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Exercise Sheet 3

1. Consider the Jacobi method to solve the linear equation Ax = b, for a given
diagonal dominant matrix A = (a;;);;—, of the form
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and a vector b € R"™. Instead, we can equivalently consider the equation
PAx = Pb,

where P is an invertible matrix of the form
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Show that the convergence of the Jacobi method is improved using this so-
called preconditioning for the given matrix P.

Hint: The smaller the spectral radius of the iteration matriz is, the faster the
iteration method converges.

2. Consider the symmetric matrix
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(a) Show that the matrix A is positive definite.
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(b) Show that the Jacobi method for solving the linear system Az = b for
any choice of b and staring vector z(*) diverges.

3. Let
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Examine if the Gauss-Seidel method converges to the solution of Ax = b, b €
R? for every starting vector z(*) € R?.
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Show that the iterative methods, Jacobi, Gauss-Seidel and SOR converge to

the solution of the linear equation Az = b, b € R%. Compare the speed of
convergence of the three methods.

4. Consider the matrix

Hint: For the SOR method, consider the optimal value of the over-relaxation
parameter w which occurs when the two eigenvalues are equal.

5. Implement in MATLAB the Arnoldi iterative method (Lecture notes: Algo-
rithm 6).

6. Write a MATLAB-PROGRAM, that if the input matrix is symmetric and po-
sitive definite approximates the solution x € R"™ of the linear system Ax = b,
for a given vector b € R"™, using the conjugate gradient method, otherwise it
returns an error message.



