

T d : L2(R;C) → l2(Z2).
f 7→ cm,n[f ] := 〈f, gm,n〉L2(R;C) = φ(mω0, ns0) .

The terms cm,n[f ] are called the windowed Fourier coefficients of f . �

Notice, in comparison to T the operator T d maps a function f into the space
of square summable vectors.

To reconstruct f from the windowed Fourier coefficients {cm,n[f ]} we have
to know that T d is injective. In addition, for the stable inversion we have to
know that the inverse of T d is bounded.

In many applications it is more efficient to rely on a logarithmic scale of
the frequency: In music a change by one octave corresponds to a variation
of the frequency by a factor 2. In the sequel we investigate a logarithmic
frequency discretization with an appropriate constant k0:

ωm =
k0
2m

.

From sampling theory, that is from the Shannon Sampling Theorem (see
Theorem 2.2), it follows that for the reconstruction of a b–band limited sig-
nal, that is a signal with angular frequency range [−b, b], a sampling rate
according to the Nyquist–condition

∆t ≤ π

b

is required. More precisely, a b–band limited signal can be uniquely recovered
from the samples of the signal at time k∆t, k ∈ Z. This result implies that a
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finer grid is only required for the sampling of the high frequency components
of the signal. Thus we use a frequency dependent sampling of the time
domain with sampling distance

∆t = C
π

ω
where C < 1 .

Both ideas together, the use of a logarithmic scale and taking into account
the Nyquist–condition for the different frequency components of the signal,
suggest the use of the following (time–frequency adapted) grid:

ωm =
k0
2m
, tm,n = n

Cπ2m

k0
=
Cπn

ωm

.

For the realization of such a sampling with a windowed Fourier like transform
one requires a window function with a variable time domain. Note that gm,n,
as in (3.6) is defined via a product of two functions, each depending only
on m and on n, respectively. In particular, m and n are independent and,
therefore can not be used in a time-frequency adapted framework.

3.2 Wavelet Transform

The basic idea of the wavelet transform consists in using instead of the win-
dow function g and the family g(ω,s), as in the windowed Fourier transform,
an analyzing wavelet ψ and its associated family of functions ψ(a,b), defined
for a 6= 0 and arbitrary b ∈ R, by

ψ(a,b)(t) := |a|−
1

2 ψ

(
t− b

a

)

, t ∈ R . (3.7)

The parameters (a, b) can be again considered as elements of a phase space.
However, in the window functions ψ

(
t−b
a

)
the parameters a and b are related.

The factor |a|−
1

2 is introduced to guarantee that the energy is independent
of a and b, i.e., ∫ ∞

−∞

∣
∣ψ(a,b)(t)

∣
∣
2
dt =

∫ ∞

−∞

|ψ(t)|2 dt .

For fixed b the support of ψ(a,b) is monotonically increasing in a. In other
words, the smaller a is, the smaller details of the function to be investigated
with wavelets can be observed.
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In analogy to the discrete windowed Fourier transform we introduce the
discrete wavelet transform:

Definition 3.4. Let a0, b0 ∈ R with a0 6= 0. For j, n ∈ Z we define the
discrete family of wavelet functions by

ψj,n(t) = ψ(aj
0
,nb0a

j
0
)(t) = a

− j

2

0 ψ(a−j
0 t− nb0) . (3.8)

Note that this corresponds to setting a := aj0 and b := nb0a
j
0 in (3.7). The

discrete wavelet coefficients are defined as

cwj,n[f ] := 〈f, ψj,n〉L2(R;C) = a
− j

2

0

∫ ∞

−∞

ψ̄(a−j
0 t− nb0)f(t) dt . �

In the following we investigate under which conditions it is possible to unique-
ly reconstruct f from the discrete wavelet coefficients {cwj,n[f ]}. In other
words, we study, under which condition it is possible to invert the operator

Tw : L2(R;C) → l2(Z2)

f 7→ (cwj,n[f ])(j,n)∈Z2 .
(3.9)

From algebra we know that if the wavelet family {ψj,n} is an orthonormal
basis of L2(R;C) the operator Tw is invertible and

f =
∑

(j,n)∈Z2

cwj,n[f ]ψj,n = (Tw)−1(cwj,n[f ]) .

The existence of a complete, compactly supported, orthonormal wavelet fam-
ily has been an open problem for a long time. We will discuss the construction
below.

The existence of an orthonormal wavelet family is sufficient but not nec-
essary for the invertibility of the operator Tw. Bounded invertibility is also
guaranteed if there exist positive numbers 0 < A ≤ B <∞ such that

A‖f‖2
L2(R;C)

≤
∑

(j,n)∈Z2

∣
∣cwj,n[f ]

∣
∣
2 ≤ B‖f‖2

L2(R;C)
. (3.10)

Definition 3.5. A family {ψj,n : j, n ∈ Z} satisfying (3.10) is called a frame.
Each frame has a dual frame {ψ̃j,n : j, n ∈ Z} satisfying

f =
∑

(j,n)∈Z2

cwj,n[f ]ψ̃j,n . (3.11)

�
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3.3 Orthonormal Wavelets on R

The construction of compactly supported, orthonormal wavelet bases for
L2(R;C) dates back to Daubechies [1, 2].

The construction of wavelets is related to the construction of a scaling
function φ such that for fixed m ∈ Z the functions

φm,k(x) := 2−m/2φ(2−mx− k) , k ∈ Z ,

are orthonormal with respect to L2(R;C).1 Moreover, for m ∈ Z the spaces

Vm := span {φm,k : k ∈ Z}

constitute a multiresolution analysis for L2(R;C), that is

Vm ⊂ Vm−1 , m ∈ Z ,

and
⋂

m∈Z

Vm = {0} and
⋃

m∈Z

Vm = L2(R;C) .

The wavelet spaces Wm are the orthogonal complements of Vm in Vm−1, that
is

Wm := V ⊥
m ∩ Vm−1 .

One defines the wavelet ψ such that the functions

ψm,k(x) := 2−m/2ψ(2−mx− k) , k ∈ Z ,

are an orthonormal basis of Wm. Since both Vm and Wm are contained in
Vm−1 the scaling function φ must satisfy the dilation equation

φ(x) =
∑

k∈Z

hkφ(2x− k) , (3.12)

where the sequence {hk} is known as the filter sequence and satisfies con-
straints stated below. Correspondingly, the wavelet ψ satisfies

ψ(x) =
∑

k∈Z

gkφ(2x− k) , (3.13)

1We only consider scaling factors and wavelets with a scaling factor a = 2 and dilation
b = 1, as they are most widely used. Nevertheless other choices are possible.
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where the canonical setting

gk = (−1)kh1−k

guarantees that the functions {ψm,k : k ∈ Z} are an orthonormal basis.
We emphasize that the support of φm,k and ψm,k is double as large as

the support of φm−1,k and ψm−1,k. Thus, high frequency components (small
details) are captured by functions φm,k and ψm,k with small integers.

Daubechies [1] established conditions on the filter sequence {hk} in order
to ensure

1. the dilation equation (3.12) has a solution φ ∈ L2(R;C),

2. with supp(φ) = [−N + 1, N ] for a given integer N ,

3. and that for fixed m the functions φm,k are orthogonal,

4. with the property that polynomials up to degree N − 1 can be repre-
sented as linear combinations of φm,k.

In the following we derive the necessary conditions for {hk} from these pos-
tulates.

Lemma 3.6. Compact support of φ in [−N + 1, N ] is ensured by

hk = 0 , for k < 1−N or k > N . (3.14)

Proof. Notice that if φ(x) has support in [−N+1, N ] the function φ(2x−k)
has support in

[
1−N+k

2
, N+k

2

]
, and vice versa. The dilation equation therefore

requires that hk = 0 if and only if k does not satisfy

[
1−N + k

2
,
N + k

2

]

⊆ [−N + 1, N ] .

Thus hk = 0 for k < −N + 1 or k > N . �

Lemma 3.7. A necessary condition for the existence of a solution of the
dilation equation (see (3.12)) is

N∑

k=1−N

hk = 2 . (3.15)
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Proof. Integrating (3.12) it follows that

∫ ∞

−∞

φ(x) dx =
∑

k∈Z

hk

∫ ∞

−∞

φ(2x− k) dx =
1

2

∑

k∈Z

hk

∫ ∞

−∞

φ(x) dx ,

which implies the assertion. �

Lemma 3.8. Orthonormality of the translates of φ, that is

∫ ∞

−∞

φ(x)φ(x− l) dx = δ0,l ,

implies2 that for l = 0, . . . , N − 1

N∑

k=1−N

hkhk−2l = 2δ0,l . (3.16)

Proof. This follows again from the dilation equation (3.12) and substitution.
If φ and the dilates are orthonormal, then

δ0,l =

∫ ∞

−∞

φ(x)φ(x− l) dx =
∑

k,j∈Z

hkhj

∫ ∞

−∞

φ(2x− k)φ
(
2(x− l)− j

)
dx

=
1

2

∑

k,j∈Z

hkhj

∫ ∞

−∞

φ(x)φ(x+ k − 2l − j) dx

=
1

2

∑

k∈Z

hkhk−2l ,

which proves the assertion. �

Lemma 3.9. If polynomials up to degree N − 1 are exactly representable in
V0, then for l = 0, . . . , N − 1

N∑

k=1−N

(−1)kh1−kk
l = 0 . (3.17)

2Of course it is sufficient to consider this only for the zero-th scale.
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Proof. The wavelet space W0 is orthonormal to the space V0. Since V0
contains all polynomials up to degree N − 1 and ψ ∈ W0, it follows that for
l = 0, . . . , N − 1

∫ ∞

−∞

xlψ(x) dx = 0 .

Thus, for l = 0, . . . , N − 1 we have

0 =

∫ ∞

−∞

xlψ(x) dx =
N∑

k=1−N

(−1)kh1−k

∫ ∞

−∞

xlφ(2x− k) dx

=
1

2

N∑

k=1−N

(−1)kh1−k

∫ ∞

−∞

(
y + k

2

)l

φ(y) dy

=
1

2

N∑

k=1−N

(−1)kh1−k

(
l∑

n=0

(
l
n

)

kl−n

∫ ∞

−∞

ynφ(y) dy

)

.

In particular for l = 0 we obtain

0 =

∫ ∞

−∞

ψ(x) dx =
1

2

N∑

k=1−N

(−1)kh1−k

∫ ∞

−∞

φ(y) dy

and thus

0 =
N∑

k=1−N

(−1)kh1−k .

For l = 1 we have

0 =

∫ ∞

−∞

xψ(x) dx

=
1

2

N∑

k=1−N

(−1)kh1−kk

∫ ∞

−∞

φ(y) dy +
1

2

∫ ∞

−∞

yφ(y)dy
N∑

k=1−N

(−1)kh1−k

︸ ︷︷ ︸

=0 because of l=0

.

Thus,

0 =
N∑

k=1−N

(−1)kkh1−k .

Now, by induction with respect to l the assertion can be proven. �
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Example 3.10. In case of N = 1 the solution is trivial: the Haar wavelet
defined by h0 = h1 = 1 is the only possible solution. For N = 2 one is
interested in all common roots of the five polynomials

−2 + x1 + x2 + x3 + x4 ,

−2 + x21 + x22 + x23 + x24 ,

x1x3 + x2x4 ,

x1 − x2 + x3 − x4 ,

2x1 − x2 + x4 ,

(3.18)

in the four variables

x1 = h−1, x2 = h0, x3 = h1, and x4 = h2 .

There exists two solutions for the filter coefficients:

(x1, x2, x3, x4) =

(

1 +
√
3

4
,
3 +

√
3

4
,
3−

√
3

4
,
1−

√
3

4

)

,

and

(x1, x2, x3, x4) =

(

1−
√
3

4
,
3−

√
3

4
,
3 +

√
3

4
,
1 +

√
3

4

)

. �

In general it is not possible to provide a closed form of the scaling func-
tion. Instead the function values have to be determined recursively. For this
purpose we recall the dilation equation:

φ(x) = h1−Nφ(2x+N − 1) + h2−Nφ(2x+N − 2) + . . .+ hNφ(2x−N) .

We insert only integer numbers j = −N +1, . . . , N in this equation and find

φ(1−N) = h1−Nφ(1−N) ,
φ(2−N) = h3−Nφ(1−N) + h2−Nφ(2−N) + h1−Nφ(3−N) ,

...
φ(N − 1) = hNφ(N − 2) + hN−1φ(N − 1) + hN−2φ(N) ,

φ(N) = hNφ(N) .
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In matrix form this system of equation reads as follows:














h1−N 0 0 . . . 0 0 0
h3−N h2−N h1−N . . . 0 0 0

...
...

... . . .
...

...
...

...
...

... . . .
...

...
...

0 0 0 . . . hN−2 hN−3 hN−4

0 0 0 . . . hN hN−1 hN−2

0 0 0 . . . 0 0 hN














︸ ︷︷ ︸

M














φ(1−N)
φ(2−N)

...

...
φ(N − 2)
φ(N − 1)
φ(N)














︸ ︷︷ ︸

Φ

=














φ(1−N)
φ(2−N)

...

...
φ(N − 2)
φ(N − 1)
φ(N)














.

This shows that the vector Φ containing the values of the scaling function
at integer values is an eigenvector according to the eigenvalue λ = 1 of the
matrix M. The solution of the eigenvalue problem

(M− I)Φ = 0 ,

is unique, up to a change of sign, under the normalization condition

∫ ∞

−∞

φ(x) dx = 1 .

As a consequence of the dilation equation followed by a substitution the
normalization condition of φ implies that

1 =

∫ ∞

−∞

φ(x) dx =
1

2

∑

k∈Z

hk

∫ ∞

−∞

φ(y) dy =
∑

k∈Z

φ(k) .

Once Φ has been determined, the function values of φ at the dyadic points
{i/2n : i, n ∈ Z} can be determined recursively from the dilation equation:

φ
(x

2

)

=
∞∑

k=−∞

hkφ(x− k) .



Chapter 4

Principles of Lossy Data
Compression

A lossy data compression algorithm consists of three successive steps (cf. Fig-
ure 4.1):

1. transform to represent the data in a compact form,

2. quantization to eliminate non essential information, and

3. entropy coding for efficiently storing quantized data.

Compression algorithms based on the DCT calculate the Fourier cosine co-
efficients. The first half of the coefficients contain the essential information.
The coefficients of the second half are quantized. The first half of coefficients
can be decomposed again with the DCT and the latter coefficients can be
quantized again. This steps can be performed iteratively. Finally all collected
coefficients are entropy encoded, for instance with a Huffman coder.

Transform: The most widely used transforms for data compression are
wavelet transform and the DCT.

Image Data

Transform Quantizer Coder

Compressed Data

Figure 4.1: Schematic representation of the wavelet compression algorithm.
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1. The DCT is the base of the JPEG compression standard. JPEG divides
the image into distinct 8×8 or 16×16 blocks. The DCT is performed for
each block. The coefficients in each block are quantized. The quantized
data are encoded before transmission.

The principle of lossy data compression is that the low frequency com-
ponents contain the essential information which has to be stored accu-
rately. The high frequency components can be stored with low accura-
cy.

In Figure 4.2 we have highlighted the principle of the JPEG algorithm.
It is readily seen that many of the DCT coefficients can be set to zero
without severely affecting the reconstruction. Setting many coefficients
to zero implies high compression ratios. At high compression ratios the
JPEG algorithm produces block artefacts.

2. The wavelet transform is the base of JPEG2000 .

4.1 Data Analysis with Wavelets

Given a function f ∈ L2(R;C) we define its projections Pm, Qm onto the
wavelet and scaling function subspaces Wm and Vm. From the orthogonality
of Vm and Wm it follows that

Pmf = Pm+1f +Qm+1f . (4.1)

Thus Pm+1f can be interpreted as the low frequency components of Pmf and
Qm+1f are the high frequency components. Pm+1f is the projection on Vm+1,
that is the space defined by the scaling function of scale m, and this pro-
jection is interpreted as low-pass filtering. The high frequency components
are described by wavelets. Thus this is high-pass filtering. Compression of
a wavelet by a factor two in the space coordinate means a scaling in fre-
quency by a factor 1/2. If ψ represents a frequency range [0.5, 1.0]Hz, then
ψ(2x) represents a frequency range [1.0, 2.0]Hz. Having available a wavelet
with good frequency and time/space localization properties, it can be used
to recognize certain features in a signal/image.

In data compression wavelets are used to store the wavelet coefficients
instead of an image itself. We describe the approach for a two-dimensional
image. An image can be considered a discrete sampling of a function of
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JPEG−Compression on 8 x 8 Blocks

20 40 60 80100

50

100

150

JPEG−Decompression, 10 Coefficients

20 40 60 80100

50

100

150

JPEG−Decompression, 3 Coefficients

20 40 60 80100

50

100

150

JPEG−Decompression, 1 Coefficients

20 40 60 80100

50

100

150

Figure 4.2: In the JPEG algorithm 8× 8 blocks are DCT transformed. The
top left image shows the DCT transformed data. In the top right image only
10 coefficients in each 8×8 block are left unaltered, all others are set to zero.
In the bottom left and right image only 3 and 1 coefficients are not set to
zero, respectively.
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two variables. We think of a function f defined on the interval [0, 1]× [0, 1]
(the image), which is periodically continued. Actually typically a discrete
image is assumed, which we denote by (fk,l) and where we identify the values
of a function f . To be precise, we assume that fk,l = f(2−mk, 2−ml) for
k, l = 1, . . . , 2m. That is, we assume an image size of 2m × 2m pixels.

We recall that a two-dimensional wavelet decomposition of f is a tensor
product1:

f(x, y) =
∑

j∈Z

∑

k∈Z

∑

l∈Z

ηj,k,lψj,k(x)ψj,l(y) . (4.2)

In compression, the first step is to consider (fk,l) exactly representable by
a smallest scale m, typically this is determined by the pixel size:

f(x, y) ∼ Pmf(x, y) =
∑

k∈Z

∑

l∈Z

γm,k,lφm,k(x)φm,l(y) . (4.3)

In applications the scaling function composition does not have to be calcu-
lated explicitly, since the scaling function approximates the δ–function, and
thus it is justified to identify the image with the scaling function coefficients:
That is, on the finest scale we have

γm,k,l ∼ fk,l = f(2−mk, 2−ml) . (4.4)

4.2 Mallat Algorithm

The Mallat algorithm is used to calculate Pm+1f + Qm+1f from Pmf (cf.
(4.1)). For the sake of simplicity of presentation, we outline the algorithm
only for the one-dimensional case. In two dimension it is similar, since we
work with a tensor ansatz, but technically much more involved. Moreover,
we present the algorithm just for the scale m = 0. For all other indices it is
analog by a simple renumbering. We use on m = 0 the identity (4.4), which
in the one-dimension case are

γ0k := γ0,k ∼ fk .

1We use here representations via wavelets and there are no scaling function components.
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Then, we use the dilation equation (3.12) identity (note γ1 := (γ1k)k∈Z) are
the coefficients at a larger scale)

∑

k∈Z

γ1kφ1,k(x) =
1√
2

∑

k∈Z

γ1kφ

(
1

2
x− k

)

=
1√
2

∑

k∈Z

γ1k
∑

l∈Z

hlφ

(

2

(
1

2
x− k

)

− l

)

=
1√
2

∑

k∈Z

γ1k
∑

l∈Z

hlφ0,2k+l(x)

=
1√
2

∑

k∈Z

γ1k
∑

η∈Z

hη−2kφ0,η(x)

=
∑

η∈Z

(

1√
2

∑

k∈Z

γ1khη−2k

)

︸ ︷︷ ︸

=γ0
η

φ0,η(x) .

In matrix form this reads as:

γ0 = Hγ1 ,

where

H =
1√
2







. . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 h1−N h3−N h5−N . . . 0
0 . . . 0 h2−N h4−N h6−N . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .






.

Sometimes it is also written as a convolution with extended vectors:

γ0 = Hγ1e =: H(. . . , γ11 , 0, γ
1
2 , 0, . . . )

T ,

where

He =
1√
2







. . . . . . . . . . . . . . . . . . . . .
0 . . . 0 h1−N h2−N h3−N 0
0 . . . h1−N h2−N h3−N 0 . . .
. . . . . . . . . . . . . . . . . . . . .






.

In other words
γ0 = h ∗ γ1e .
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The matrix is periodically extended in the same way as the image is.
In practical application it has to be truncated and then at the boundaries,
depending on the form of extension of the image, other lines occur. Note also
the special structure of the matrix: Each line corresponds to a convolution,
however, the convolution corresponds to shifts of two entries. Taking into
account that the wavelet coefficient are just the scaling functions coefficients
in reverse order, modulo a sign, the calculation of the wavelet coefficients is
identical.

The fast implementation of the Mallat algorithm is similar to FFT meth-
ods, and thus require such Pixel size numbers 2m of the original matrix.
However, such a matrix can always be obtained by zero padding. The fast
implementation of matrix multiplications Hγ1 is by the Mallat algorithm.



Chapter 5

Morphological Image
Processing

In this lecture we concentrate on some basic morphological image processing.
We consider images as two dimensional signals, and therefore products of
Fourier, wavelets methods, respectively, can be used for the image analysis.
However these methods have preferred axial directions. The following kind of
techniques overcome this drawback. More sophisticated filtering techniques,
such as partial differential equations, cannot be considered for time reasons.
The standard reference to Morphological Image Processing is [5].

5.1 What is mathematical morphology?

Morphology is concerned with theory and analysis of image objects. Thereby
properties of objects such as form, intensity, texture are analyzed. Important
properties thereby are neighboring relations in the image. The axiomacy is
based on invariance under gray value transformations, and as a consequence
Morphology is nonlinear. The theory of morphology is based on sets and
topology. The numerical implementation can be performed with efficient
algorithms. It is one of the most efficient techniques in image processing.

5.2 Discretization

We assume that the grey valued image can be described by a continuous
function u : R2 → R. We assume that u is only given by discrete samples,
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that are function values at nodes xi, i = 1, . . . , N :

ui := u(xi).

Typically we take a uniform grid with quadratic cells. Here and in the
following we assume that u and (ui) is non-negative. The largest intensity of
u is denoted by tmax.

5.3 Grey valued images

The subgraph of u at level l is the set

Gl(u) := {x : 0 ≤ u(x) ≤ l}

We define the levels of the images by the following operations

(T[ti,tj ]u)(x) =

{

1 ti ≤ u(x) ≤ tj

0 else

Histograms of grey valued images deliver important information on im-
ages, which can be used for contrast improvement, segmentation and object
recognition. Thereby for every grey value t ∈ W = {0, . . . , tmax} the number
Hu(t) of pixels are counted which share the same intensity

Hu : W → N0.

Scaling of the histogram by the number of pixels of the image, that is by
1
#

can be considered an approximation of a statistical distribution of the
intensities of the sample u.

5.4 Basic morphological operations

We differ between

• point operations: ψ(u)(x) = ψ̃(u(x)), where ψ̃ : R → R is a transfor-
mation of the intensities,

• local (neighborhood-) operations, where ψ(u)(x) is determined from
the values of the sample u(y) in a neighborhood of x, and
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• global operations, such as translations, rotations and reflections.

Some important auxiliary operations are:

• Pointwise maximum of two images

(u ∧ v)(x) = max {u(x), v(x)} .

• Pointwise minimum

(u ∨ v)(x) = min {u(x), v(x)} .

• Complements.
(Cu)(x) = uC(x) = tmax − u(x)

• Scaling of grey values:

ψc(u)(x) = PW (c · u(x))

with some c > 0. Here PW is the projection onto some intensity set W ,
defined by

PW (u) = min(max(⌊u⌋, 0), tmax)

and ⌊u⌋ denote the largest number less than u, which is contained in
W . For instance the largest integer value smaller that u.

• Binarisation:

ψc(u)(x) =

{

1 falls u(x) ≥ c

0 sonst

with c ∈ [0, tmax]. This is a simple form of segmentation.

Examples of local operations are for example the discrete convolution

ψ(u)(x) =
∑

y∈Z2

u(x− y)K(y),

where K is an appropriate kernel function. A simple example of K is by
averaging over five pixels:

K(x, y) =

{
1
5

falls |x|+ |y| ≤ 1

0 sonst
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When discretized, K is typically described by a matrix, sometimes also called
(mask). For the example above we have:





0 1
5

0
1
5

1
5

1
5

0 1
5

0



 .

Convolution can be used for filtering (denoising).

5.4.1 Erosion and Dilation

Basic morphological operations are erosion and dilatation, which are defined
via structural elements. A structural element is a small set Bx with a center

Figure 5.1: various structural elements.

of reference x. It is used to analyze/manipulate the image in a neighborhood
of x.

Examples of commonly used structural elements are:

• Unit sphere B1(0) with center of reference 0.

• Rectangle Ra,b with side lengths a,b and center of reference 0.

In the following let X be an object (set of pixels), for instance the sublevel
set of a grey valued image.

For binary images (or image objects), erosion is defined as

ǫB(X) :=
⋂

b∈B

X−b =
⋂

b∈B

{X − b} ,

that is the intersection of translations according to a structural element B.
For grey valued images it is defined as the pointwise minimum of translations

ǫB(f) := ∧b∈Bf−b



5.4. BASIC MORPHOLOGICAL OPERATIONS 71

Figure 5.2: Erosion of a set X (yellow) by B (grey).

or in other words
ǫB(f)(x) := min

b∈B
f(x+ b) .

Dilation is the “dual” of erosion: For binary images it is defined as the
union of translation

δB(X) :=
⋃

b∈B

X−b .

For grey values images it is defines as the pointwise maximum of translations

δB(f) = max
b∈B

f(x+ b)

Dilation and erosion satisfy the following properties:

• The are dual with respect to complementation, that is,

ǫB = CδBC .

• Erosion shrinks objects and expands the background. Dilation expands
objects and shrinks the background.

• Erosion and dilation are monotone transformations:

f ≤ g ⇒ ǫB(f) ≤ ǫB(g), δB(f) ≤ δB(g)

All morphological filter operations are composed from erosion and dila-
tion. For instance, the composition of δBǫB erases small objects. Thus the
composition is in fact a filtering technique.
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5.5 The most important Filter

in morphology is the median. It relies on sorting the intensities in a neigh-
borhood, and taking the intensity value of the sort with the middle index.
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