Contents

1 Eigenvalues 1
 1.1 Eigenvalue problems 1 1
 1.1.1 Estimation of eigenvalues 3
 1.1.2 Power iteration 5
 1.1.3 QR algorithm 7
 1.2 Generalized eigenvalue problem 8
 1.3 Singular values 8
 1.3.1 Moore-Penrose Pseudoinverse 10

2 Iteration methods 11
 2.1 Fixed point iteration 11
 2.1.1 Jacobi method 12
 2.1.2 Gauss-Seidel method 13
 2.1.3 Successive over-relaxation (SOR) 14
 2.2 Krylov subspace methods 14
 2.2.1 Arnoldi iteration 15
 2.2.2 Lanczos iteration 17
 2.2.3 Generalized minimal residuals (GMRES) 17
 2.2.4 Conjugate gradients (CG) 18

3 Nonlinear systems of equations 23
 3.1 Newton’s method 23
 3.1.1 One-dimensional geometric motivation 23
 3.1.2 Higher-dimensional generalisation 24
 3.1.3 Stopping Criteria 25
 3.1.4 Convergence 25
 3.2 Quasi-Newton methods 26
 3.2.1 One-dimensional motivation: Secant method 26
 3.2.2 Higher-dimensional generalisation 27
 3.3 Basic line search concepts 29
 3.3.1 Armijo 30
 3.3.2 Goldstein and Price 31
 3.3.3 Wolfe 31

4 The Bernoulli and Poisson Processes 35
 4.1 Bernoulli Process 35
 4.1.1 Independence and Memorylessness 36
 4.1.2 Interarrival Times 36
4.1.3 The Poisson Approximation to the Binomial 37
4.2 The Poisson Process .. 37
 4.2.1 Independence and Memorylessness 38
 4.2.2 Interarrival Times 38
 4.2.3 Sums of random variables 39
5 Markov chains ... 41
 5.1 Discrete-time Markov chains 41
 5.1.1 Modelling with Markov chains 41
 5.1.2 Probabilistic predictions 43
 5.2 Continuous-Time Markov chains 46
6 Monte Carlo method .. 49
 6.1 Normal (Gauss) distribution 49
 6.2 Monte Carlo Integration 50
 6.2.1 MC Integration for a uniform distribution 51
 6.2.2 Error of the MC Integration 52
 6.2.3 Multi-dimensional case 52
 6.3 Improvement of MC Integration 52
 6.3.1 Producing random variables 53
 6.3.2 Variance reduction 53
List of Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power iteration</td>
<td>5</td>
</tr>
<tr>
<td>Inverse iteration</td>
<td>6</td>
</tr>
<tr>
<td>Rayleigh quotient iteration</td>
<td>6</td>
</tr>
<tr>
<td>QR algorithm</td>
<td>7</td>
</tr>
<tr>
<td>Stationary iterative methods</td>
<td>12</td>
</tr>
<tr>
<td>Arnoldi iteration</td>
<td>16</td>
</tr>
<tr>
<td>GMRES algorithm</td>
<td>18</td>
</tr>
<tr>
<td>Conjugate gradient method</td>
<td>21</td>
</tr>
<tr>
<td>Newton’s method</td>
<td>24</td>
</tr>
<tr>
<td>Good Broyden’s method</td>
<td>29</td>
</tr>
<tr>
<td>Sketch of a line search algorithm</td>
<td>29</td>
</tr>
<tr>
<td>Line search with Armijo’s rule</td>
<td>31</td>
</tr>
<tr>
<td>Line search according to Goldstein and Price</td>
<td>32</td>
</tr>
<tr>
<td>Wolfe’s line search</td>
<td>33</td>
</tr>
</tbody>
</table>
List of Figures

3.1 Newton’s method .. 26
3.2 Secant method .. 27
3.3 Armijo’s rule ... 30
3.4 Goldstein and Price line search 32
3.5 Wolfe’s line search .. 32

5.1 Illustration of the checkout counter example: (a) $q(1 - p)$, (b) $p(1 - q)$, and (c) $(1 - p)(1 - q) + pq$ 42
Chapter 1

Eigenvalues

In this chapter we will consider a matrix $A \in \mathbb{C}^{n \times n}$ and numerically find its eigenvalues and eigenvectors. We use the more general case of complex matrices because even for real matrices eigenvalues and eigenvectors can be complex.

The section is widely based on the lecture notes [2], and contains additional material from [3].

1.1 Eigenvalue problems

For a given matrix A we search for pairs of eigenvalues $\lambda \in \mathbb{C}$ and eigenvectors $x \in \mathbb{C}^n$ that satisfy

$$Ax = \lambda x \quad x \in \mathbb{C}^n \setminus \{0\}, \quad \lambda \in \mathbb{C}.$$

We can find the eigenvalues by the roots λ_i of the characteristic polynomial

$$\chi(z) = \det(A - zI) = (z - \lambda_1)(z - \lambda_2)\ldots(z - \lambda_n),$$

which is a non-linear problem. We define the algebraic multiplicity of an eigenvalue λ to be its multiplicity as a root of $\chi(z)$.

For each eigenvalue λ we can calculate the corresponding eigenvectors solving the linear equation

$$(A - \lambda I) v_j = 0.$$

The linear space spanned by the eigenvectors v_j is called the eigenspace and is denoted with E_λ. The number of linear independent eigenvectors (i.e. the rank of E_λ) is called the geometric multiplicity of the eigenvalue λ.

Example 1.1.1. Consider the two matrices

$$A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}.$$

What is the characteristic polynomial, eigenvalues, algebraic and geometric multiplicities?
CHAPTER 1. EIGENVALUES

Some properties of the eigenvalues are presented here:

- Generally, eigenvalues are not real but complex. Eigenvalues of hermitian matrices (i.e. $A = A^*$) are real.
- If λ_i are the eigenvalues of matrix $A \in \mathbb{C}^{n \times n}$, then
 \[
 \sum_{i=1}^{n} \lambda_i = \text{Tr}(A)
 \]
 and
 \[
 \prod_{i=1}^{n} \lambda_i = \det(A).
 \]
- If λ is the eigenvalue of $A \in \mathbb{C}^{n \times n}$, with eigenvector $x \in \mathbb{C}^n$ then
 1. λ^k is the eigenvalue of $A^k \in \mathbb{C}^{n \times n}$, with eigenvector $x \in \mathbb{C}^n$
 2. $\frac{1}{\lambda}$ is the eigenvalue of A^{-1} (if there exist) with eigenvector x
 3. $\overline{\lambda}$ is the eigenvalue of A^*

An eigenvalue whose algebraic multiplicity is greater than its geometric multiplicity is called a defective eigenvalue. A matrix with at least one defective eigenvalue is called a defective matrix.

Let $A \in \mathbb{C}^{n \times n}$ be a matrix with eigenvalue λ. Then the geometric multiplicity V of λ is less than or equal to the algebra multiplicity. We know that

\[
\dim V = n - \text{rank}(\lambda I - A).
\]

We call the matrices A and B similar if there exists a non-singular $X \in \mathbb{C}^{n \times n}$ such that $B = XAX^{-1}$. Similar matrices have the same characteristic polynomial, eigenvalues, and algebraic and geometric multiplicities.

Theorem 1.1.2 (Cayley - Hamilton). Let $A \in \mathbb{C}^{n \times n}$ be a matrix with characteristic polynomial $\chi(z)$. Then, $\chi(A) = 0$.

This theorem always provides a relationship between the powers of A.

Example 1.1.3. Let

\[
A = \begin{bmatrix}
1 & 2 \\
2 & 1
\end{bmatrix}.
\]

Then, $\chi(z) = z^2 - 2z - 3$ which gives $A^2 - 2A - 3I = 0$. From this we can compute for instance:

\[
A^3 = 7A + 6I, \quad A^{-1} = \frac{1}{3}(A - 2I).
\]

Numerical algorithms to find eigenvalues are not based on finding roots of the characteristic polynomial, since this is a highly unstable problem. Eigenvalues are either computed by power iteration (see Section 1.1.2) or by eigenvalue revealing factorizations (see Section 1.1.3).

Lemma 1.1.4. The most important matrix factorizations are:
1.1. EIGENVALUE PROBLEMS

1. If \(A \) is nondefective a diagonalisation \(A = X \Lambda X^{-1} \) exists, where \(\Lambda \) is a diagonal matrix.

2. If \(A \) is normal (i.e. \(AA^* = A^*A \)) an unitary diagonalisation \(A = Q \Lambda Q^* \) exists, where \(Q \) is an unitary matrix (i.e. \(Q^* = Q^{-1} \)), and \(\Lambda \) is a diagonal matrix. Note that all hermitian matrices are normal.

3. An unitary triangulation (Schur factorization) \(A = QTQ^* \) always exists, where \(Q \) is an unitary matrix and \(T \) is upper triangular.

Typical applications of eigenvalues are situations where we are interested in
\[A^k = X \Lambda^k X^{-1} \text{ or } e^A = X e^\Lambda X^{-1} \] for a nondefective matrix \(A \). The second expression is especially useful for analysing systems of linear differential equations.

1.1.1 Estimation of eigenvalues

For a quick estimation of the eigenvalues we can use

Theorem 1.1.5 (Gershgorin circle theorem). Given a matrix \(A = [a_{ij}] \in \mathbb{C}^{n \times n} \), then for every eigenvalue \(\lambda \) of \(A \), holds

\[\lambda \in \bigcup_{i=1}^{n} K_i, \]

with the Gershgorin discs

\[K_i := \{ \zeta \in \mathbb{C} : |\zeta - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| \}. \]

Proof. Let \(Ax = \lambda x \) with \(x = [x_i] \neq 0 \). Then there exists an index \(i \), so that \(|x_j| \leq |x_i| \) for all \(j \neq i \). \((Ax)_i \) denotes the \(i \)-th component of \(Ax \), then

\[\lambda x_i = (Ax)_i = \sum_{j=1}^{n} a_{ij}x_j \]

and therefore,

\[|\lambda - a_{ii}| = \left| \sum_{j \neq i} a_{ij} \frac{x_j}{x_i} \right| \leq \sum_{j \neq i} |a_{ij}|. \]

Therefore, \(\lambda \in K_i \subseteq \bigcup_{i=1}^{n} K_i \). \(\square \)

Example 1.1.6. What are the Gershgorin discs of

\[A = \begin{bmatrix} 4 & 0 & -3 \\ 0 & -1 & 1 \\ -1 & 1 & 0 \end{bmatrix} \]

We can further confine the range in which the eigenvalues are using the Rayleigh quotient. The Rayleigh quotient of a vector \(x \) is given by

\[r(x) := \frac{x^* A x}{x^* x}, \quad x \in \mathbb{C}^n \setminus \{0\} \].
Note that \(r(v_i) = \lambda_i \), and for each vector \(x \) the Rayleigh quotient gives the value \(\alpha := r(x) \) which acts most like an eigenvalue (i.e. minimizes \(\|Ax - \alpha x\| \)).

The range of \(r(x) \)
\[
W(A) := \left\{ \frac{x^*Ax}{x^*x} : x \in \mathbb{C}^n \setminus \{0\} \right\} \subseteq \mathbb{C}.
\]
is called the numerical range of the matrix \(A \). Notably, the eigenvalues of \(A \) lie in the numerical range of \(A \).

Further properties of \(W(A) \) are
1. \(W(A) \) is connected.
2. \(W(A + B) \subseteq W(A) + W(B) \), \(W(Q^*AQ) = W(A) \).
3. \(W(aA + bI) = aW(A) + b \), \(a, b \in \mathbb{C} \).
4. If \(A \) is hermitian, then \(W(A) \) is the real interval \([\lambda_{\text{min}}, \lambda_{\text{max}}] \).
5. If \(A \) is skew-symmetric (i.e. \(A^* = -A \)), then \(W(A) \) is an imaginary interval, i.e. the convex hull (\(\subseteq \mathbb{C} \)) of all eigenvalues of \(A \).

Every matrix \(A \in \mathbb{C}^{n \times n} \) can be split into an hermitian part (first term) and a skew symmetric part (second term):
\[
A = \frac{A + A^*}{2} + \frac{A - A^*}{2} := H(A) + S(A).
\]

Then,
\[
W(H(A)) = \Re(W(A)), \quad W(S(A)) = i\Im(W(A)).
\]

From this split and the above properties we directly derive:

Theorem 1.1.7 (Bendixon).
\[
\sigma(A) \subseteq W\left(\frac{A + A^*}{2} \right) \oplus W\left(\frac{A - A^*}{2} \right),
\]
where \(\sigma(A) \) is the spectrum of \(A \in \mathbb{C}^{n \times n} \) (i.e. the set containing all eigenvalues of \(A \)).

Example 1.1.8. We use the theorem to further confine the range of Example 1.1.6. First we calculate the hermitian and skew-symmetric part
\[
H = \frac{A + A^t}{2} = \begin{bmatrix} 4 & 0 & -2 \\ 0 & -1 & 1 \\ -2 & 1 & 0 \end{bmatrix}, \quad S = \frac{A - A^t}{2} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}.
\]
The spectra of \(H \) and \(S \) can be estimated by the theorem of Gerschgorin: This yields
\[
\mathcal{R} = [-3, 6] \times [-i, i] \supset W(A) \supset \sigma(A).
\]
The spectrum of \(A \) must lie in the intersection of \(\mathcal{R} \) and the Gerschgorin discs of Example 1.1.6. The actual spectrum of \(A \) is
\[
\sigma(A) = \{-1.7878, 0.1198, 4.6679\}.
\]
1.1.2 Power iteration

In this section we numerically calculate eigenvalues and eigenvectors by a method called *power iteration*. For simplicity, we only consider symmetric real matrices. Such matrices are diagonalisable and their eigenvectors form an orthonormal basis. Furthermore, we sort the absolute values of the eigenvalues in descending orders $|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_n| \geq 0$.

We consider the sequence $z^{(k+1)} = A z^{(k)} / \| A z^{(k)} \|$. Under certain assumptions the sequence converges to the eigenvector corresponding to the largest eigenvalue of A. The approach is outlined in Algorithm 1.

Algorithm 1: Power iteration

Data: Matrix A, initial eigenvector $z^{(0)}$ with $\| z^{(0)} \| = 1$

Initialisation: set $k = 1$

while convergence criterion not satisfied do

\[\tilde{z}^{(k)} := A z^{(k-1)} \] apply A

\[z^{(k)} := \frac{\tilde{z}^{(k)}}{\| \tilde{z}^{(k)} \|} \] normalise

$k \leftarrow k + 1$

end

The estimation for the eigenvalue can be found by applying the Rayleigh quotient to the resulting $z^{(k)}$,

\[\lambda^{(k)} := z^{(k) \top} A z^{(k)}. \]

We analyse power iteration by writing the initial guess $z^{(0)}$ as a linear combination of the orthonormal eigenvectors q_i:

\[z^{(0)} = a_1 q_1 + a_2 q_2 + \cdots + a_n q_n \tag{1.1} \]

The value $z^{(k)}$ is a multiple of $A^k z^{(0)}$, therefore we write

\[z^{(k)} = c_k A^k z^{(0)}, \]

where c_k is some scalar constant. Note that $A q_1 = \lambda_1 q_1$, thus inserting Eqn \[1.1\] yields

\[
\begin{align*}
 z^{(k)} &= c_k (a_1 \lambda_1^k q_1 + a_2 \lambda_2^k q_2 + \cdots + a_n \lambda_n^k q_n) \\
 z^{(k)} &= c_k (a_1 (\lambda_1 / \lambda_1)^k q_1 + a_2 (\lambda_2 / \lambda_1)^k q_2 + \cdots + a_n (\lambda_n / \lambda_1)^k q_n)
\end{align*}
\]

If k becomes big, the terms (λ_j / λ_1) for $j = 2 \ldots n$ become small if $|\lambda_1| > |\lambda_j|$, and therefore $z^{(k)} \to (c_k \lambda_1^k a_1) q_1$. Thus for all $z^{(0)}$, where $a_1 \neq 0$ the proposed Algorithm \[1\] will converge to the eigenvector corresponding to the largest eigenvalue of A.

The algorithm is very simple, but of limited use, since it only finds the eigenvector corresponding to the largest eigenvalue, and if λ_1 is not much larger than λ_2 convergence is very slow. To speed things up we would need the absolute...
value of λ_1 to be large.

We improve the algorithm using the following idea: For any $\mu \in \mathbb{R}$ that is not an eigenvalue of A, the eigenvectors of A are the same as of $(A - \mu I)^{-1}$. Furthermore, if λ_i is an eigenvalue of A then $(\lambda_i - \mu)^{-1}$ is an eigenvalue of $(A - \mu I)^{-1}$.

Consequently, if we choose a value μ that is close to an eigenvalue λ_j. Then $(\lambda_i - \mu)^{-1}$ will be large, and therefore the eigenvector of $A - \mu I$ can be computed very fast. This leads to the method called inverse iteration which is described in Algorithm 2. The algorithm computes the eigenvector corresponding to the eigenvalue nearest to μ.

Data: Matrix A, initial μ close to the desired eigenvalue, initial vector $z^{(0)}$ with $\|z^{(0)}\| = 1$

Initialisation: set $k = 1$

while convergence criterion not satisfied do

\[w = (A - \mu I)z^{(k-1)} \text{ for } w \]

apply $(A - \mu I)^{-1}$ normalise

\[z^{(k)} := \frac{w}{\|w\|} \]

\[k \leftarrow k + 1 \]

end

Algorithm 2: Inverse iteration

We can further improve inverse iteration by continuously improving the eigenvalue estimate μ in each step to increase the rate of convergence. Therefore, we use the Rayleigh quotient

\[r(z) := \frac{z^T A z}{z^T z}, \quad z \in \mathbb{C}^n \setminus \{0\}. \]

to estimate the eigenvalue λ from the estimated (normed) eigenvector z, thus $\lambda = z^T A z$ (this minimizes $\|Ax - \lambda x\|$). This leads to the Rayleigh quotient iteration outlined in Algorithm 3. This algorithm is very fast and shows a cubic convergence rate.

Data: Matrix A, initial vector $z^{(0)}$ with $\|z^{(0)}\| = 1$

Initialisation: set $k = 1$, let $\lambda^{(0)} := (z^{(0)})^T A z^{(0)}$

while convergence criterion not satisfied do

\[w = (A - \lambda^{(k-1)} I)z^{(k-1)} \text{ for } w \]

apply $(A - \lambda^{(k-1)} I)^{-1}$ normalise

\[z^{(k)} := \frac{w}{\|w\|} \]

apply $A = (z^{(k)})^T A z^{(k)}$

Rayleigh quotient

\[\lambda^{(k)} := (z^{(k)})^T A z^{(k)} \]

\[k \leftarrow k + 1 \]

end

Algorithm 3: Rayleigh quotient iteration
1.1. EIGENVALUE PROBLEMS

1.1.3 QR algorithm

The QR algorithm is a stable and simple procedure for calculating all eigenvalues and eigenvectors. The algorithm uses the QR factorization and the next iterate is a recombination of the factors in reverse order (see Algorithm 4).

First, we note that in each iteration of the algorithm we use only (stable) similarity transformation. Thus $A^{(k+1)}$ and $A^{(k)}$ are similar, since $R^{(k)} = (Q^{(k)})^*A^{(k)}$, and therefore $A^{(k)} = (Q^{(k)})^*A^{(k)}Q^{(k)}$. Thus, if $A^{(k)}$ converges, this matrix has the same eigenvalues and eigenvectors as $A^{(0)}$.

Second, QR algorithm can be seen as a more sophisticated variation of power iteration (Algorithm 1). Instead of using one single vector, QR algorithm works with a complete orthonormal basis of vectors, using the QR decomposition to orthogonalize. For a hermitian matrix A the algorithm converges to a diagonal matrix of eigenvalues. The matrix Q is orthogonal, and the columns of Q are the eigenvectors of A. For the non-hermitian case, the algorithm converges to the a Schur factorisation of the matrix (see Lemma 1.1.4).

Data: Matrix A

Initialisation: set $k = 1, A^{(0)} = A$

while convergence criterion not satisfied do

$A^{(k)} = Q^{(k)}R^{(k)}$
$A^{(k+1)} = R^{(k)}Q^{(k)}$
recombine in reverse order
$k \leftarrow k + 1$

end

Algorithm 4: QR algorithm

QR algorithm is the standard algorithm for computing all eigenvalues of a matrix. The algorithm can achieve cubic convergence for hermitian matrices, given the following enhancements:

1. Initially, A is reduced to tridiagonal form using Householder transformations.

2. Instead of $A^{(k)}$, the shifted matrix $A^{(k)} - \mu_k I$ is factored, where μ_k is an eigenvalue estimate (same idea as Rayleigh quotient iteration, Algorithm 3).

Then, we compute

$$A^{(k)} - \mu_k I = Q^{(k)}R^{(k)}$$
$$A^{(k+1)} = R^{(k)}Q^{(k)} + \mu_k I$$

and we can show that

- $A^{(k+1)} = (Q^{(0)}Q^{(1)} \cdots Q^{(k)})^*A(Q^{(0)}Q^{(1)} \cdots Q^{(k)})$.
- $\prod_{j=0}^{k}(A^{(0)} - \mu_j I) = (Q^{(0)}Q^{(1)} \cdots Q^{(k)})(R^{(k)}R^{(k-1)} \cdots R^{(0)})$

3. When possibly $A^{(k)}$ is split into submatrices (a divide and conquer strategy).
1.2 Generalized eigenvalue problem

The problem of finding a vector $v_i \in \mathbb{C}^n \setminus \{0\}$ that obeys

$$Av_i = \lambda_i Bv_i$$

for $A, B \in \mathbb{C}^{n \times n}$ is called a general eigenvalue problem and the generalised eigenvalue $\lambda_i \in \mathbb{C}$ obeys the equation

$$\det(A - \lambda_i B) = 0.$$

In this case we can find n linearly independent vectors v_i so that $Av_i = \lambda_i Bv_i$, the following equality holds

$$A = BX\Lambda X^{-1},$$

where X is the matrix composed of the eigenvectors v_i and Λ is a diagonal matrix of the eigenvalues λ_i.

For generalised eigenvalue problem the Rayleigh quotient is defined as

$$r(x) := \frac{x^*Ax}{x^*Bx}.$$

With this definition it is easy to generalize the Rayleigh quotient iteration (Algorithm 3) to calculate generalized eigenvectors.

Example 1.2.1. Consider the matrices

$$A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Then, the characteristic polynomial takes the form $\chi(z) = z^2 + 1$, which results to the set of the eigenvalues $\sigma(A,B) = \pm i$. Even though both matrices are symmetric the pair of them exhibits complex conjugate eigenvalues.

1.3 Singular values

Let $A \in \mathbb{C}^{m \times n}$ with range(A) = $p \leq \min\{m, n\}$, then there exists a unique factorisation called singular value decomposition (SVD) such that

$$A = U\Sigma V^*,$$

where $U := [u_1, \ldots, u_m] \in \mathbb{C}^{m \times m}$ is unitary ($U^*U = UU^* = I$), and $V := [v_1, \ldots, v_n] \in \mathbb{C}^{n \times n}$ is unitary, with $\{u_j\}_{j=1}^m$ and $\{v_j\}_{j=1}^n$ being orthonormal bases on \mathbb{C}^m and \mathbb{C}^n, respectively. $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal

$$\Sigma := \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \sigma_p \end{bmatrix},$$

with real values $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_p > 0$.
1.3. SINGULAR VALUES

A geometrical interpretation of the SVD is that the image of a unit sphere under any \(m \times n \) matrix is a hyperellipse, where the vectors \(\sigma_i u_i \) are the principal semiaxis. Note that

\[
Av_j = \sigma_j u_j, \quad A^* u_j = \sigma_j v_j, \quad \text{for} \ j = 1 \ldots p,
\]

and

\[
U^* AV = \Sigma.
\]

The SVD shows that all matrices are diagonal under the proper bases for the domain and range spaces.

There are fundamental differences between singular values and eigenvalue decompositions (compare with Lemma 1.1.4):

- SVD uses two different bases, eigenvalue decomposition just one.
- In a SVD the two bases are always orthogonal, in eigenvalue decomposition this is generally not the case (only if \(A \) is normal).
- Not all matrices have an eigenvalue decomposition, but all (even rectangular) matrices have a SVD.

Theorem 1.3.1. Nonzero singular values of \(A \) are the square roots of the nonzero eigenvalues of \(A^*A \) and \(AA^* \).

Theorem 1.3.2. If \(A \) is hermitian (i.e. \(A = A^* \)) the singular values of \(A \) are the absolute values of the eigenvalues of \(A \).

Thus, numerical computation of singular values could be based on calculating the eigenvalues of \(AA^* \). However, this method is unstable, since the condition number of \(AA^* \) might be much bigger than that of \(A \).

Stable SVD algorithms are based on finding the eigenvalues of the self-adjoint block matrix

\[
M = \begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix},
\]

which are the singular values of \(A \) with positive and negative sign. For a proof refer to [3].

Considering the SVD we get:

\[
A = U \Sigma V^* = U \Sigma U^* U V^* = (U \Sigma U^*)(U V^*) := PW,
\]

where \(P \) is hermitian, positive semi-definite with \(\text{rank} A = \text{rank} P \) and \(W \) is orthogonal. This decomposition is known as polar decomposition.

Example 1.3.3. If \(A \in \mathbb{C}^{n \times n} \) is invertible, then the SVD can be written as

\[
A = \sum_{j=1}^{n} \sigma_j u_j v_j^*
\]

and since \((U \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_n)V^*)(V \text{diag}(1/\sigma_1, 1/\sigma_2, \ldots, 1/\sigma_n)U^*) = I_n \) we find that

\[
A^{-1} = V \text{diag}(1/\sigma_1, 1/\sigma_2, \ldots, 1/\sigma_p)U^*.
\]
then the system $Ax = b$, admits the solution

$$x = A^{-1}b = \sum_{j=1}^{n} \frac{u_j^* b}{\sigma_j} v_j$$

If A is neither square, nor invertible we come to the next subsection:

1.3.1 Moore-Penrose Pseudoinverse

Let $A \in \mathbb{C}^{m \times n}, m > n$ with $\text{rank}(A) = r = \min\{m, n\}$ and SVD given by $A = U\Sigma V^*$. We define the Moore-Penrose Pseudoinverse of A as

$$A^\dagger = V \text{diag}(1/\sigma_1, 1/\sigma_2, ..., 1/\sigma_r, 0, ..., 0) U^*$$

Then, the pseudoinverse satisfies:

1. $AA^\dagger A = A$
2. $A^\dagger AA^\dagger = A^\dagger$
3. the matrices AA^\dagger and $A^\dagger A$ are hermitian.

Using the QR-decomposition of A we get

$$Ax = b \Rightarrow QRx = b$$

$$\Rightarrow Rx = Q^*b$$

$$\Rightarrow x = R^{-1}Q^*b$$

If $\text{rank}(A) = n$, then A has linearly independent columns and the matrix A^*A is invertible. The minimization problem (least square problem)

$$\min_{x \in \mathbb{C}^n} \|Ax - b\|_2$$

admits a solution of the form

$$x = R^{-1}Q^*b \Rightarrow QRx = QQ^*b$$

$$\Rightarrow (R^*Q^*)QRx = (R^*Q^*)b$$

$$\Rightarrow A^*Ax = A^*b$$

$$\Rightarrow x = (A^*A)^{-1}A^*b$$

$$\Rightarrow x = A^\dagger b.$$
Chapter 2

Iteration methods

Iterative methods try to find an approximate solution \(x \in \mathbb{R}^n \) to the linear equation \(Ax = b \) or the eigenvalue problem \(Ax = \lambda x \), where \(A \in \mathbb{R}^{n \times n} \) is very large and typically sparse. Such matrices appear frequently in the applied sciences e.g. as stiffness matrices from partial differential equations.

Section 2.1 is based on the lecture notes [2], with additional notes from [5]. Section 2.2 summarizes the corresponding chapters from [3], with additional comments from lecture notes [4], and [6].

2.1 Fixed point iteration

We will construct iterative methods based on an important result from analysis:

Theorem 2.1.1. (Banach fixed-point theorem) Let \(\Phi : \mathbb{R}^n \to \mathbb{R}^n \) be a contraction, i.e.

\[
\| \Phi(x) - \Phi(y) \| \leq q \| x - y \| \quad \text{for} \quad q < 1 \quad \text{for all} \quad x, y \in \mathbb{R}^n .
\]

The fix point equation \(x = \Phi(x) \) has exactly one solution \(\hat{x} \in \mathbb{R}^n \), and the iteration \(\{x^{(k)}\} \) with \(x^{(0)} \in \mathbb{R}^n \), \(x^{(k+1)} = \Phi(x^{(k)}) \) for \(k = 0, 1, 2, \ldots \), converges to the solution \(\hat{x} \) for \(k \to \infty \). Furthermore, for \(k \geq 1 \)

1. \(\| x^{(k)} - \hat{x} \| \leq q^k \| x^{(1)} - \hat{x} \| \) (monotony)
2. \(\| x^{(k)} - \hat{x} \| \leq \frac{q^k}{1-q} \| x^{(1)} - x^{(0)} \| \) (a-priori bound)
3. \(\| x^{(k)} - \hat{x} \| \leq \frac{q^k}{1-q} \| x^{(k)} - x^{(k-1)} \| \) (a-posteriour bound)

The basic idea is that we choose a splitting

\[
A = M - N,
\]

with a matrix \(M \) that can be easily inverted. With this splitting we write \(Ax = b \) as fix point equation

\[
Mx = Nx + b, \quad \text{or} \quad x = Tx + c,
\]
where $T = M^{-1}N$ and $c = M^{-1}b$. Thus, the iteration

$$x^{(k+1)} = \Phi(x^{(k)})$$

is given by

$$\Phi(x) = Tx + c.$$

By choosing M we can construct different iterative methods to solve $Ax = b$, and we can use Theorem 2.1.1 to analyse its behaviour (e.g. it shows that such methods typically have a linear convergence rate). Note that it is essential that M^{-1} is easy to compute.

The framework is outlined in Algorithm 5. Choices of M and N are presented in the following sections.

Algorithm 5: Stationary iterative methods

In the following, we consider the decomposition

$$A = L + D + U,$$

where $D = \text{diag}(a_{11}, \ldots, a_{nn})$, L a strictly lower triangular matrix, and U a strictly upper triangular matrix. We write the equation $Ax = b$ in the form,

$$x_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_j \right) = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j - \sum_{j=i+1}^{n} a_{ij} x_j \right), \quad i = 1, \ldots, n.$$

2.1.1 Jacobi method

Jacobi methods splits the matrix $A = [a_{ij}]$ into its diagonal elements $M = D$ and $N = -(L + U)$, thus the inverse can be easily calculated: $M^{-1} = \text{diag}(\frac{1}{a_{11}}, \ldots, \frac{1}{a_{nn}})$. Therefore, we write

$$x^{(k+1)} = M^{-1}(Nx^{(k)} + B)$$

or component-wise

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_j^{(k)} \right). \quad (2.2)$$
2.1. FIXED POINT ITERATION

From fix-point theorem 2.1.1 we know that the iteration converges if we can find a $q < 1$ such that $\|\Phi(x) - \Phi(y)\| = \|M^{-1}N(x - y)\| \leq q\|x - y\|$. From $\|M^{-1}N(x - y)\| \leq \|M^{-1}N\|\|x - y\|$ we conclude that $\|M^{-1}N\| \leq q$. Therefore, if $\|M^{-1}N\| < 1$ the method will converge. Especially, this is the case when A is a diagonal dominant matrix.

2.1.2 Gauss-Seidel method

Gauss-Seidel method accelerates convergence of the Jacobi method by using the already computed vector components $x_j^{(k+1)}$ for $j < i$:

$$x_j^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right). \tag{2.3}$$

We rewrite this equation as

$$a_{ii} x_j^{(k+1)} + \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} = b_i - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)}$$

and derive the following matrix form

$$(D + L)x^{(k+1)} = b - Ux^{(k)},$$

Thus, we choose $M = D + L$, where M is a lower triangular matrix, and therefore easy to invert. Furthermore, $N = A - M = U$, and the fix-point theorem 2.1.1 can be used to analyse convergence.

Definition 2.1.2. Let $A \in \mathbb{C}^{n \times n}$, then we define the spectral radius of A:

$$\rho(A) := \max_{1 \leq i \leq n} |\lambda_i(A)|,$$

where λ_i are the eigenvalues of A.

Theorem 2.1.3. Let x be the solution of $Ax = b$. The following are equivalent:

1. The iteration scheme (2.1) converges, that is, for every $x^{(0)} \in \mathbb{C}^n$, holds $x^{(m)} \to x$, $m \to \infty$.

2. $\rho(T) < 1$, where $T = M^{-1}N$.

3. There exists natural matrix norm $||| \cdot |||$, such that $||| T ||| < 1$.

4. $\lim_{m \to \infty} T^m = 0$.

Definition 2.1.4. A matrix A is called strictly diagonally dominant if

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|, \quad 1 \leq i \leq n.$$

Theorem 2.1.5. Let A be strictly diagonally dominant. Then,

1. A is invertible.

2. The matrices $T_J = -(L + U)$ and $T_{GS} = -(L + D)^{-1}U$ of the Jacobi and Gauss-Seidel method, respectively, satisfy

$$\| T_J \|_\infty < 1, \quad \| T_{GS} \|_\infty < 1$$

3. Both the methods converge.
2.1.3 Successive over-relaxation (SOR)

The SOR is a variant of Gauss-Seidel method that improves convergence rate by using a linear inter- or extrapolation between the last iterate $x^{(k)}$ and the Gauss-Seidel iterate $x^{(k+1)}$ (Eqn 2.3). The method uses the relaxation parameter $\omega \in (0, 2)$, which is often chosen heuristically in dependence of the specific problem. The iteration is given by

$$x^{(k+1)}_i = x_i^{(k)}(1 - \omega) + \frac{\omega}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right).$$

(2.4)

and in matrix form

$$x^{(k+1)} = (1 - \omega)x^{(k)} + \omega D^{-1} \left(b - Lx^{(k+1)} - Ux^{(k)} \right).$$

or

$$(D + \omega L)x^{(k+1)} = [(1 - \omega)D - U]x^{(k)} + \omega b.$$

The matrix $(D + \omega L)$ is invertible if $a_{ii} \neq 0$ for all i. For $\omega = 1$ the SOR method coincides with the Gauss-Seidel method. If A is symmetric and positive definite and $0 < \omega < 2$, then the SOR method converges.

The same approach can be applied to the Jacobi method. This is sometimes called JOR method.

2.2 Krylov subspace methods

The idea of all Krylov subspace methods is to project a n-dimensional problem into a lower-dimensional m-Krylov subspace (where $n \gg m$).

Definition 2.2.1. Let $b \in \mathbb{R}^n$. The m^{th} Krylov-space of A with respect to b is defined as

$$K_m(A, b) := \langle b, Ab, A^2b, \ldots, A^{m-1}b \rangle.$$

That is, $K_m(A, b)$ is the space spanned by the vectors that one obtains by iteratively applying the matrix A to b. In particular, we set $K_1(A, b) := \mathbb{R}b$ and $K_0(A, b) := \{0\}$.

Furthermore, we define the Krylov matrix by

$$K_m(A, b) = [b, Ab, A^2b, \ldots, A^{m-1}b].$$

In the following subsections we describe methods for solving the eigenvalue problem $Ax = \lambda x$ and linear equations $Ax = b$ for hermitian and non-hermitian matrices $A \in \mathbb{C}^{n \times n}$. The following table states the names or acronyms of the corresponding methods.

<table>
<thead>
<tr>
<th>A</th>
<th>$Ax = \lambda x$</th>
<th>$Ax = b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \neq A^*$</td>
<td>Arnoldi (Section 2.2.1)</td>
<td>GMRES (Section 2.2.3)</td>
</tr>
<tr>
<td>$A = A^*$</td>
<td>Lanczos (Section 2.2.2)</td>
<td>CG (Section 2.2.4)</td>
</tr>
</tbody>
</table>
2.2 KRYLOV SUBSPACE METHODS

2.2.1 Arnoldi iteration

We first consider the Arnoldi iteration which is a method of computing a Hessenberg reduction \(A = QHQ^* \), where \(H \) has the structure

\[
H = \begin{bmatrix}
\times & \cdots & \times \\
\times & \times & \cdots \\
\vdots & \vdots & \ddots \\
\times & \times
\end{bmatrix}.
\]

Arnoldi iteration is an important ingredient in many numerical methods (e.g. GMRES in Section 2.2.3). In the end of this section we will show how we can use Arnoldi iteration to approximate eigenvalues.

In principle a Hessenberg reduction can be easily achieved by Householder transformations. The advantage of Arnoldi iteration is that it can be stopped part way, which yields a reduced Hessenberg reduction of the first \(m \) columns of \(A \).

Hessenberg reduction can be written in the form

\[
AQ = QH.
\]

If we consider the first \(m \) columns of this matrix equation we obtain

\[
AQ_m = Q_{m+1}\hat{H}_m,
\]

where \(Q_m \in \mathbb{C}^{n \times m} \) is the matrix with the first \(m \) columns of \(Q \):

\[
Q_m = [q_1, q_2, \ldots, q_m],
\]

and \(\hat{H}_m \in \mathbb{C}^{(m+1) \times m} \) is the reduced matrix with the first \(m \) columns of \(H \) (i.e. the rows at the bottom containing only zeros are removed):

\[
\hat{H}_m = \begin{bmatrix}
h_{11} & \cdots & h_{1m} \\
h_{21} & h_{22} & \vdots \\
\vdots & \vdots & \ddots \\
\vdots & \vdots & \vdots \\
h_{m(m-1)} & h_{mm} & 0 \\
0 & h_{(m+1)m}
\end{bmatrix}.
\]

Considering the last column of Eqn (2.5) we obtain the following recurrence relation:

\[
Aq_m = h_{1m}q_1 + h_{2m}q_2 + \cdots + h_{mm}q_m + \hat{h}_{(m+1)m}q_{m+1}.
\]

Progressively solving this equation for \(q_{m+1} \) yields the Arnoldi iteration (see Algorithm 6).

Theorem 2.2.2. The matrices \(Q_m \) generated by the Arnoldi iteration have the following properties

1. \(Q_m \) are the reduced QR factors of the Krylov matrix \(K_m(A,b) \):

\[
K_m = Q_mR_m.
\]

Therefore, the Arnoldi process offers a systematic construction of orthonormal bases for successive Krylov subspaces.
CHAPTER 2. ITERATION METHODS

Algorithm 6: Arnoldi iteration

2. The Hessenberg matrices H_m are the projections of A onto the m-dimensional Krylov subspace $K_m(A, b)$

$$H_m = Q_m^* A Q_m.$$

Since H_m is a projection of A the eigenvalues of H_m are related to those of A. The eigenvalues θ_j of the matrix H_m are called Arnoldi estimates or Ritz values.

Arnoldi estimates are most accurate approximations of eigenvalues. Therefore, an obvious way of approximating the eigenvalues of $A \in \mathbb{C}^{n \times n}$ where n is large is to

1. Calculate the matrix H_m using Algorithm 6 for some $m << n$.
2. Calculate the eigenvalues of H_m ($\in \mathbb{C}^{m \times m}$) with a standard method (e.g. QR algorithm).

The Arnoldi process has interesting connection to polynomial approximation theory. This can help us to analyse in which way Arnoldi approximates eigenvalues, and which eigenvalues it will find (typically, it will detect only a few eigenvalues, since $m << n$).

If a vector is in a Krylov subspace of dimension $m + 1$, i.e. $x \in K_{m+1}(A, b)$, it can be expressed as

$$x = c_0 b + c_1 A b + \ldots + c_m A^m b,$$

or if $q(z) = c_0 + c_1 z + \ldots + c_m z^m$ in polynomial form as

$$x = q(A)b.$$

Lets define P_m as the set of all monic (i.e the polynomials, where the highest coefficient $c_m = 1$) polynomials of degree m:

Lemma 2.2.3. The characteristic polynomial of the Hessenberg matrix H_m is the unique solution of the minimization problem to find $p_m \in P_m$ such that

$$\|p_m(A)b\|$$

is minimal.
This relates the characteristic polynomial of H_m, which acts as a ‘pseudo minimal polynomial’, to the characteristic polynomial of A which is the exact minimal polynomial.

2.2.2 Lanczos iteration

Arnoldi iteration is simplified if the matrix A is symmetric or hermitian. In this case, the matrix H will not only have Hessenberg structure but is tridiagonal.

We rewrite the equation $H_n = Q_n^* A Q_n$, component-wise,

$$h_{ij} = q_i^T A q_j.$$

This implies that $h_{ij} = 0$, for $i > j + 1$ since $A q_j \in \{q_1, q_2, ..., q_{j+1}\}$ and the Krylov vectors are orthogonal. Taking the transpose gives

$$h_{ij} = q_j^T A^T q_i.$$

Since $A = A^T$, then $h_{ij} = 0$, for $j > i + 1$.

Therefore the recurrence equation (Eqn 2.6) turns into the simpler recurrence

$$A q_m = h_{(m-1)m} q_{m-1} + h_{mm} q_m + h_{(m+1)m} q_{m+1} \quad (2.7)$$

that is used in the hermitian case.

2.2.3 Generalized minimal residuals (GMRES)

The Arnoldi process can be used to approximately solve linear equations $A x = b$. Let’s assume $A \in \mathbb{R}^{n \times n}$ to be a regular matrix and consider the m-th Krylov subspaces $K_m(A, b)$.

The idea of generalized minimal residuals (GMRES) is to choose each iterate $x^{(m)} \in K_m(A, b)$ in order to minimize the norm of the residual $r^{(m)} = b - A x^{(m)}$.

The iterate $x^{(m)} \in \mathbb{R}^n$ can be written as $x^{(m)} = K_m c$ where $K_m \in \mathbb{R}^{n \times m}$ is the m-th Krylov matrix and $c \in \mathbb{R}^m$. Finding the minimal residuum is a least square problem:

$$c = \arg \min \| A K_m c - b \|, \quad x^{(m)} = K_m c.$$

This method is numerically unstable since K_m is typically ill conditioned. But, we can easily fix this by taking Q_m from Section 2.2.1 instead of K_m, which is as basis for the Krylov subspace $K_m(A, b)$. The matrices Q_m can be iteratively created using Arnoldi iteration (see Theroem 2.2.2). Therefore, we write $x^{(m)} = Q_m y$ and minimize

$$y = \arg \min \| A Q_m y - b \|, \quad x^{(m)} = Q_m y.$$

Applying Eqn (2.5) yields

$$y = \arg \min \| Q_{m+1} \hat{H}_m y - b \|, \quad x^{(m)} = Q_m y,$$

and multiplying the least square problem by Q_{m+1}^* gives

$$y = \arg \min \| \hat{H}_m y - Q_{m+1}^* b \|, \quad x^{(m)} = Q_m y.$$

Finally, we arrive at Algorithm 7 after inserting $\| b \| e_1 = Q_{m+1}^* b$. This can be easily verified, since $q_1 = b / \| b \|$ (see Algorithm 6) and q_j are orthonormal vectors.
CHAPTER 2. ITERATION METHODS

Algorithm 7: GMRES algorithm

2.2.4 Conjugate gradients (CG)

The conjugate gradient (CG) method is a very effective way to solve the linear equation $Ax = b$, if $A \in \mathbb{R}^{n \times n}$ is a symmetric and positive definite matrix.

The mapping $\langle \cdot, \cdot \rangle_A : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$,

$$\langle x, y \rangle_A := x^T A y = \langle x, Ay \rangle$$

defines a scalar product on \mathbb{R}^n (because of positive definiteness). The corresponding norm

$$\|x\|_A := \sqrt{\langle x, x \rangle_A} = \sqrt{x^T A x}$$

is called the energy norm induced by A.

The CG method picks the iterate $x^{(m)} \in K_m(A, b)$ to minimize the energy norm of the error $e^{(m)} := x^{(m)} - \hat{x}$, where $\hat{x} := A^{-1} b$ is the exact solution, thus $x^{(m)} \in K_m(A, b)$, such that $\|e^{(m)}\|_A = \text{minimum}$.

In the following we will construct the iterative method. First, we notice that the equation can be reformulated as a quadratic optimisation problem. We define the mapping $\Phi : \mathbb{R}^n \to \mathbb{R}$ as

$$\Phi(x) := \frac{1}{2} x^T A x - x^T b .$$

(2.8)

Then $\nabla \Phi(x) = Ax - b$, which shows that $\hat{x} \in \mathbb{R}^n$ is a critical point of Φ, if and only if \hat{x} satisfies $A\hat{x} = b$. Moreover, the Hessian of Φ is simply the positive definite matrix A, showing that Φ is strictly convex and therefore $\hat{x} := A^{-1} b$ is its unique minimiser.

Rewriting the functional Φ, we show that

$$\Phi(x) - \Phi(\hat{x}) = \frac{1}{2} x^T A x - x^T b - \frac{1}{2} \hat{x}^T A \hat{x} + \hat{x}^T b$$

$$= \frac{1}{2} (x - \hat{x})^T A (x - \hat{x}) + \frac{1}{2} (\hat{x}^T A \hat{x} + \hat{x}^T A x) - \hat{x}^T A \hat{x} - x^T b + \hat{x}^T b$$

$$= \frac{1}{2} (x - \hat{x})^T A (x - \hat{x})$$

$$= \frac{1}{2} \|x - \hat{x}\|^2_A$$

Data: Matrix A, vector b, number n
Initialisation: $k = 1$
while convergence criterion not satisfied do

$Q_k, \hat{H}_k = \text{Arnoldi iteration one step from Alg. 6}$
$y = \arg \min \|\hat{H}_k y - \|b\| e_1\|$ least square problem
$x^{(k)} = Q_k y$
$k \leftarrow k + 1$
end

2.2.4 Conjugate gradients (CG)
Thus, minimising Φ is equivalent to minimising the error $e^{(n)}$ in the energy norm.

We approximate \hat{x} by successively minimizing the functional Φ. Let $x^{(k)}$ the actual approximation, then we find the next iterate by

$$x^{(k+1)} = x^{(k)} + \alpha^{(k)} d^{(k)},$$ \hspace{1cm} (2.9)

where $d^{(k)} \neq 0$ is the search direction and $\alpha^{(k)}$ is magnitude we 'move' into this direction.

For a given $d^{(k)}$ we determine α by minimizing along the direction $d^{(k)}$. First we define the mapping $\alpha \to F(\alpha)$ by

$$F(\alpha) := \Phi(x^{(k)} + \alpha d^{(k)}) = \Phi(x^{(k)}) + \alpha d^{(k)} T A x^{(k)} + \frac{1}{2} \alpha^2 d^{(k)} T A d^{(k)} - \alpha d^{(k)} T b.$$

Then, $F(\alpha)$ is minimal if $F'(\alpha^{(k)}) = 0$, thus

$$\alpha^{(k)} = \frac{\langle b - A x^{(k)} \rangle^T d^{(k)}}{d^{(k)} T A d^{(k)}} =: \frac{r^{(k)} T d^{(k)}}{d^{(k)} T A d^{(k)}},$$ \hspace{1cm} (2.10)

where $r^{(k)} = b - A x^{(k)}$ is the residuum at the k-th iterate.

In the CG method, the direction $d^{(k+1)}$ is chosen to be a linear combination of the previous direction $d^{(k)}$ and the residual $r^{(k+1)}$ in such a way that $d^{(k+1)}$ and $d^{(k)}$ are orthogonal with respect to A

$$d^{(k+1)} := r^{(k+1)} + \beta_k d^{(k)},$$

with β_k such that

$$\langle d^{(k)}, d^{(k-1)} \rangle_A = d^{(k)} T A d^{(k-1)} = 0.$$

We calculate

$$0 = d^{(k+1)} T A d^{(k)} = r^{(k+1)} T A d^{(k)} + \beta_k d^{(k)} T A d^{(k)},$$

and therefore

$$\beta^{(k)} = -\frac{r^{(k+1)} T A d^{(k)}}{d^{(k)} T A d^{(k)}} = -\frac{\langle r^{(k+1)}, d^{(k)} \rangle_A}{\langle d^{(k)}, d^{(k)} \rangle_A}.$$ \hspace{1cm} (2.11)

With Eqs (2.10) and (2.11) the CG iteration of Eqn (2.9) is well defined. We summarize:

Theorem 2.2.4. Let $A \in \mathbb{R}^{n \times n}$ be symmetric and positive definite and let $\Phi : \mathbb{R}^n \to \mathbb{R}$ be as in (2.8). Let $x^{(0)} = 0$ and consider the iteration (the CG method)

$$x^{(k+1)} = x^{(k)} - \frac{\langle r^{(k)}, d^{(k)} \rangle_A}{\langle d^{(k)}, d^{(k)} \rangle_A} d^{(k)}$$

with $r^{(k)} := b - A x^{(k)}$, $d^{(0)} = r^{(0)}$, and

$$d^{(k)} = r^{(k)} - \frac{\langle r^{(k)}, d^{(k-1)} \rangle_A}{\langle d^{(k-1)}, d^{(k-1)} \rangle_A} d^{(k-1)},$$

where we assume that the iteration is stopped if $r^{(k)} = 0$.

If $r^{(k)} = 0$, then $x^{(k)} = \hat{x} = A^{-1} b$. Else, the Krylov space $\mathcal{K}_k(A, b)$ has dimension k and $x^{(k)}$ minimises Φ on the space $\mathcal{K}_k(A, b)$.
CHAPTER 2. ITERATION METHODS

Some properties of the CG method are described by the following lemma:

Lemma 2.2.5. Let \(x^{(0)} \) an arbitrary initial vector, and \(d^{(0)} = r^{(0)} \). If \(x^{(k)} \neq \hat{x} \) for \(k = 0, \ldots, m \), then

1. \(r^{(m)} T d^{(j)} = 0 \), \(\forall 0 \leq j < m \),
2. \(r^{(m)} T r^{(j)} = 0 \), \(\forall 0 \leq j < m \),
3. \(\langle d^{(m)}, d^{(j)} \rangle_A = 0 \), \(\forall 0 \leq j < m \).

The first equation shows that the residuals are orthogonal to all prior search directions. Thus, to reach the exact solution it is enough to go into each direction only once.

The second equation shows that the residuals are orthogonal to each other. This means especially that the residuals are linear independent, and therefore the CG method finds the solution \(\hat{x} \) in at most \(n \) steps.

The third equation shows that all search directions are orthogonal to each other regarding the inner product \(\langle \cdot, \cdot \rangle_A \).

See [2] for a proof of the lemma.

The following reformulations of \(\alpha^{(k)} \) (Eqn 2.10), and \(\beta^{(k)} \) (Eqn 2.11) yields the method described in Algorithm 8:

- We calculate
 \[
 r^{(k)} T d^{(k)} = r^{(k)} T r^{(k)} + \beta^{(k-1)} r^{(k)} T d^{(k-1)} = r^{(k)} T r^{(k)} \quad \text{(by Lemma 2.2.5)}.
 \]
 Inserting into Eqn (2.10) yields
 \[
 \alpha^{(k)} = \frac{\| r^{(k)} \|^2}{\langle d^{(k)}, d^{(k)} \rangle_A}. \tag{2.12}
 \]

- First we notice that \(-\alpha A d^{(k)} = r^{(k+1)} - r^{(k)} \). This is easily verified by multiplying the equation by \(A^{-1} \) from left, yielding Eqn (2.9). Then we can calculate
 \[
 r^{(k+1)} t A d^{(k)} = -\frac{1}{\alpha^{(k)}} (r^{(k+1)} t r^{(k+1)} - r^{(k+1)} t r^{(k)}) = -\frac{1}{\alpha^{(k)}} \| r^{(k+1)} \|^2 \quad \text{(by Lemma 2.2.5)}
 \]
 \[
 = -\frac{\| r^{(k+1)} \|^2}{\| r^{(k)} \|^2} d^{(k)} t A d^{(k)}.
 \]
 Inserting into Eqn (2.11) yields
 \[
 \beta^{(k)} = \frac{\| r^{(k+1)} \|^2}{\| r^{(k)} \|^2} . \tag{2.13}
 \]
2.2. KRYLOV SUBSPACE METHODS

Data: a positive definite and symmetric matrix $A \in \mathbb{R}^{n \times n}$, some $b \in \mathbb{R}^n$

Result: the solution $x^* \in \mathbb{R}^n$ of $Ax = b$

Initialisation: set $x^{(0)} = 0$, $r^{(0)} = b$, $d^{(0)} = r^{(0)}$, $k = 0$

while convergence criterion not satisfied do

 $\alpha^{(k)} = \frac{\|r^{(k)}\|^2}{\langle d^{(k)}, d^{(k)} \rangle_A}$

 $x^{(k+1)} = x^{(k)} + \alpha^{(k)}d^{(k)}$

 $r^{(k+1)} = r^{(k)} - \alpha^{(k)}Ad^{(k)}$

 $\beta^{(k)} = \frac{\|r^{(k+1)}\|^2}{\|r^{(k)}\|^2}$

 $d^{(k+1)} = r^{(k+1)} + \beta^{(k)}d^{(k)}$

 $k \leftarrow k + 1$

end

define $\hat{x} := x^{(k)}$

Algorithm 8: Conjugate gradient method.

Theoretically, solving an equation with the conjugate gradient method is not very efficient, because it requires more operations than for instance a Cholesky or LDL decomposition. In addition, the convergence after n steps is purely theoretical, as it only holds when all the computations are performed in exact arithmetic without any rounding errors. In practise, however, it performs much better, because one can, and should, make use of the advantage of iterative methods: One need not stop only when the residual equals zero, but rather when the residual is sufficiently small.

One problem of CG and GMRES methods is that the convergence speed depends heavily on the condition of the matrix A. In order to improve the performance, usually the method is not applied directly to the equation $Ax = b$, but rather to a transformed problem $M^{-1}Ax = M^{-1}b$, where the (easily invertible) matrix M is chosen in such a way that $M^{-1}A$ is much better conditioned than A. This approach is called preconditioning.

In theory, a slightly different approach is required, as the matrix $M^{-1}A$ will not be symmetric any more. To that end one can consider a Cholesky factorisation $M = LL^T$ of the positive definite and symmetric matrix M and then apply the CG method to the equation $L^{-1}AL^{-T}\hat{x} = L^{-1}b$ and solve $L^T\hat{x} = \hat{x}$. It is possible to rewrite the resulting algorithm in a such a way that one only needs the original matrix M and never its factorisation.
Chapter 3

Nonlinear systems of equations

In this chapter we solve the equation $f(x) = 0$ numerically for arbitrary f in one and higher dimensions. This will be achieved by methods that are based on the Newton’s method.

Obviously, solving such equations has many application. A frequent application arises from unconstrained optimisation, since the derivative of the function is set to zero in order to find extremal points.

The section is closely based on [6], with additional comments from [5].

3.1 Newton’s method

3.1.1 One-dimensional geometric motivation

We want to numerically find the root of a dimensional function, thus for a given function $f : \mathbb{R} \rightarrow \mathbb{R}$ we search for $x \in \mathbb{R}$ so that $f(x) = 0$. Furthermore, we assume f to be continuously differentiable.

We start with an initial guess x_0 and iteratively improve it. The idea of the method is to locally approximate the function by its tangent around the guess $x^{(k)}$:

$$f(x^{(k)} + h) = f(x^{(k)}) + hf'(x^{(k)}) + O(h^2).$$

In the next step the x-intercept of the tangent is computed ($0 = f(x^{(k)}) + hf'(x^{(k)})$). The value $x^{(k+1)} = x^{(k)} + h$ will typically be a better approximation. Thus we obtain the following iterative method

$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}. \quad (3.1)$$

In this way $x^{(k)}$ is improved in every step (illustrated in Figure 3.1).

Newton’s method is frequently used in solving equations as well as in optimisation. It is a very powerful approach since its convergence rate is quadratic. However, the Newton method has two main difficulties: First, if a stationary point of the function f is encountered, i.e. $f'(x^{(k)}) = 0$, we cannot calculate
Second, Newton’s method does not globally converge. Indeed, for arbitrary initialisation x_{init}, we can expect Newton’s method to diverge. One possibility for obtaining a higher probability of convergence is the combination of Newton’s method with one of the line search algorithms of Section 3.3.

3.1.2 Higher-dimensional generalisation

In this section we consider the case where we have n equations and n unknowns, thus for a given function $f : \mathbb{R}^n \to \mathbb{R}^n$ we search for $x \in \mathbb{R}^n$ so that $f(x) = 0$. Again, we assume f to be continuously differentiable.

We use the same concept as in the one-dimensional case. We first linearise around the point $x^{(k)}$:

$$f(x^{(k)} + d) \approx f(x^{(k)}) + J_f(x^{(k)})d + O(\|d\|^2),$$

with $x^{(k)} \in \mathbb{R}^n$ and $d^{(k)} \in \mathbb{R}^n$, and where $J_f(x^{(k)}) \in \mathbb{R}^{n \times n}$ is the Jacobian matrix.

As in the one-dimensional case we set the linearised equation to zero, i.e. $f(x^{(k)}) + J_f(x^{(k)})d = 0$, and solve for d, thus $d = -J_f^{-1}(x^{(k)})f(x^{(k)})$, where $J_f^{-1}(x^{(k)})$ is the inverse of the Jacobian matrix. This yields the following iteration

$$x^{(k+1)} = x^{(k)} - J_f^{-1}(x^{(k)})f(x^{(k)}).$$

The equation corresponds to the one-dimensional case (see Eqn 3.1), but the method is not implemented in this way. Since the calculation of the inverse Jacobian is computationally expensive, d is calculated directly from the linear system of equations

$$J_f(x^{(k)})d = -f(x^{(k)}),$$

$$x^{(k+1)} = x^{(k)} + d.$$

This method is described in Algorithm 9.

Generally, the computation time of d has to be taken into account when one studies the efficiency of the method. For decomposition methods the computation time is of order n^3. Iterative methods as described in Chapter 2 may often be faster depending how accurate d is computed.

Data: function $f : \mathbb{R}^n \to \mathbb{R}^n$, initial guess $x_{\text{init}} (\in \mathbb{R}^n)$;

Initialisation: set $x_1 := x_{\text{init}}$, $k = 1$;

while convergence criterion not satisfied **do**

- solve $J_f(x_k)d = -f(x_k)$ for d
- $x^{(k+1)} := x^{(k)} + d$
- $k \leftarrow k + 1$

end

Algorithm 9: Newton’s method.
3.1. NEWTON’S METHOD

The Newton method in higher dimensions has similar drawbacks than in one dimension: Problems will arise when the matrix $J_f(x^{(k)})$ is ill conditioned, because then an accurate solution of the equation $J_f(x^{(k)})d = -f(x^{(k)})$ is difficult. Furthermore, we can not guarantee convergence for arbitrary initial values.

Additionally, the computation of the Jacobian $J_f(x^{(k)})$ in each Newton step is computational expensive for large systems of equations. In the following two sections we discuss methods that have been developed specifically to counter these problems.

3.1.3 Stopping Criteria

The Newton’s method can be stopped when one of the following conditions are satisfied for a given small $\epsilon > 0$:

1. $\|x^{(k+1)} - x^{(k)}\| \leq \epsilon$
2. $\frac{\|x^{(k+1)} - x^{(k)}\|}{\|x^{(k)}\|} \leq \epsilon$
3. $f(x^{(k)}) \leq \epsilon$
4. $k = N$, for a given N (specify a maximum number of iterations).

3.1.4 Convergence

Theorem 3.1.1. Let $U \subseteq \mathbb{R}^n$ be an open set and C a convex subset of U. Let $f : U \rightarrow \mathbb{R}^n$, be continuous and differentiable in C. If there exist a $x^{(0)} \in C$ and positive constants $r, \alpha, \beta, \gamma, h$ such that:

$$B_r(x^{(0)}) \subseteq C, \quad h := \frac{\alpha \beta \gamma}{2} < 1, \quad r := \frac{\alpha}{1 - h}$$

and

1. $\|J_f(x) - J_f(y)\| \leq \gamma \|x - y\|, \quad x, y \in C$
2. $\|J_f^{-1}(x)\| \leq \beta, \quad x \in C$
3. $\|J_f^{-1}(x^{(0)})f(x^{(0)})\| \leq \alpha$

then,

1. The iteration scheme

$$x^{(k+1)} = x^{(k)} - J_f^{-1}(x^{(k)})f(x^{(k)})$$

is well-defined and $x^{(k)} \in B_r(x^{(0)})$ for every k.
2. $\lim_{k \rightarrow \infty} x^{(k)} = \hat{x}$ exists with $\hat{x} \in B_r(x^{(0)})$ and $f(\hat{x}) = 0$.
3. For every $k \geq 0$, holds

$$\|x^{(k)} - \hat{x}\| \leq \alpha \frac{h^{2k} - 1}{1 - h^{2k}}.$$

Since $0 < h < 1$, the Newton’s method converges at least locally quadratic.
CHAPTER 3. NONLINEAR SYSTEMS OF EQUATIONS

Figure 3.1: One iteration of the one-dimensional Newton method.

Proof. See [4]. □

Lemma 3.1.2. If the assumptions of the previous theorem are satisfied, then

$$\lim_{k \to \infty} \frac{x^{(k+1)} - \hat{x}}{(x^{(k)} - \hat{x})^2} = \frac{f''(\hat{x})}{2f'(\hat{x})}.$$

Proof. We consider the Taylor expansions of $f(x^{(k)})$ and $f'(x^{(k)})$ and apply them in the iteration scheme. □

3.2 Quasi-Newton methods

3.2.1 One-dimensional motivation: Secant method

For a given function $f : \mathbb{R} \to \mathbb{R}$ and we search for $x \in \mathbb{R}$ so that $f(x) = 0$. As in the one-dimensional Newton method the idea is to employ an iterative algorithm, defining the next iterate $x^{(k+1)}$ by approximating the function f around $x^{(k)}$ linearly by $f(x) \approx f(x^{(k)}) + f'(x^{(k)})(x - x^{(k)})$, and then solving the linear equation $f(x^{(k)}) + f'(x^{(k)})(x - x^{(k)}) = 0$ for x.

Since $f'(x^{(k)})$ may not exist, or may be zero, or could be difficult to calculate numerically, we avoid direct calculation, and use the following approximation instead:

$$f'(x^{(k)}) = \frac{f(x^{(k)}) - f(x^{(k-1)})}{x^{(k)} - x^{(k-1)}}.$$

Note that the approximation becomes more exact as the method converges (i.e. $x^{(k)} - x^{(k-1)} \to 0$).

Inserting this additional approximation into Eqn (3.1)

$$x^{(k+1)} = x^{(k)} - \frac{x^{(k)} - x^{(k-1)}}{f(x^{(k)}) - f(x^{(k-1)})} f(x^{(k)})$$
is obtained.

More intuitively, the idea behind this approach is to approximate the function \(f \) (or its graph) near \(x^{(k)} \) by the secant through the points \((x^{(k)}, f(x^{(k)})) \) and \((x^{(k-1)}, f(x^{(k-1)})) \) and then to find the zero of this line. Hence the name: secant method. See also Figure 3.2.

Using this approach we do not have to calculate the derivative \(f'(x^{(k)}) \). This simplification, however, comes at a price: instead of quadratic convergence, one only has super-linear convergence (more precisely, the convergence rate equals the golden section (\(\sqrt{5} + 1 \))/2).

Note, that the secant method has an interpretation that is very similar to that of Newton’s method. In Newton’s method, we have approximated the function \(f \) by its linearisation around \(x^{(k)} \). Here, we use the following approximation \(\tilde{f} \) of \(f \) satisfying \(\tilde{f}(x^{(k)}) = f(x^{(k)}) \) and the one-dimensional secant equation

\[
\tilde{f}'(x^{(k)})(x^{(k)} - x^{(k-1)}) = f(x^{(k)}) - f(x^{(k-1)}).
\]

3.2.2 Higher-dimensional generalisation

For generalising the one-dimensional secant method to higher dimensions we first start analogously to Section 3.1.2 and linearise the function \(f : \mathbb{R}^n \to \mathbb{R}^n \) around \(x^{(k)} \in \mathbb{R}^n \) by

\[
\tilde{f}(x^{(k)} + d) = f(x^{(k)}) + B_k d
\]

where \(B_k \in \mathbb{R}^{n \times n} \) is an approximation of the Jacobian \(J_f(x^{(k)}) \). We calculate \(d \) from \(\tilde{f} = 0 \), which can be computed by solving the system of linear equations \(B_k d = -f(x^{(k)}) \).

This approach makes sense, if the following conditions are satisfied:

- The matrix \(B_k \) must be an estimate of \(J_f(x^{(k)}) \) in some sense. Otherwise, we cannot expect good convergence rates.
CHAPTER 3. NONLINEAR SYSTEMS OF EQUATIONS

- The equation $B_k d = -f(x^{(k)})$ can be solved without too much effort. This could be achieved by approximating B_k^{-1} instead of B_k.

Quasi-Newton methods choose the estimates B_k of the Jacobian $J_f(x^{(k)})$ to fit the secant equation for more dimensions which is given by

$$B_{k+1}(x^{(k+1)} - x^{(k)}) = f(x^{(k+1)}) - f(x^{(k)}).$$

(3.3)

For more than one dimension this system of equations is highly under determined (n equations, $n \times n$ unknowns). As a result the choice of B_k is not unique.

Broyden’s method uses an initial estimate B_k and improves it by taking the solution of the secant equation which is a minimal modification to B_k.

We construct a matrix B_{k+1} such that

$$B_{k+1}s^{(k+1)} = y^{(k+1)}, \text{ and }$$

$$B_{k+1}u = B_k u \text{ for all } u \text{ orthogonal to } s^{(k+1)},$$

(3.4)

(3.5)

where

$$s^{(k+1)} := x^{(k+1)} - x^{(k)}, \text{ and }$$

$$y^{(k+1)} := f(x^{(k+1)}) - f(x^{(k)}).$$

Thus, Eqn (3.4) is just a reformulation of the secant equation (Eqn 3.3).

The construction of B_k is achieved by the following rank one update:

$$B_{k+1} = B_k + \frac{y^{(k+1)} - B_k s^{(k+1)}}{s^{(k+1)T} s^{(k+1)}} s^{(k+1)T} B_k^{-1} y^{(k+1)}.$$

(3.6)

We show that B_{k+1} fits into Eqs (3.4) and (3.5): This is done by multiplying Eqn (3.6) by a u, such that $(s^{(k+1)}, u) = 0$. Then, the second term of the right hand side vanishes, and therefore $B_{k+1} u = B_k u$ (Eqn 3.5).

Furthermore, if we multiply Eqn (3.6) by $s^{(k+1)}$, we obtain $B_{k+1} s^{(k+1)} = B_k s^{(k+1)} + y^{(k+1)} - B_k s^{(k+1)} = y^{(k+1)}$, yielding Eqn (3.4).

Sherman-Morrison formula is used to update the inverse of the Jacobian matrix directly, yielding

$$B_{k+1}^{-1} = B_k^{-1} + \frac{s^{(k+1)} - B_k^{-1} y^{(k+1)}}{s^{(k+1)T} B_k^{-1} y^{(k+1)}} s^{(k+1)T} B_k^{-1}.$$

(3.7)

The method is referred to as good Broyden’s method and is illustrated in Algorithm 10. For initialisation of B_1^{-1} the inverted Jacobian $J_f(x_{init})$ is calculated exactly.

Generally, for arbitrary initial values all Quasi-Newton methods (like Newton methods) do not always converge. One possibility for obtaining a higher probability of convergence is using line search as described in the following section.
3.3 Basic Line Search Concepts

In this section, we assume that we have already calculated a direction $d \in \mathbb{R}^n$, such that

$$x^{(k+1)} = x^{(k)} + d,$$

(3.8)

see Sections 3.1.2 and 3.2.2 Instead of using Eqn (3.8) we will use

$$x^{(k+1)} = x^{(k)} + td,$$

(3.9)

and try to find a good step size t, that minimizes the function f along the line $x^{(k)} + td$, e.g.

$$g(t) := \frac{1}{2} \|f(x^{(k)} + td)\|^2.$$

Line search algorithms use the following framework of Algorithm 11 that consist of two sub-algorithms:

First, an algorithm that, given the values $t > 0$, $g(t)$, and, possibly, $g'(t)$, decides whether the step size t is too large, too small, or acceptable.

Second, an algorithm that computes a new candidate for the step size if the former candidate has been rejected.

First we note that the classification sub-algorithm has to satisfy at least the following properties.

1. For each $t > 0$, either t is classified as too small, or t is classified as too large, or t is accepted.
3. There is some upper bound t_{max} such that every $t > t_{\text{max}}$ is classified as too large. Thus it cannot happen that the step size increases to $+\infty$ and the line search fails to terminate (note that the upper bound need not be given explicitly).

3. Whenever t_L is classified as too small and t_R is classified as too large, there exists a non-empty open interval $I \subset [t_L, t_R]$ such that every element in I is classified as satisfactory (thus the algorithm has a chance to terminate for suitable updates of t).

Note that these three properties do not imply that the result will be a good choice for a step size; they are merely required for obtaining any result at all.

3.3.1 Armijo

One main criterion in all modern line search algorithms is that the actual decrease of the function g is (at least) of the same order as the expected decrease.

The expected decrease for a step size $t > 0$ is given by the derivative of g at zero, multiplied by t. Thus we should consider a step size too large, if the difference $g(t) - g(0)$ is much larger than $tg'(0)$ (note that $g'(0)$ is assumed to be negative!).

In practise, this means that we choose some $0 < m_1 < 1$ and say that a step size t is too large, if

$$g(t) > g(0) + m_1 tg'(0).$$ \hspace{1cm} (3.10)

The condition (3.10) is called Armijo’s rule. For an illustration see Figure 3.3. In principle, this condition alone can already be used for the classification step in a line search algorithm. Then we end up with the simple Algorithm 12.

The usage of Armijo’s is limited, because it never declares a step size to be too small. However, this only works, if we either have a good understanding of the function we want to optimise, or the algorithm that determines the search direction at the same time yields a step length. This is for instance the case in
3.3. BASIC LINE SEARCH CONCEPTS

<table>
<thead>
<tr>
<th>Algorithm 12: Line search with Armijo’s rule.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialisation: choose some $t > 0$ and $0 < m_1 < 1$</td>
</tr>
<tr>
<td>while $g(t) > g(0) + m_1 t g'(0)$ do</td>
</tr>
<tr>
<td>1. decrease t</td>
</tr>
<tr>
<td>end</td>
</tr>
<tr>
<td>define $t^* := t$</td>
</tr>
</tbody>
</table>

the Newton method and its derivatives, where the step length $t = 1$ is asymptotically optimal and the main task of the line search is to increase the region of convergence of the method.

3.3.2 Goldstein and Price

The second classification sub-algorithm we discuss is based on Armijo’s rule, but, in addition, introduces a criterion that decides whether a step size is too small. Again this criterion compares the actual decrease with the expected decrease. The difference is now that we declare the step size too small if the actual decrease is not much smaller than the expected one. The idea is, that it should be possible to decrease the value of g further by increasing t.

In practise, this means that we choose two numbers $0 < m_1 < m_2 < 1$ and say that:

- t is too large if $g(t) > g(0) + m_1 t g'(0)$,
- t is too small if $g(t) < g(0) + m_2 t g'(0)$,
- t is acceptable, if

$$m_2 g'(0) \leq \frac{g(t) - g(0)}{t} \leq m_1 g'(0).$$

These three conditions are called the rule of Goldstein and Price. An interpretation of these condition is shown in Figure 3.4. The method is summarised in Algorithm 13.

3.3.3 Wolfe

The two methods discussed above only use the function values $g(0)$ and $g(t)$, as well as the derivative $g'(0)$ for determining the step length, but not the derivative of g at other points. It is reasonable to assume that the additional usage of gradient information may lead to better results of the line search provided that the cost of computing derivatives is not too large. We will, however, still base the decision whether a step size is too large on Armijo’s rule and only use the gradient information for declaring step sizes too small.

We choose two numbers $0 < m_1 < m_2 < 1$ and say that:

- t is too large if $g(t) > g(0) + m_1 t g'(0)$,
- t is too small if $g(t) \leq g(0) + m_1 t g'(0)$ and $g'(t) < m_2 g'(0)$,
- t is acceptable, if $g(t) \leq g(0) + m_1 t g'(0)$ and $g'(t) \geq m_2 g'(0)$.
CHAPTER 3. NONLINEAR SYSTEMS OF EQUATIONS

Figure 3.4: Goldstein and Price line search. In addition to Armijo’s rule, a step size is declared too small, if the actual decrease of the function value is not much smaller than the predicted decrease.

\[
\text{Initialisation: set } t_L = 0 \text{ and } t_R = +\infty \text{ choose some initial } t > 0; \text{ declare } t \text{ unacceptable, fix } 0 < m_1 < m_2 < 1; \]
\[\text{while } t \text{ is unacceptable do} \]
\[\quad \text{if } g(t) > g(0) + m_1tg'(0) \text{ then} \]
\[\quad \quad \text{set } t_R \leftarrow t; \]
\[\quad \quad \text{choose new } t \in (t_L, t_R) \]
\[\text{else if } g(t) < g(0) + m_2tg'(0) \text{ then} \]
\[\quad \quad \text{set } t_L \leftarrow t; \]
\[\quad \quad \text{choose new } t \in (t_L, t_R) \]
\[\text{else} \]
\[\quad \quad \text{declare } t \text{ acceptable} \]
\[\text{end} \]
\[\text{end} \]
\[\text{define } t^* := t \]

\textbf{Algorithm 13:} Line search according to Goldstein and Price.

Figure 3.5: Wolfe’s line search. In addition to Armijo’s rule, one compares the derivative of \(g\) at \(t\) with the derivative of \(g\) at the origin.
3.3. BASIC LINE SEARCH CONCEPTS

Initialisation: set $t_L = 0$ and $t_R = +\infty$ choose some initial $t > 0$; declare t unacceptable, fix $0 < m_1 \leq m_2 < 1$;

while t is unacceptable **do**

- **if** $g(t) > g(0) + m_1 tg'(0)$ **then**
 - set $t_R \leftarrow t$;
 - choose new $t \in (t_L, t_R)$
- **else if** $g'(t) < m_2 g'(0)$ **then**
 - set $t_L \leftarrow t$;
 - choose new $t \in (t_L, t_R)$
- **else**
 - declare t acceptable

end

end

define $t^* := t$;

Algorithm 14: Wolfe’s line search.

This leads to Wolfe’s line search. An interpretation of these conditions is provided in Figure 3.5. The method is summarised in Algorithm 14.

While in general Wolfe’s line search should be preferred over the other methods, in situations where the evaluation of g' takes considerably more time than the evaluation of g alone the method of Goldstein and Price should take precedence. Note moreover that Wolfe’s line search is very well suited for the Quasi-Newton methods and ensures super-linear convergence of the algorithm.
Chapter 4

The Bernoulli and Poisson Processes

We follow \[1\].

Definition 4.0.1. A stochastic process is a mathematical model of a probabilistic experiment that evolves in time and generates a sequence of numerical values. Each numerical value is modeled by a random variable. Thus, a stochastic process is simply a (finite or infinite) sequence of random variables.

Two Cases:

1. Arrival-Type process: model in which the inter-arrival times (the times between successive arrivals) are independent random variables. Examples: Bernoulli process: arrivals occur in discrete time and the inter-arrival times are geometrically distributed. Poisson Process: arrivals occur in continuous time and the inter-arrival times are exponentially distributed.

4.1 Bernoulli Process

The Bernoulli process is a sequence of Bernoulli trials (for example coin tosses). Each trial produces a 1 (success) with probability p and a 0 (failure) with probability $1 - p$, independent of what happens in other trials.

Definition 4.1.1. The Bernoulli process is defined as a sequence $X_1, X_2, ...$ of independent Bernoulli random variables X_i with

$$P(X_i = 1) = P(\text{success at the } i\text{th trial}) = p,$$

and

$$P(X_i = 0) = P(\text{failure at the } i\text{th trial}) = 1 - p,$$

for each i.

Properties:
1. The binomial with parameters p and n. The number S of successes in n independent trials. Its probability mass functions (PMF), mean and variance are

$$p_S(k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, \ldots, n$$

and

$$E[S] = np, \quad \text{var}(S) = np(1-p).$$

2. The geometric with parameter p. The number T of trials up to (and) the first success. Its probability mass functions (PMF), mean and variance are

$$p_T(t) = (1-p)^{t-1}p, \quad t = 1, 2, \ldots$$

and

$$E[T] = \frac{1}{p}, \quad \text{var}(T) = \frac{1-p}{p^2}.$$

4.1.1 Independence and Memorylessness

Independence: If two random variables are independent, then any two functions of them are also independent. Let X_1, X_2, \ldots independent variables and $U = X_1 + X_2 + \ldots + X_5$ and $V = X_6 + X_7$. Then, U and V are also independent since the two collections have no common elements.

Memorylessness: Whatever has happened in past trials provides no information on the outcomes of future trials. Let T be the time until the first success which is a geometric random variable. Suppose that we were watching the process for n time steps and no success has been recorded. What can we say about the number $T - n$ of the remaining trials until the first success?

$$P(T - n = t \mid T > n) = (1-p)^{t-1}p = P(T = t), \quad t = 1, 2, \ldots$$

For any given time n,

1. the sequence of random variables X_{n+1}, X_{n+2}, \ldots is also a Bernoulli process and is independent from X_1, \ldots, X_n.

2. let T be the time of the first success after time n. Then $T - n$ has a geometric distribution with parameter p, and is independent of X_1, \ldots, X_n.

Example 4.1.2 (Fresh-Start at a random time). Let N be the first time that we have a success immediately following a previous success. That is N is the first i for which $X_{i-1} = X_i = 1$. What is the probability $P(X_{N+1} = X_{N+2} = 0)$?

4.1.2 Interarrival Times

An important random variable related to the Bernoulli process is the time of the kth success, denoted by Y_k. A related random variable is the kth interarrival time, denoted by T_k, defined by

$$T_1 = Y_1, \quad T_k = Y_k - Y_{k-1}, \quad k = 2, 3, \ldots$$
representing the number of trial following the (k-1)st success until the next success. We have that:

\[Y_k = T_1 + ... + T_k. \]

This idea can be applied to define the Bernoulli process differently but equivalently.

Definition 4.1.3. Start with a sequence of independent geometric random variables \(T_1, T_2, ... \) with common parameter \(p \), standing for the interarrival times. Record a success at times \(T_1, T_1 + T_2, ... \).

Properties of \(Y_k \): The PMF (called Pascal PMF of order \(k \)) is given by

\[
p_{Y_k}(t) = \binom{t-1}{k-1} p^k (1-p)^{t-k}, \quad t = k, k+1, ...
\]

and

\[
E[Y_k] = \frac{k}{p}, \quad \text{var}(Y_k) = \frac{k(1-p)}{p^2}.
\]

4.1.3 The Poisson Approximation to the Binomial

Consider \(n \) independent Bernoulli trials, the number of successes is a binomial random variable with parameter \(n \) and \(p \). We assume \(n \) to be large but \(p \) is small, so that the mean \(np \) is a moderate value.

A Poisson random variable \(Z \) with parameters \(\lambda \) takes nonnegative integer values. Its probability mass functions (PMF), mean and variance are

\[
p_Z(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, ..., \]

and

\[
E[Z] = \lambda, \quad \text{var}(Z) = \lambda.
\]

Then, for any fixed non negative \(k \), and \(p = \lambda/n \), with \(\lambda \) constant we get

\[
\lim_{n \to \infty} p_S(k) = p_Z(k).
\]

In general, the Poisson PMF is a good approximation of the binomial if \(\lambda = np \), for very large \(n \) and \(p \) very small.

4.2 The Poisson Process

The Poisson process is a continuous analog of the Bernoulli process. This process applies to situations where there is no way to divide time into discrete periods. We consider an arrival process that evolves in continuous time, in the sense that any real number \(t \) is a possible arrival time. We define

\[
P(k, \tau) = P(\text{there are exactly } k \text{ arrivals during an interval of length } \tau).
\]

Definition 4.2.1. An arrival process is called a Poisson process with arrival rate or intensity \(\lambda > 0 \) if it satisfies:
CHAPTER 4. THE BERNOULLI AND POISSON PROCESSES

Time-homogeneity The probability \(P(k, \tau) \) of \(k \) arrivals is the same for all intervals of the same length.

Independence The number of arrivals during a particular interval is independent of the history of arrivals outside this interval.

Small interval probability

\[
\begin{align*}
P(0, \tau) &= 1 - \lambda \tau + \mathcal{O}(\tau^2) \\
P(1, \tau) &= \lambda \tau + \mathcal{O}(\tau^2) \\
P(k, \tau) &= \mathcal{O}(\tau^2), \quad k = 2, 3, ...
\end{align*}
\]

Properties:

1. The Poisson with parameter \(\lambda \tau \). This is the number \(N_\tau \) of arrivals in a Poisson process with rate \(\lambda \), over an interval with length \(\tau \). Then, its probability mass functions (PMF), mean and variance are

\[
p_{N_\tau}(k) = P(k, \tau) = e^{-\lambda \tau} \frac{(\lambda \tau)^k}{k!}, \quad k = 0, 1, ...
\]

and

\[
E[N_\tau] = \lambda \tau, \quad \text{var}(N_\tau) = \lambda \tau.
\]

2. The exponential with parameter \(\lambda \). This is the time \(T \) until the first arrival. Its probability density functions (PDF), mean and variance are

\[
f_T(t) = \lambda e^{-\lambda t}, \quad t \geq 0, \quad \text{and} \quad f_T(t) = 0, \quad t < 0
\]

and

\[
E[T] = \frac{1}{\lambda}, \quad \text{var}(T) = \frac{1}{\lambda^2}.
\]

4.2.1 Independence and Memorylessness

Given that the Poisson process can be seen as a limiting case of the Bernoulli process, we get for any given time \(t > 0 \),

1. the history of the process after time \(t \) is also a Poisson process, and is independent from the history of the process until time \(t \).

2. let \(T \) be the time of the first arrival after time \(t \). Then,

\[
P(T - t > s) = P(0 \text{ arrivals during } [t, t+s]) = P(0, s) = e^{-\lambda s}
\]

4.2.2 Interarrival Times

An important random variable related to the Poisson process that starts at time zero is the time of the \(k \)th arrival, denoted by \(Y_k \). A related random variable is the \(k \)th interarrival time, denoted by \(T_k \), defined by

\[
T_1 = Y_1, \quad T_k = Y_k - Y_{k-1}, \quad k = 2, 3, ...
\]
representing the amount of time between the (k-1)st and the kth arrival. We have that:

\[Y_k = T_1 + \ldots + T_k. \]

This idea can be applied to define the Bernoulli process differently but equivalently.

Definition 4.2.2. Start with a sequence of independent exponential random variables \(T_1, T_2, \ldots \) with common parameter \(\lambda \), standing for the interarrival times. Record an arrival at times \(T_1, T_1 + T_2, \ldots \).

Properties of \(Y_k \): The PDF (called Erlang PDF of order \(k \)) is given by

\[
f_{Y_k}(y) = \frac{\lambda^k y^{k-1} e^{-\lambda y}}{(k-1)!}, \quad y \geq 0,
\]

and

\[
E[Y_k] = \frac{k}{\lambda}, \quad \text{var}(Y_k) = \frac{k}{\lambda^2}.
\]

4.2.3 Sums of random variables

Let \(N, X_1, X_2, \ldots \) be independent random variables, where \(N \) takes nonnegative integer values. Let \(Y = X_1 + \ldots + X_N \) for positive values of \(N \) and let \(Y = 0 \) if \(N = 0 \). Then:

1. If \(X_i \) is Bernoulli with parameter \(p \), and \(N \) is binomial with parameters \(m \) and \(q \), then \(Y \) is binomial with parameters \(m \) and \(pq \).

2. If \(X_i \) is Bernoulli with parameter \(p \), and \(N \) is Poisson with parameter \(\lambda \), then \(Y \) is Poisson with parameter \(\lambda p \).

3. If \(X_i \) is geometric with parameter \(p \), and \(N \) is geometric with parameter \(q \), then \(Y \) is geometric with parameter \(pq \).

4. If \(X_i \) is exponential with parameter \(\lambda \), and \(N \) is geometric with parameter \(q \), then \(Y \) is exponential with parameter \(\lambda q \).

We can prove the above sentences by using transforms.

Definition 4.2.3. The transform associated with a random variable \(X \) is a function of a scalar parameter \(s \), defined by

\[
M_X(s) = E[e^{sX}].
\]

Properties:

1. \(M_X(0) = 1 \).

2. \(\frac{d}{ds} M_X(0) = E[X] \).

3. \(M_{X+Y}(s) = M_X(s)M_Y(s) \), if \(X, Y \) are independent.

4. \(\lim_{s \to -\infty} M_X(s) = P(X = 0) \), if \(X \) takes only nonnegative integer values.
The transform uniquely determines the CDF of X, if M_X is finite for all $s \in [-c, c]$, $c > 0$. Now, if N, X_1, X_2, \ldots are independent random variables, where N takes nonnegative integer values, for $Y = X_1 + \ldots + X_N$ we get using the laws of total expectation and variance

2. $\text{var}(Y) = E[N]\text{var}(X) + E[X]^2\text{var}(N)$.
3. $M_Y(s) = M_N(\log(M_X(s)))$.

Example 4.2.4. If X_i is exponential with parameter λ, and N is geometric with parameter q, then Y is exponential with parameter λq. Indeed, using the above formulas we get

$$E[Y] = \frac{1}{\lambda q}, \quad \text{var}(Y) = \frac{1}{(\lambda q)^2}$$

and since

$$M_X(s) = \frac{\lambda}{\lambda - s}, \quad M_N(s) = \frac{qe^s}{1 - (1 - q)e^s},$$

we derive

$$M_Y(s) = \frac{\lambda q}{\lambda q - s},$$

which is a transform associated to an exponentially distributed random variable with parameter λq.
Chapter 5

Markov chains

5.1 Discrete-time Markov chains

The following presentation of Markov chains is based on the MIT lectures of John Tsitsiklis. Additional information can be found in [1, 7].

5.1.1 Modelling with Markov chains

Most generally, mathematical modelling of physical processes is done by deriving a new state \(x_{\text{new}} \) in dependence of an old state \(x_{\text{old}} \). Additionally, some random processes (noise) could be included:

\[
x_{\text{new}} = f(x_{\text{old}}, \text{noise}).
\]

In the following chapter we use discrete time steps and discrete state space. The modelling approach is illustrated by the following example of a checkout counter.

Example 5.1.1. We model a single checkout counter of a supermarket:

- We use discrete time steps \(n = 0, 1, 2, \ldots \) (e.g. hours).
- Customer arrivals happen according to a Bernoulli process (i.e. with chance \(p \) a customer arrives at each time step)
- Customer leave after a customer service time, which is a random amount of time calculated according to a geometric distribution (i.e. The probability distribution of the number \(X \) of Bernoulli trials with chance \(q \) needed to get one success).
- State of the system \(X_n \) is the number of customers at time \(n \).

The model can be visualized by a graph, see Figure 5.1. The states are the nodes of the graph, and the transitions between the states are the graph’s edges. Edge weights are the transition probabilities.

For \(X_n = 1, \ldots, N - 1 \) the probabilities are given by: (a) \(q(1-p) \) someone leaves, and no one arrives, (b) \(p(1-q) \) someone arrives, and no one leaves, and (c) \((1-p)(1-q) + pq \) nothing happens: no one leaves, and no one arrives, or someone arrives, and someone leaves.
In the following we will make probabilistic predictions how the model behaves, e.g. how many people will be at supermarket checkout counter when it closes at 7pm.

Definition 5.1.2. A Markov chain is a discrete time stochastic process \((X_n, n \geq 0)\) such that each random variable \(X_n\) takes values in a discrete set \(S\) and
\[
P(X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, \ldots, X_0 = i_0) = P(X_{n+1} = j | X_n = i).
\]
This equation describes the Markov property: The transition probability from \(X_n\) is independent of the way you got to \(X_n\), i.e. the process does not remember the past.

Modelling with Markov chains includes

1. Choosing states: The state space must be chosen carefully (a state must include everything that is relevant for the future)
2. Define possible transitions
3. Set transition probabilities

We use the notation
\[
p_{ij}(n) := P(X_{n+1} = j | X_n = i).
\]
Thus \(p_{ij}\) denotes the transition probability from state \(i\) to state \(j\) at time \(n\). If the transition probabilities are independent of the time, the Markov chain is called homogeneous. In the following we will focus on homogeneous Markov chains.

A homogeneous Markov chain is characterized by its transition matrix \(P = [p_{ij}]\), which has often high dimension and is sparse (depending on the application). Obvious properties of the transition matrix are:
\[
p_{ij} \geq 0 \quad \forall i,j \in \{1 \ldots N\}, \quad (5.1)
\]
\[
\sum_{j=1}^{N} p_{ij} = 1 \quad \forall i \in \{1 \ldots N\}. \quad (5.2)
\]
This means that all the probabilities of all transitions leaving node \(i\) are positive and sum up to one.

Markov chains are used for probabilistic modelling. In the following we want to predict how the stochastic process will behave in the future.
5.1. DISCRETE-TIME MARKOV CHAINS

5.1.2 Probabilistic predictions

Definition 5.1.3. We define the \(n \)-step probabilities \(r_{ij}(n) \), as
\[
0_{ij}(n) = \mathbb{P}(X_n = j | X_0 = i).
\]
This is the probability that, if we initially start at node \(i \) we will reach node \(j \) after \(n \) steps. Note that \(r_{ij}(0) = \delta_{ij} \), and 1-step probabilities are exactly the transition probabilities \(r_{ij}(1) = p_{ij} \).

For \(n > 1 \) the \(n \)-step probability will be the sum the probabilities of all possible paths the process might take, and we can derive the following recursions:
\[
r_{ij}(n) = \sum_{k=1}^{m} r_{ik}(n - 1) p_{kj} \tag{5.3}
\]
or
\[
r_{ij}(n) = \sum_{k=1}^{m} p_{ik} r_{kj}(n - 1). \tag{5.4}
\]

Using \(n \)-step probabilities we arrive at
\[
\mathbb{P}(X_n = j) = \sum_{i=1}^{m} \mathbb{P}(X_0 = i) r_{ij}(n),
\]
and we are interested in a long term prediction (i.e. \(n \gg 0 \)).

Example 5.1.4. Consider the following Markov chain:

Calculate the \(n \)-step probabilities. Will the state be more likely be in 1 or 2, and with which probabilities (in the long run)?

In this example after a certain time the state of the chain does not depend on the initial condition any more.

Definition 5.1.5. If the limit
\[
\lim_{n \to \infty} r_{ij}(n) = \pi_j, \quad \text{for all } i = 1, \ldots, N
\]
exists and it is independent of the initial state \(i \), then \(\pi_j \) is called the steady state probabilities of state \(j \).

In the following we will analyse in which situations (a) the initial state does not matter, and (b) the limit exists.
Definition 5.1.6. A state \(i \) is called \textit{recurrent}, if for every \(j \) that is accessible from \(i \), the state \(i \) is also accessible from \(j \). If the state is not recurrent, it is called a \textit{transient} state. Then, there exist a state \(j \) that is accessible from \(i \) and \(i \) is not accessible from \(j \). Two states \(i \) and \(j \) \textit{communicate} if there is a way from \(i \) to \(j \) and from \(j \) to \(i \). Note that ‘to communicate’ is an equivalence relation.

We can label each node to be recurrent or transient and produce equivalence classes of recurrent and transient states regarding if the states communicate or not. For a long term prediction we know that eventually the state will leave the transient classes and enter one of the recurrent classes. The state will stay in this recurrent class.

Example 5.1.7. Label the states as transient or recurrent, and make equivalence classes

Definition 5.1.8. A state \(i \) is periodic with period \(d > 1 \), if \(d \) is the smallest integer such that \(r_{ii}(n) = 0 \) for all \(n \) which are not multiples of \(d \). In case \(d = 1 \) the state \(i \) is not periodic.

Lemma 5.1.9. If the Markov chain has a single recurrent class that is not periodic, then the \(n \)-step probabilities \(r_{ij}(n) \) converge to the steady state probabilities \(\pi_j \) for all state \(j = 1 \ldots N \).

If there is a single non-periodic recurrent class, we can take the limit of the recursion (Eqn 5.3) on both sides, it yields the following equation.

\[
\pi_j = \sum_{k=1}^{N} \pi_k p_{kj} \tag{5.5}
\]

or in matrix notation

\[
\pi^T = \pi^T P, \quad \text{or} \quad \pi = P^T \pi
\]

Since the transition matrix is singular, there is a non-trivial solution. If additionally,

\[
\sum_{j=1}^{N} \pi_j = 1
\]

the solution is unique.

Eqns [5.5] are called the \textit{balance equations}, and are used to calculate the \textit{steady state probabilities} \(\pi_j \).

Generally wherever we start in a Markov chain, after a certain time the state will end up in a recurrent class. With an initial value \(X_0 \) in a transient class, we are interested in two questions:
5.1. DISCRETE-TIME MARKOV CHAINS

- What is the absorption probability of each recurrent class (i.e. the probability the state ends up in this class)?
- What is the expected number of transitions, until the state enters the recurrent class?

Example 5.1.10. Consider the following example:

The nodes 4, and 5 are recurrent, and nodes 1, 2 and 3 are transient. Let's denote the chance to end up in node 4 starting from node i as adsorption probability a_i. Therefore $a_4 = 1$, and $a_5 = 0$. We are interested in $a_1, a_2,$ and a_3. If we start at node 2 the chance to end up in node 4 is $a_2 = 0.2a_4 + 0.8a_1$, because 0.2 is the chance to move from node 2 to node 1, and 0.8 is the chance to visit node 1. Per definition a_1 the chance to end up in node 4 from node 1. If we do this for every node i this yields a system of linear equations, that enable us to calculate all a_i.

Generalising the idea from Example 5.1.10 the adsorption probability of a recurrent class RC starting at a transient node i can be calculated according to

$$a_i = \sum_{j=1}^{N} p_{ij} a_j \quad \forall i \in \{\text{transient states}\},$$

for the recurrent nodes i

$$a_i = \begin{cases} 1 & \text{if } i \in RC \\ 0 & \text{if } i \notin RC \end{cases}.$$

The question about the expected number of transitions until the state enters a recurrent class can be answered by similar arguments. Consider the Markov chain of Example 5.1.10. Let's denote the expected number of transitions to enter the recurrent node 4 from node i as μ_i. If we start at node 1 this number will be $\mu_1 = 0.6\mu_2 + 0.4\mu_3 + 1$. Therefore, we make one transition, and add the expected number of transition from node 2 and 3. Generalising the idea yields:

$$\mu_i = 1 + \sum_{j=1}^{N} p_{ij} \mu_j \quad \forall i \in \{\text{transient states}\},$$
and for the recurrent nodes i

$$\mu_i = \begin{cases} 0 & \text{if } i \in RC \\ \infty & \text{if } i \notin RC. \end{cases}$$

Let us consider now a Markov chain with a single recurrent state RC. We denote by t_i the mean first passage time from i to RC, defined by

$$t_i = E[\text{number of transitions to reach RC for the first time, starting from } i]$$

$$= E[\min\{n \geq 0, X_n = RC \} \mid X_0 = i].$$

To find t_i we have to solve the following system:

$$t_i = 1 + \sum_{j=1}^{N} p_{ij} t_j \quad \forall i \neq RC,$$

and $t_{RC} = 0.$

We can also calculate the mean recurrence time of the specific state RC:

$$t^*_{RC} = E[\text{number of transitions up to the first return to RC, starting from } RC]$$

$$= E[\min\{n \geq 1, X_n = RC \} \mid X_0 = RC].$$

To obtain t^*_{RC}, once we have the first the passage times t_i we use the equation

$$t^*_{RC} = 1 + \sum_{j=1}^{N} p_{RC,j} t_j.$$

5.2 Continuous-Time Markov chains

Here, we model the times spent between transitions as continuous random variables. We introduce

- X_n: the state after the nth transition (discrete Markov chain).
- Y_n: the time of the nth transition.
- T_n: the time between the $(n-1)$st and the nth transition.

We set $Y_0 = 0$, and we assume that

- If the current state is i, the time until the next transition is exponentially distributed with parameter v_i, independent of the past.
- If the current state is i, the next state will be j with probability p_{ij}, independent of the past of the process and the time stayed there.

Let A be the history of the process until the nth transition:

$$A = \{ T_1 = t_1, ..., T_n = t_n, X_0 = i_0, ..., X_n = i \},$$

then

$$P[X_{n+1} = j, T_{n+1} \geq t \mid A] = P[X_{n+1} = j, T_{n+1} \geq t \mid X_n = i]$$

$$= P[X_{n+1} = j \mid X_n = i] P[T_{n+1} \geq t \mid X_n = i]$$

$$= p_{ij} e^{-v_i t}, \quad t \geq 0.$$
The expected time to the next transition is given by

$$E[T_{n+1} \mid X_n = i] = \frac{1}{v_i}.$$

Thus, the parameter v_i is called the transition rate out of state i. We define the q_{ij} as the transition rate from i to j as

$$q_{ij} = v_i p_{ij},$$

then

$$v_i = \sum_{j=1}^{N} q_{ij}, \quad \text{since} \quad \sum_{j=1}^{N} p_{ij} = 1.$$

In addition, we assume that $p_{ii} = q_{ii} = 0$, for all i due to the memorylessness of the exponential distribution.
Chapter 6

Monte Carlo method

The Monte Carlo (MC) method considers stochastic processes, based on the use of random variables, and statistics to solve problems arising in research areas, such as economy, chemistry and physics.

The easiest example of the Monte Carlo is the Hit or Miss integration method. The idea of the MC method is really simple and can be applied to multidimensional problem since its accuracy depends only on the problem’s complexity. However, it is has rather slow convergence.

Theorem 6.0.1 (Law of large numbers). Let X_1, \ldots, X_n be a sequence of discrete random variables. Then, the sample average

$$\bar{X}_n = \frac{1}{n}(X_1 + \cdots + X_n)$$

converges to the expected value

$$\bar{X}_n \to E(X) \quad \text{for} \quad n \to \infty,$$

6.1 Normal (Gauss) distribution

A normal random variable is a continuous random variable X with probability density:

$$p_N(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

where $\mu = E(X)$ and $\text{var}(X) = \sigma^2$. We define also the error function

$$\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2/2} dt.$$

Then, we can compute

$$P(a < X < b) = \frac{1}{\sigma \sqrt{2\pi}} \int_a^b e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\frac{a-\mu}{\sigma}}^{\frac{b-\mu}{\sigma}} e^{-t^2/2} dt,$$

49
where $t_1 = (a - \mu)/\sigma$ and $t_2 = (b - \mu)/\sigma$. Then,

$$P(a < X < b) = \frac{1}{2}(\text{erf}(t_2) - \text{erf}(t_1)).$$

The values of erf are positive, since $\text{erf}(-x) = -\text{erf}(x)$.

For example, let $a = \mu - 3\sigma$ and $b = \mu + 3\sigma$. Then,

$$P(a < X < b) = \text{erf}(3) = 0.997$$

which states that a random choice from the normal distribution, will give us a variable that is not more than 3 standard deviations far from the mean value (rule of three standard deviations).

Theorem 6.1.1 (Central limit theorem). Let X_1, \ldots, X_n be a random sequence of independent and identically distributed random variables, from distributions with expected values μ and variances σ^2. Then, in an interval (a, b) for a large number n (using the law of large number) we get

$$P(a < S_n < b) \approx \int_a^b p_n(x)dx,$$

where $S_n = X_1 + \ldots + X_n$.

This theorem states that the sum of a large number of independent and identically distributed random variables approaches a normal random variable.

The central scheme of the Monte Carlo method is based on the previous theorem and the rule of three standard deviations.

We want to compute a parameter m. To do so, we have to find a random variable X with mean value $E(X) = m$ and some variance b^2. We consider n independent random variables X_1, \ldots, X_n distributed identically to X. If n large enough, the Central limit theorem states that S_n approximates a normal distribution with $\mu = nm$ and $\sigma = b\sqrt{n}$. Thus,

$$P(nm - 3b\sqrt{n} < S_n < nm + 3b\sqrt{n}) \approx 0.997,$$

resulting to

$$P \left(\left| \frac{1}{n} \sum_{j=1}^{n} X_j - m \right| < \frac{3b}{\sqrt{n}} \right) \approx 0.997.$$

As $n \to \infty$ the error of the above approximation tends to zero. This method is called Sample Mean Monte Carlo.

6.2 Monte Carlo Integration

Let $f(x)$ be defined on the interval (a, b). We want to approximate the integral

$$I = \int_a^b f(x)dx.$$

We consider a random variable X with probability density p defined on (a, b) with
6.2. MONTE CARLO INTEGRATION

• \(p(x) > 0 \)
• \(\int_a^b p(x) \, dx = 1 \).

We construct a random variable

\[Y = g(X) = \frac{f(X)}{p(X)}, \]

resulting to \(E[Y] = I \). We consider \(n \) independent random variables \(Y_1, \ldots, Y_n \) distributed identically to \(Y \). Then, \(\mu = nI \) and \(\sigma = \sqrt{n\text{var}(Y)} \), and we can finally derive

\[
P \left(\left| \frac{1}{n} \sum_{j=1}^{n} Y_j - I \right| < 3\sqrt{\frac{\text{var}(Y)}{n}} \right) \approx 0.997. \tag{6.1} \]

If we choose \(n \) random variables \(x_1, \ldots, x_n \) for very large \(n \), we get

\[
\frac{1}{n} \sum_{j=1}^{n} f(x_j) p(x_j) \approx I. \tag{6.2} \]

The relation (6.1) provides also an estimation of the error done in the approximation (6.2). Thus, we see that the error of the Monte Carlo integration is of order \(n^{-1/2} \).

6.2.1 MC Integration for a uniform distribution

We consider the one-dimensional integral

\[I = \int_1^0 f(x) \, dx. \]

In order to apply the MC method, we have to find a random variable \(X \), whose mean value equals the integral. Let \(X \) with probability density function

\[p(x) = 1, \quad x \in [0, 1], \]

then, \(E[f] = I \), and considering the law of large numbers,

\[\hat{I}_n := \frac{1}{n} \sum_{j=1}^{n} f(x_j) \approx I, \quad n \to \infty. \]

Since the approximation is based on a random variable, the approximated integral is also a random variable with variance

\[\text{var}(\hat{I}_n) = \frac{1}{n} \text{var}(f(x)) = \frac{1}{n} E[(f(x) - I)^2]. \]

If the variance is not known, we can use the unbiased estimator

\[
\tilde{V}(f) = \frac{1}{n-1} \sum_{j=1}^{n} (f(x_j) - \hat{I}_n)^2
\]

to obtain

\[
\tilde{V}(\hat{I}_n) \approx \frac{1}{n(n-1)} \sum_{j=1}^{n} (f(x_j) - \hat{I}_n)^2.
\]
6.2.2 Error of the MC Integration

We define error of MC as

\[\epsilon_n(f) = I - \tilde{I}_n \]

and the root mean square error

\[E[\epsilon_n(f)^2]^{1/2}. \]

Then for \(n \) large, using the central limit theorem we obtain

\[\epsilon_n(f) \approx \sigma_n^{-1/2} \nu, \]

where \(\sigma \) is the standard deviation

\[\sigma = \left(\int (f(x) - I)^2 \, dx \right)^{1/2} \]

and \(\nu \) is random variable normally distributed in \(N(0, 1) \). Thus, if we want the error to be of order at most \(\epsilon_n \) we have to use \(n = \epsilon_n^{-2} \sigma^2 c \), for some constant \(c \).

In practice, we do not know the variance, and we repeat \(m \) times the experiment to get \(\tilde{I}_n, j = 1, \ldots, m \) to compute

\[\tilde{\epsilon}_n = \left(\frac{1}{m} \sum_{j=1}^m (\tilde{I}_n^j - \tilde{I}_n)^2 \right)^{1/2}, \]

where

\[\tilde{I}_n = \frac{1}{m} \sum_{j=1}^m \tilde{I}_n^j \]

and the computed standard deviation is given by \(\tilde{\sigma} = n^{1/2} \tilde{\epsilon}_n \).

6.2.3 Multi-dimensional case

Let \(D \subset \mathbb{R}^n \), and \(f : \mathbb{R}^n \to \mathbb{R} \). We consider the uniform distribution with probability density function

\[p(x) = \frac{1}{\text{vol}(D)}, \quad x \in D. \]

Then,

\[\int_D f(x) \, dx = E \left[\frac{f(x)}{p(x)} \right] \approx \frac{\text{vol}(D)}{n} \sum_{j=1}^n f(x_j), \]

where \(x_j \) is a uniformly distributed random variable.

6.3 Improvement of MC Integration

The main problems of the Monte Carlo integration:

- the choice of the random variables.
- the decrease of the error is related to the decrease of the estimator’s variance.
6.3. IMPROVEMENT OF MC INTEGRATION

6.3.1 Producing random variables

The random number generators are based on the probability transform. We want to compute the cumulative distribution of \(Y = g(X) \), in terms of the cumulative distribution of \(X \). If \(X \) is continuous and \(g \) is one-to-one, we get

\[
F_Y(y) = P(Y \leq y) = P(g(X) \leq y) = P(X \leq g^{-1}(y)) = F_X(g^{-1}(y)),
\]

if \(g \) is an increasing function on the range of the random variable \(X \).

Let \(X \) be a continuous random variable whose distribution function \(F_X \) is strictly increasing on the possible values of \(X \). Then \(F_X \) has an inverse function. Let \(U = F_X(X) \), then for \(u \in [0, 1] \),

\[
P(U \leq u) = P(F_X(X) \leq u) = P(X \leq F_X^{-1}(u)) = F_X(F_X^{-1}(u)) = u.
\]

Thus, \(U \) is a uniform random variable on \([0, 1]\). Most random number generators simulate independent random variables with distribution \(F_X \) by simulating a uniform random variable \(U \) on \([0, 1]\), and then taking \(X = F_X^{-1}(U) \).

6.3.2 Variance reduction

One way to reduce the variance is by using the antithetic variables. We know that

\[
\text{var} \left(\frac{X + Y}{2} \right) = \frac{1}{4} \left(\text{var}(X) + \text{var}(Y) + 2\text{cov}(X,Y) \right)
\]

If \(X, Y \) are independent and identically distributed, the covariance is zero and \(\text{var}(X) = \text{var}(Y) \), therefore

\[
\text{var} \left(\frac{X + Y}{2} \right) = \frac{1}{2} \text{var}(X).
\]

The antithetic variates technique consists in this case of choosing the second variable in such a way that \(X \) and \(Y \) are not independent and the covariance is negative.

Example 6.3.1. We choose a uniformly distributed random variable \(u \) in \([0, 1]\) and we compute \(1 - u \), which is also uniformly distributed and the covariance is negative. If we want to compute

\[
\int_0^1 f(x)dx,
\]

for a monotone function for each variable, we get the approximation

\[
\tilde{I}_n = \frac{1}{n} \sum_{j=1}^{n/2} (f(u_j) + f(1 - u_j))
\]

and

\[
V(\tilde{I}_n) < \frac{1}{n} V(f),
\]

since \(\text{cov}(f(x), f(1 - x)) < 0 \).
Bibliography

