1. Show that the Cholesky factorization of a symmetric and positive definite (SPD) matrix $A \in \mathbb{R}^{n \times n}$ is unique.

 Hint: Assume that there exist two different upper triangular matrices $R_1, R_2 \in \mathbb{R}^{n \times n}$ with positive diagonal elements satisfying $A = R_1^T R_1 = R_2^T R_2$ and use matrix operations to derive a contradiction.

2. Compute the Cholesky factorization of the matrix
 $$
 \begin{bmatrix}
 2 & 1 & 0 & 0 \\
 1 & 2 & 1 & 0 \\
 0 & 1 & 2 & 1 \\
 0 & 0 & 1 & 2
 \end{bmatrix}.
 $$

3. Solve, using the Cholesky factorization, the following linear system

 $x_1 + x_2 + 2x_3 = 1$
 $x_1 + 2x_2 + 2x_3 = 3$
 $2x_1 + 2x_2 + 8x_3 = -2$

4. Compute the reduced QR factorization of the matrix
 $$
 A = \begin{bmatrix}
 3 & 7 \\
 0 & 12 \\
 4 & 1
 \end{bmatrix},
 $$

 using Gram-Schmidt orthogonalization. Then extend it to a full one.

5. Let $w \in \mathbb{K}^n$ be a nonzero vector. The Householder reflection
 $$
 H = I - 2 \frac{ww^*}{w^*w} \in \mathbb{K}^{n \times n}
 $$

 reflects every point across the $(n - 1)$-dimensional subspace orthogonal to w.

 (a) Show that H is self-adjoint, orthogonal and involutory ($H^2 = I$).

 (b) Determine the eigenvalues, determinant and singular values of H.
6. Let \(w = (2, -2, 1)^\top \), \(x = (3, -\sqrt{3}, \sqrt{13})^\top \) and \(y = (0, 1, 2)^\top \). Compute

(a) the Householder reflection \(H \in \mathbb{R}^{3 \times 3} \) reflecting across the two-dimensional plane orthogonal to \(w \),
(b) the norm \(\|Hx\|_2 \),
(c) the vector \(H(Hx) \),
(d) the inner product \((Hw)^\top Hy \).

7. Use the Householder method to compute a full QR factorization of the matrix from Exercise 4.

8. A matrix \(A \in \mathbb{R}^{n \times n} \) has a Cholesky factorization, if and only if it is SPD. Write a Matlab (or Octave) function that implements Cholesky factorization and terminates (with an appropriate error message) if \(A \) is not SPD.