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Abstract. Illuminating tissue with pulsed electromagnetic waves
generates acoustic waves inside an object, which can be measured
and converted into a three dimensional (3d) image. This text is
concerned with a two- step reconstruction method where the acous-
tic pressure is measured with circular integrating detectors. In the
first step reconstruction formulas for some kind of projection of the
source distribution are derived in the second step an inversion for-
mula for a circular radon transform on the sphere is developed.
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1 Introduction

Photoacoustic tomography (PAT), also called thermoacoustic tomography, relies
on the fact that objects like tissue emit acoustic waves after a stimulation with
a pulsed electromagnetic wave [10, 15, 25]. The acoustic wave generated by
this pulse depends on electromagnetic absorbtion properties of the investigated
object. Then it is measured outside the object and is converted into a 3d image.
PAT presents a hybrid imaging technique that combines the high contrast of
optical imaging with the high resolution of ultrasonic imaging.
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The common approach in PAT uses small piezoelectric transducers that mea-
sure the acoustic pressure outside an object [25]. Since these transducers should
mimic point like measurements reconstruction algorithms which are based on
the point detector assumption yield images with a spatial resolution that is es-
sentially limited by the size of the used piezoelectric transducers [24]. Also other
limiting effects of the transducers like directivity efficiency and insensibility for
certain frequencies are reported.

An approach which overcomes this limitations has been proposed in [3, 9]
where either large size planar or integrating line detectors are used for data
acquisition. Line shaped detectors integrate the acoustic pressure over its length
and can be realized by a Mach-Zehnder or Fabry-Perot interferometer [4, 21, 20],
which is an optical device that uses interference of laser beams to measure the
varying acoustic pressure.

In [28] the use of so called circular integrating detectors for PAT has been
proposed. Such detectors integrate the acoustic pressure over circles and de-
tectors can be realized for instance by guiding laser beams with optical fibers
[7]. The development of such detectors is motivated by mainly two practical
aspects: Parts of linear integrating detectors which are distant from an object
may be less influenced by the pressure wave since attenuation effects are increas-
ing. Further, linear integrating detectors are not suitable to realize a compact
experimental buildup. The use of circular integrating detectors has also been
proposed independently in [27].

This paper is a sequel of [28] where the measuring circles are arranged on a
cylindrical stack which encloses the object. However, this provides a compact
experimental buildup only in one dimension since theoretically the cylindrical
stack should have to be infinitely high. Clearly, a cylinder of finite hight cannot
record acoustic waves which propagate nearly parallel to its axis and increasing
its hight also has to increases the duration of the measurement process. A
natural way, provided the objects of interest are small enough, is to consider
circular integrating detectors which fully enclose the object. This ensures that
all acoustic pressure signals emitted from the enclosed object is recorded in
finite time. This improves data acquisition and reduces measurement time.
It turns out that similar computations like in [28] can be reproduced if one
considers circular detectors as the circles of latitude on a sphere. This will lead
to exact reconstruction formulas that provide a stable inversion of the considered
problem.

The outline of this article is as follows. In Section 2 the principals of PAT
are reviewed and the experimental buildup for circular integrating detectors is
explained. In section 3 a 2d reconstruction algorithm is derived. In section
4 stable inversion formulas are obtained and considerations on noisy data are
made. The final section is concerned with the implementation of the novel and
stable inversion formulas.
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2 Photoacoustic Tomography with Circular In-

tegrating Detectors

Once an object is illuminated by pulsed electromagnetic radiation it emits acous-
tic pressure. The pressure p(x, t), at time t and location x = (x, y, z) ∈ R

3 is
recorded away from the object and is used for 3d imaging. This technique of-
fers high contrast and resolution and has proven to be successful in medical
applications including cancer diagnostics [14, 16, 23] and imaging of vasculature
[12, 13, 6].

If the sound speed is spatially constant and equal to one the photoacoustic
pressure field is described by the initial value problem [10, 22, 25]

∂2
t p(x, t) = △p(x, t) , (x, t) ∈ R

3 × (0,∞) , (1)

p(x, 0) = f(x) , x ∈ R
3 , (2)

∂tp(x, 0) = 0 , x ∈ R
3 . (3)

In mathematical terms, PAI is concerned with recovering the initial pressure
f(x) from measurements of p outside the support supp(f) = Ω which is con-
sidered as a compact set in R

3. In [28] circular integrating detectors where
introduced and inversion formulas which are based on a reduction of the 3d
previous wave equation in cylindrical coordinates to a 2d axial symmetric wave
equation were developed. In this text similar reconstruction formulas for the
case of spherical geometry are derived. This is practically reasonable since an
arrangement of detectors on a sphere allows a compact buildup which makes
it possible to record all the pressure emitted from an enclosed object in finite
time. This buildup could be very useful for the investigation of small objects
like small animals, or objects as illustrated in figure 2.

Assume p(x, t) is the unique solution of (1)-(3) and, for σ ∈ S1, define

Pσ(r, ϑ, t) :=
1

2π

∫ 2π

0

p(Φσ(r, ϑ, φ), t) dφ , (r, ϑ, t) ∈ R>0 × [0, π] × R≥0 , (4)

Fσ(r, ϑ) :=
1

2π

∫ 2π

0

f(Φσ(r, ϑ, φ)) dφ , (r, ϑ) ∈ R>0 × [0, π] , (5)

which is the pressure and initial density integrated over the family of parallel
circles

Φσ(r, ϑ, ·) : [0, 2π] → R
3

φ 7→ Dσ · (r sin(ϑ) cos(φ), r sin(ϑ) sin(φ), r cos(ϑ)) ,

where Dσ denotes the rotation around the x−axis. Finally we denote by

Gσ(ϑ, t) := Pσ(r0, ϑ, t) , (σ, ϑ, t) ∈ S1 × [0, π] × R≥0 (6)

the measurement data. Note that the data Gσ(ϑ, ·) are supported in a finite
time domain [0, T ] since acoustic waves in R

3 pass every bounded region in finite
time. If the sound speed is equal to one then T = 2r0 is a possible choice.
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Figure 1: Scanning geometry: Circles of latitude on a sphere enclose an object
and are rotated around it.

Remark 2.1. The measurement data defined in 6 are not what is directly
measured by a family of parallel circles. To appreciate this suppose for a moment
that the pressure is caused by a sphere in the origin. Then Gσ gives the same
value for each ϑ for a fixed time t which means that the measurements are
independent of the circumferences of the measuring circles. Measurement data
can easily be transformed into (6) by weighting each circular measurement by
its circumference.

The next section outlines an algorithm to recover the integrated initial data
Fσ from the data (Gσ)σ∈S1 .

3 Reconstruction Process

3.1 Reduction of the Wave Equation

Recovering the initial pressure from data collected with circular integrating or
line detectors is based on a reduction of equations (1)-(3) to a two dimensional
wave equation which finally leads to a two-stage reconstruction procedure. The
same reductions holds true for the setup proposed in the previous section.

Proposition 3.1. Let f ∈ C∞
0 (Ω) and define Pσ and Fσ, σ ∈ S1 by (4), (5).
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Then Pσ satisfies the wave equation

∂2
t Pσ(r, ϑ, t) = LPσ(r, ϑ, t), (r, ϑ, t) ∈ R>0 × [0, π] × R≥0 , (7)

Pσ(r, ϑ, 0) = Fσ(r, ϑ), (r, ϑ) ∈ R>0 × [0, π] , (8)

∂tPσ(r, ϑ, 0) = 0, (r, ϑ) ∈ R>0 × [0, π] . (9)

where the operator L is defined by

L := r−2∂rr
2∂r + r−2 sin(ϑ)−1∂ϑ sin(ϑ)∂ϑ. (10)

Proof. The proof is analogous to the one in [28] and is omitted.

Note that the initial data of the 2d wave equation (7)-(9) for a σ is given by

Fσ(r, ϑ) =

∫ 2π

0

f(Φσ(r, ϑ, φ))dφ.

These are the integrals of f over the circles Φσ(r, ϑ, ·). Reconstructiong the
initial data for each σ yields the circular integrals (Fσ)σ∈S1 . Then the function
f can be reconstructed from this family of circular integrals.

3.2 Inversion Formula for the 2d Problem

In the following denote by

Ct {φ} (ω) :=

√

2

π

∫ ∞

0

φ(t) cos(ωt)dt , φ ∈ L1((0,∞)) , ω > 0 ,

(11)

St {φ} (ω) :=

√

2

π

∫ ∞

0

φ(t) sin(ωt)dt , φ ∈ L1((0,∞)) , ω > 0 ,

(12)

Hl
r {φ} (ω) :=

∫ ∞

0

φ(r)jl(ωr) r2dr , φ ∈ L1((0,∞), r2dr) , ω > 0 ,

(13)

φl :=

∫ π

0

φ(ϑ)Pl(cos(ϑ)) sin(ϑ)dϑ , φ ∈ L1((0, π), sin(ϑ)dϑ) , l ∈ N ,

(14)

the cosine, sine, spherical Hankel transform and the scalar product with Pl(cos(ϑ))
the l−th normalized Legendre polynomial, respectively. If one of the first
three transformations is applied to functions depending on several variables
then the transformed variable is added as subscript, e.g., Hl

r {Fσ} (ω, ϑ) =
∫ ∞

0
Fσ(r, ϑ)jl(ωr)r2dr.

Theorem 3.1. Let Fσ(r, ϑ) and Gσ(r, t) be given by (5), (6). Then Fσ is related
to the measurement data Gσ by the formula

Hl
r {Fσ,l} (ω) =

√

2

π

Ct {Gσ}l (ω)

ω2jl(r0ω)
. (15)
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Proof. The separation Ansatz R(r)S(ϑ) cos(ωt) to equation to (7) and perform-
ing some manipulations, yields the ode’s

cot(ϑ)∂ϑS + ∂2
ϑS + l(l + 1)S = 0,

r2

R

[

2

r
∂rR + ∂2

rR

]

+ r2ω2 − l(l + 1) = 0. (16)

It is well known that the first equation is solved by the legendre polynomi-
als Pl(cos(ϑ)) whereas the solutions of the second equation are given by the
spherical bessel functions jl(rw). Thus for all l ∈ N the function

(r, ϑ, t) 7→ ω2jl(rω)Pl(cos(ϑ)) cos(ωt)

is a bounded solution of (7) and (9). A general solution of equations (7)-(9) can
formally be written as superposition

Pσ(r, ϑ, t) =
∞
∑

l=0

∫ ∞

0

F̄σ,l(ω)ω2jl(rω)Pl(cos(ϑ)) cos(ωt)dω, (17)

where it is assumed that the Legendre Polynomials are already normalized, i.e.
‖ Pl ‖2= 1. Evaluating this expression at t = 0 yields

Fσ(r, ϑ) =
∞
∑

l=0

∫ ∞

0

F̄σ,l(ω)ω2jl(rω)Pl(cos(ϑ))dω.

Therefore its scalar product with the l−th Legendre Polynomial is given by

Fσ,l(r) =

∫ ∞

0

F̄σ,l(ω)ω2jl(rω)dω.

Thus F̄σ,l(ω) = Hl
r {Fσ,l} (ω) and after substituting r = r0 in (17) one has

Pσ(r0, ϑ, t) = Gσ(ϑ, t) and therefore

Ct {Gσ} (ϑ, ω) =

√

π

2

∞
∑

l=0

Hl
r {Fσ,l} (ω)ω2jl(r0ω)Pl(cos(ϑ)). (18)

Using the orthogonality relation for Legendre polynomials implies

Ct {Gσ}l (ω) = (π/2)1/2 Hl
r {Fσ,l} (ω)ω2jl(r0ω) , (19)

and thus (15) follows.

It is interesting to note that this formula has got the same structure like
Norton’s famous inversion formula [18] which has been applied to photoacoustic
tomography, e.g., in [1, 8].
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3.3 Solving the 2nd Problem: Factorization Method

Once the inverse problem for the 2d problem (7)-(9) is solved for each σ, the
second reconstruction step is concerned with the determination of f from its
integrals Fσ(r, ϑ) over the family of circles crϑσ := Φσ(r, ϑ, ·), where (r, ϑ, σ) ∈
[0, r0] × [0, π]2. Consider a sphere Sρ of fixed radius r = ρ centered at the
origin O and pick out those circles from the family which are lying on Sρ. The
circular means of f |Sρ

, the restriction of f on Sρ, over this circles are then given
by Fσ(ρ, ϑ). Further, note that this family of circles is arranged along a great
circle on Sρ so that their spherical midpoints lie on it. Then this family of circles
can be related to the average of a function over circles centered on a line via
stereographic projection like shown in figure 2.

To state the results some notation is introduced:

• Let Cρ denote the great circle on Sρ which is contained in the yz plane
and is parameterized by ϕρ(σ) = (0, ρ cos(σ), ρ sin(σ)).

• Let p = (0, 0, ρ) ∈ Cρ and z⊥ be the xy plane and denote by

πρ : Sρ \ {p} → z⊥, x 7→

(

x

ρ − z
,

y

ρ − z

)

(20)

the stereographic projection from Sρ onto z⊥.

• Let C∞
0 (Sρ) be the space of infinitely differentiable functions with all

derivatives vanishing at the north pole p and define the circular mean
transform on Sρ

(Rρh)(ϑ, σ) :=

∫ 2π

0

h(Φσ(ρ, ϑ, φ))dφ (21)

over the circle cρϑσ for any h ∈ C∞
0 (Sρ).

• Finally for every function g ∈ C∞(R2) let the integral

Fxy {g} (ξ, η) :=

∫

R2

g(x, y)e−i(xξ+yη)dxdy, (22)

provided it exists, denote its Fourier transform.

Remark 3.1. Since the stereographic projection πρ is a conformal map the
image πρ(cρϑσ) := Cyt of any circle is a circle again. Further the computation

(Rρf |Sρ
)(ϑ, σ) =

∫

cρϑσ

f(x)dcρϑσ(x) = (23)

∫

Cyt

(f |Sρ
◦ π−1

ρ )(x, y)
2dCyt(x, y)

1 + x2 + y2
(24)
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f |Sρ

Cρ

crϑσ

f |Sρ
◦ π−1

ρ

Cyt

Figure 2: Circles of latitude arranged on a great circle on Sρ After Stereographic
projection one obtains the means over circles centered on a line.

holds. If there is an inversion formula for the circular means over the family of
circles πρ (cρϑσ) in the plane one is able to reconstruct the function

g(x, y) :=
2

1 + x2 + y2
(f |Sρ

◦ π−1
ρ )(x, y) (25)

and thus one is able to compute the desired function f |Sρ
(π−1

ρ (x, y)).

Lemma 3.1. Consider a circle Cyt in the xy plane with midpoint (0, y) on the
y axis and radius t. Then π−1

ρ (Cyt) = cρϑσ is the circle with

σ(y, t) =
1

2
arctan

(

2yρ

y2 − t2 − ρ2

)

, ϑ(y, t) =
1

2
arctan

(

2tρ

y2 − t2 + ρ2

)

. (26)

Proof. The antipodal points (y±t, 0) of a circle Cyt are mapped onto those points
on Sρ by π−1

ρ which have the spherical coordinates (ρ, σ±, 0) = (ρ, 2 arctan(ρ/(y±
t), 0). The spherical midpoint of cρϑσ has got the coordinates (ρ, σ(y, t), 0) with
σ(y, t) = (σ+ + σ−)/2. Further its radius, the arclength on Sρ from its mid-
point to its boundary, is given as ϑ(y, t) = (σ− − σ+)/2. The circle on Sρ with
this midpoint and radius is just given by Φσ(ρ, ϑ, ·) = cρϑσ. The simplified
expressions for ϑ(y, t) and σ(y, t) are given in (26).

Theorem 3.2 (Factorization method). Let ρ > 0, f |Sρ
∈ C∞

0 (Sρ) be symmetric
with respect to the yz plane and g be like in (25). Then g can be reconstructed
by

Fxy {g} (ξ, η) = π |η| Fyt {Rg} (
√

ξ2 + η2, η) , (27)

where Rg(y, t) is given by formula (28).
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Proof. Let Cyt be any circle in z⊥ like in the previous lemma and g be the
function (25). Then its circular mean over Cyt is given by

(Rg)(y, t) =

∫

Cyt

g(t cos(α), y + t sin(α))dα (28)

According to the previous lemma and the remark the values of these integrals are
given by (Rρf)(ϑ(y, t), σ(y, t)) for all y and t. Further note that the function g is
symmetric with respect to the y axis since f is symmetric with respect to the yz
plane and due to [11] from f ∈ C∞

0 (Sρ) it follows that g is a rapidly decreasing
function on R

2. The reconstruction of such functions from their means over
circles with midpoints on a line is well treated for instance in [2]. The fourier
inversion formula which is stated in the theorem is derived in there.

Remark 3.2. Although the reconstruction method above requires that f |Sρ
is

symmetric in practice it is sufficient if it is supported in only one of the half
spheres separated by the yz plane. Then one can always interpret the values of
the integrals Fσ(ρ, ϑ) as integrals over a symmetric object.

4 Stable Formulas for Wave Inversion

A direct implementation of formula (15) will cause serious numerical problems
since the denominator becomes zero for certain values of ω. Similar to [8, 28]
this problem will be circumvented by expanding Fσ into a spherical bessel series
and employing (15).

In the following let (ωnl) for l ∈ N denote the zeros of the function ω 7→
jl(r0ω).

Theorem 4.1. The function Fσ from (8) is reconstructed from the measuremnt
data (6) by the formula

Fσ(r, ϑ) =

√

2

π

∑

l∈N

∑

n∈N

St {tGσ}l (ωnl)jl(rωnl)

ω2
nljl+1(r0ωnl)3

Pl(cos(ϑ)). (29)

Proof. Since f ∈ C∞
0 (Ω) the functions Fσ,l(·) are supported in [0, r0] and thus

can be expanded into a series of spherical bessel functions

Fσ,l(r) =
∑

n∈N

Hl
r {Fσ,l} (ωnl)

jl(rωnl)

jl+1(r0ωnl)2
. (30)

For exact measurement data the enumerator in (15) has to be zero whenever
the denominator is zero. Thus one can use the rule of D’Hospital to evaluate
Hl

r {Fσ,l} at ωnl:

(π/2)1/2 Hl
r {Fσ,l} (ωn) = lim

ω→ωnl

∂ω Ct {Gσ}l (ω)

∂ω ω2jl(r0ω)

= lim
ω→ωnl

−St {tGσ}l (ω)

2ωjl(r0ω) + w2 ∂ωjl(r0ω)
=

St {tGσ}l (ωnl)

ω2
nljl+1(r0ωnl)

,
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where the last expressions follow from the identities ∂ωjl(ω) = l
ω jl(ω)− jl+1(ω)

and ∂ω Ct {tGσ} = −St {tGσ}.

The expansion into a series of spherical bessel functions in formula (29)
can be implemented stable and can also be used to derive a second inversion
formula. The following result can easily be obtained from the expansion formulas
in derived in [26].

Proposition 4.1. Let fm
σ and gm

σ denote the fourier coefficients of the functions
f(Φσ(z, r, φ)) and gσ(ϑ, φ, t) := p(Φσ(r0, ϑ, φ), t), where f and p are the unique
solution of (1)-(3), with respect to φ. Then

Hl
r{f

m
σ,l}(ω) =

2

π

Ft{g
m
σ,l}(ω)

ω2 h
(1)
l (r0ω)

, ω ∈ R, l ∈ N , (31)

with h
(1)
l denoting the l-th order Hankel function of the first kind.

Due to Fσ,l = f0
σ,l and Gσ,l = g0

σ,l and the fact that in the denominator of
(31) this proposition leads immediately to a second inversion formula, given in
the following

Theorem 4.2. With the same assumptions as in theorem 4.1

Fσ(r, ϑ) =
2

π

∑

l∈N

∑

n∈N

Ft {Gσ,l} (ωnl)

ω2
nl h

(1)
l (r0ωnl)

jl(rvn)Pl(cos(ϑ))

jl+1(r0ωnl)2
. (32)

Proof.

Remark 4.1. In Xu and Wang [26] they use the source term formulation

∆p(x, t) − ∂2
t p(x, t) = f(x)

dδ(t)

dt
p(x, t) = ∂tp(x, t) = 0, t < 0

of the wave equation which for is equivalent to the initial value problem (1)-
(3) for t > 0. Then their derivation of (31) is based on a series expansion of
a Green function, which arises in an integral representation for the temporal
Fourier transform of p [17]:

eiω(|Φσ(r0,ϑ,φ)−Φσ(r,ϑ,φ)|)

|Φσ(r0, ϑ, φ) − Φσ(r, ϑ, φ)|
=

∞
∑

l=0

jl(ωr)h
(1)
l (ωr0)Pl(cos(ϑ)). (33)

Then (31) is derived straight forward using orthogonality relations for the Leg-
endre polynomials and bessel functions.
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4.1 Noisy Data

In practise only noisy measurement data, write Gδ := Gδ
σ, are available and

generically there is no solution of system (7)-(9) such that P (r0, ϑ, t) = Gδ(ϑ, t).
In other words this means that Gδ 6∈ ran(A) where A is the operator which maps
a function F onto P |{r=r0} where P is the solution of (7)-(9). However, it turns

out that formula (29) makes sense for noisy data Gδ which are contained in a
bigger space than ran(A).

In the following let

L2 := L2([0, π] × [0, T ], sin(ϑ)dϑ, dt)

the space of square integrable functions.

Theorem 4.3. Formulas (29), (32) define continuous operators from L2 → L2.

Proof. The assertion in the theorem 4.3 is proven here for formula (29) only
since the proof for (32) is almost analogous. Note that for any Gδ ∈ L2 the
function ω 7→ St

{

tGδ
}

(ω) is continuous and thus it makes sense to evaluate it at
the discrete points ωnl. Since the legendre polynomials Pl form an orthonormal
basis in L2([0, π], sin(ϑ)dϑ) the coefficients Gδ

l defined by (14) are in l2. On the
other hand note that the functions t 7→ sin (2ktπ/T ) are orthogonal in L2(0, T )
and that ωnl approaches infinity like l+ cn for any c > 0. Thus for any k choose
ωnl to be as close to 2kπ/T as possible from above and write 2kπ/T + ǫ = ωnl.
Then, using the addition formulas, it immediately follows

∣

∣St

{

tGδ
}

(ωnl)
∣

∣ =

∣

∣

∣

∣

∣

∫ T

0

tGδ(t) sin((2kπ/T + ǫ)t)dt

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫ T

0

tGδ(t) sin(2ktπ/T )dt

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ T

0

tGδ(t) cos(2ktπ/T )dt

∣

∣

∣

∣

∣

,

which means that |St

{

tGδ
}

(ωnl)| is bounded by the the sum of the absolue val-
ues of its fourier coefficients with respect to {sin(2kπ/T ), cos(2kπ/T )} . There-
fore St

{

tGδ
}

l
(ωnl) lies in l2 for varying l and n. The remaining term in series

expansion (29), except the basis functions Pl(cos(ϑ)), jl(rωnl)/jl+1(r0ωnl) and
St

{

tGδ
}

l
(ωnl) is 1/(ω2

nlj
2
l+1(ωnl)). Since

jl(r0ω) = cos

(

r0ω −
(l + 1)π

2
−

π

4

)

1

r0ω
+ O

(

1

ω

)

the latter term is bounded and therefore the series (29) converges for any Gδ ∈
L2.

This result ensures that for each of the reconstruction formulas above there
is a constant M such that

‖ F − F δ ‖2≤ M ‖ G − Gδ ‖2< Mδ.
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This guarantees that the reconstruction error becomes small if the measurements
are accurate enough.

The theorem guarantees that formulas (29) and (32) are valid for measure-
ment data in L2. A bybroduct of this result is that one can deduce new series
identies for the characteristic function. Since the derivation is essentially the
same for both formulas the result is presented here for formula (32) only. In the
following the abbreviation ωn := ωn0 is used.

Corollary 4.1. The characteristic function on [0, a] can be expanded as

χ[0,a](r) =
∑

n∈N

[

e−iω(r0−a) (1 − iaω) − e−iω(r0+a) (iaω + 1)
] j0(rωn)

2r0ω3
nj1(r0ωn)3

, (34)

where the equality has to be understood in the L2 sense.

Proof. Consider the pressure emitted by a characteristic sphere centered at the
origin of radius a

p(x, t) =
r − t

2r
χ[0,a] (|r − t|) , ‖ x ‖= r.

In this special case the measurement data are given by G(t, ϑ) = P (r0, ϑ, t).
Since there is no dependence on the angular variable ϑ in formula (29) it is
summed over n only. Computation of the integral

Ft {G} (ω) =

∫ r0+a

r0−a

r0 − t

2r0
e−iωtdt

and inserting in (32) gives (34).

Also the sequence χ[0,a]/a tends to the dirac measure δ in the distributional
sense when a → 0 . Thus one can also, using de L’hospital, have a new series
expansion formula for the dirac measure given by

δ(r) =
2

i

∑

n∈N

e−iωnr0
1 + ω2

n

ω3
n

j0(rωn)

j1(r0ωn)3
(35)

5 Numerical Experiments

In practice only discrete measurement data

Gs[m, n] := Gσl
(ϑm, tn) , (s, m, n) ∈ {1, . . .Nσ} × {1, . . .Nϑ} × {1, . . .Nt} ,

are available. Here σs = π(s− 1)/Nσ, ϑm = π(m − 1)/Nϑ and tn = 2r0(n − 1)/Nt

are discrete samples of the variables for which a measurement is performed. The
aim is to find an approximation for the integrated initial pressure (5)

Fs[m, n] = Fσs
(rn, ϑm) , (s, m, n) ∈ {1, . . .Nσ} × {1, . . .Nϑ} × {1, . . .Nr} ,
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where rn = r0(n − 1)/Nr and Nr = Nt/2. After such an approximation is calcu-
lated one can reconstruct a discrete approximation to f by applying the fourier
inversion formula of [2] for a fixed fixed n.

First a discretization of formula (14) applied to the measurement data is
given by

Gs[l, n] :=

Nϑ
∑

m=1

Gs[m, n] Pl(cos(ϑm)) sin(ϑm), l ∈ {0, . . . , Nϑ} (36)

where the Pl are the normalized Legendre polynomials. The discrete sine trans-
form, applied to the second component of the measurement data multiplied by
t evaluated at ωnl is implemented by

St {tGs} [l, j] :=

(

2

π

)1/2 Nt
∑

n=1

tnGs[l, n] sin
(

tnωlj

)

, j ∈ {0, . . . , Nr − 1} . (37)

The Fourier transform with respect to the time variable is as usually imple-
mented by

Ft {Gs} [l, j] =

(

1

2π

)1/2 Nt
∑

n=0

Gs[l, n] e
itnωlj , j ∈ {0, . . . , Nt − 1} (38)

and evaluated with the FFT algorithm. This finally leads to the discrete versions
of inversion formula (29)

Fs[n, m] :=

√

2

π

Nϑ
∑

l=0

Nr−1
∑

j=0

St {tGs} [l, j]

ω2
jl

jl(rnωjl)Pl(cos(ϑm))

jl+1(r0ωjl)3
(39)

and (32)

Fs[n, m] :=
2

π

Nϑ
∑

l=0

Nr−1
∑

j=0

Ft {Gs} [l, j]

ω2
jl h

(1)
l (r0ωjl)

jl(rnωjl)Pl(cos(ϑm))

jl+1(r0vj)2
. (40)

A short discussion of the computational complexity of the previous implemen-
tation should be considered. For simplicity assume that the same number of
samples, i.e. Nϑ = Nr = Nt = Nσ =: N, for each variable is taken and that
the values of the sine the spherical Bessel function and those of the Legendre
polynomials are pre-computed and stored in lookup tables. Then the evalu-
ation (38) needs O(N2 log N) floating point operations (FLOPS) whereas (37),
(36), (29) and (32) require O(N3) FLOPS. Applying the inversion formula (27)
also requires O(N3) FLOPS. For three dimensional imaging (38), (37),(36), (29),
(or inversion formula (32) ) and the filtered back-projection formula have to be
applied N times. Thus the total number of FLOPS is estimated as

NFLOPS = N
(

O(N2 log N) + O(N3) + O(N3) + O(N3)
)

= O(N4) . (41)
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Note that 3d back-projection type formulas based on point like measurement
data have complexity O(N5).

Numerical experiments for the values R = 1 and T = 2 are performed. The
synthetic initial data f is assumed to be a superposition of radially symmetric
objects around centers xn, i.e.,

f(x) =
∑

n

fn

(

‖x− xn‖
)

, x ∈ R
3 .

The acoustic pressure generated by a single radially symmetric object at position
x and time t is given by (see [10])

pn(x, t) =
‖x− xn‖ − t

2 ‖x − xn‖
fn

(

∣

∣‖x − xn‖ − t
∣

∣

)

. (42)

By the superposition principle the total pressure is

p(x, t) =
N

∑

n=1

pn(x, t) , (x, t) ∈ R
3 × (0,∞) .

The measurement data Gσ(z, t) = 1/(2π)
∫ 2π

0
p(Φσ(r0, ϑ, φ), t)dφ, see (4), (6),

were generated by evaluating of (42) followed by a numerical integration over
φ.

Figure 3 shows a vertical cross section of the initial pressure f and the
measurement data Gσ where Gaussian noise with a variance of 10% of the
maximal data value is added.

The reconstructions of Fσ with (39) from exact and noisy data are depicted
in Figure 5 from formula (39) and with formula (40) in Figure (6). Note that
the reconstructed images do not have blurred boundaries . Moreover the images
reconstructed with (29) are less sensitive to noise.

6 Conclusion

In this article a novel experimental buildup for PAT using circular integrating
detectors was proposed. For collecting measurement data a fiber based Fabry-
Perot interferometer can be used as an circular integrating detector. It is shown
that the 3D imaging problem is reduced to a series of 2D problems. This de-
composition can be used to reduce the operation count of derived reconstruction
algorithms. Stable exact reconstruction formulas for the case that the object is
contained in in a sphere with circles of latitude as detecting circles.
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Figure 3: Left: Cross section of an ensemble of 6 absorbing spheres (x versus
z). Right: The measurement data with 10% Gaussian noise added (ϑ versus t).
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