Exercise 27. Let \(k \in L^2(G \times G) \) be such that the associated integral operator \(K : L^2(G) \to L^2(G) \) is self adjoint, and let \((\lambda_i, x_i)_{i \in \mathbb{N}} \) be an eigensystem of \(K \). Show that the family

\[
\left((s, t) \mapsto x_i(s) \overline{x_j(t)} \right)_{(i,j) \in \mathbb{N}^2}
\]

is an orthonormal basis of a closed subspace \(W \) of \(L^2(G \times G) \), and that \(k \in W \).

Exercise 28. Show that a compact self adjoint operator \(K : H \to H \) is positive semi-definite, if and only if all eigenvalues are non-negative.

Exercise 29. Let \(k \in C(G \times G) \) and let the associated integral operator \(K : L^2(G) \to L^2(G) \) be positive semi-definite. Show that \(k(s, s) \geq 0 \) for all \(s \in G \).