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Abstract. In this paper we establish a regularization method for Radon
measures. Motivated from sparse L

1 regularization we introduce a new
regularization functional for the Radon norm, whose properties are then
analyzed. We, furthermore, show well-posedness of Radon measure based
sparsity regularization. Finally we present numerical examples along with
the underlying algorithmic and implementation details. We shall, here,
see that the number of iterations turn out of utmost importance when
it comes to obtain reliable reconstructions of sparse data with varying
intensities.

1 Introduction

In this paper we consider the solution of the abstract equation

Fu′ = v subject to u′ ∈ domF . (1)

The operator F is linear and bounded between Hilbert spaces W ′ and V . We
assume that dom F is a subset of Radon measures on a bounded domain Ω ⊆ IRn.

We consider solving the operator equation (1) approximately by a variational
regularization method, which consists in minimizing the functional

T̂α,vδ (u′) :=
∥

∥Fu′ − vδ
∥

∥

2

V
+ α ‖u′‖RM (2)

on domF ⊆ W ′. Here ‖u′‖RM is the norm of the Radon measure u′.
In order to see the relation to sparsity we note that if u′ is absolutely con-

tinuous with density U , i.e., Udx = du′, then we have that

‖u′‖RM = sup

{
∫

Ω

Uvdx : v ∈ C0(Ω), ‖v‖L∞ ≤ 1

}

= ‖U‖L1 .

The regularization method with T̂α,vδ , where the Radon measure is replaced by
the L1-norm, has been analyzed in [13]. There, however, different assumptions
have been made that guarantee existence of a minimizer in L1(Ω), while in this
work we consider minimizers, which are Radon measures. The notion of sparsity



appears in a variety of settings. In the context of regularization it is mostly used
in connection with regularization terms

RS(u′) :=
∑

ωi |〈u
′, φi〉| ,

where φi is a set of appropriate functions, typically forming a basis or frame.
The inner product is on a Hilbert space and ωi are positive coefficients. We
refer to a few papers, which are related to this topic [7, 2–5, 8–12, 14]. Some re-
searchers even call total variation minimization sparsity regularization. We study
the reconstruction of sparse functions and measures. In contrast to total varia-
tion regularization we focus on reconstructing sparse measures and not gradient
measures. There is a fundamental difference between regularization terms RS

and L1, respectively Radon measure regularization. To see this, take (φi) an
orthonormal basis and ωi = 1 in the definition of RS(u′) and note that stan-
dard convex analysis in the Hilbert space l2 is applicable. Note that l1 ⊆ l2 and

therefore we can consider minimization of u′ →
∥

∥Fu′ − vδ
∥

∥

2
+ αRS(u′) over

l2 ≡ L2(Ω). That is, there is a proper extension of the functional from l1 to l2 if
the operator F can be extended on l2. However, convex analysis in the Hilbert
spaces L2 is not applicable for ‖·‖L1 Regularization, since on domains with finite

measure, L2(Ω) ⊂ L1(Ω), and minimization of u′ →
∥

∥Fu′ − vδ
∥

∥

2
+α ‖u′‖L1 over

L2(Ω) is a real restriction of the proper domain of the regularization functional,
which is L1(Ω). The curiosity is that after discretization with piecewise constant
functions of the later a truncated expansion of the former is revealed.

The outline of this paper is as follows: In Section 2 we give a review on the
analysis of regularization methods. In Section 4 we review some basic facts on
Radon measures and duals of Sobolev spaces. Having specified the ingredients
we apply the general results of the review sections to T̂α,vδ in Section 3 and
show well–posedness, and regularizing properties. Section 5 shows the analogy
in the analysis to total variation minimization. Section 6 presents an example
for sparse recovery and shows some reconstructions.

2 Review on Convergence Properties of Variational

Regularization Methods

In this section we make the following general assumptions, where we stick to the
notation of [13]. Afterwards, we apply the results to the setting already used in
the introduction.

Assumption 1.

1. Let U and V be Hilbert spaces.

2. L : U → V is a bounded linear operator.

3. F := L|dom F , where ∅ 6= domF is closed and convex in U .

4. τU and τV are the weak topologies on U and V , respectively.



We consider now the solution of the abstract equation

Fu = v subject to u ∈ domF . (3)

We consider solving this operator equation by variational regularization meth-
ods, which consist in minimizing the functional

Tα,vδ (u) :=
∥

∥Fu − vδ
∥

∥

2

V
+ αR(u)

where vδ ∈ y. For most applications it will be considered a noisy approximation
of v as in equation 3.

In order to have regularization properties of the family (Tα,vδ ) it is required
that R, ‖·‖V , and L satisfy:

Assumption 2.

1. The norm ‖·‖V is sequentially lower semi-continuous with respect to τV .
2. The functional R : U → [0,∞] is convex and sequentially lower semi-

continuous with respect to τU . domR = {u : R(u) 6= ∞} is the domain of
R.

3. D := domF ∩ domR 6= ∅ (which, in particular, implies that R is proper).
4. For every α > 0 and M > 0, the level sets

Mα(M) := levelM (Tα,v) := {u ∈ U : Tα,v(u) ≤ M}

are sequentially pre-compact with respect to τU .
5. For every M > 0 the set Mα(M) is sequentially closed with respect to τU

and the restriction of F to Mα(M) is sequentially continuous with respect
to the topologies τU and τV .

We stress that the sets Mα(M) are defined based on the Tikhonov functional
for unperturbed data v and we do not a-priori exclude the case that Mα(M) = ∅.

We refer to the following theorems from [13], which guarantee the existence
of a minimizer, stability of the regularized solutions, and convergence:

Theorem 3 (Existence). Let F , R, D, U , and V satisfy Assumption 2. As-

sume that α > 0 and vδ ∈ V . Then, there exists a minimizer of Tα,vδ .

It has been shown by several authors that information on the noise level
∥

∥vδ − v
∥

∥ ≤ δ (4)

is essential for an analysis of regularization methods. In fact without this infor-
mation the regularization cannot be chosen such that convergence of uδ

α to a
solution of equation 1 can be guaranteed.

Theorem 4 (Stability). Let F , domF , U , and V satisfy Assumption 2. As-
sume that α > 0 and vk → vδ. Moreover, let

uk ∈ argmin Tα,vk
, k ∈ IN .

Then, (uk) has a convergent subsequence. Every convergent subsequence con-
verges to a minimizer of Tα,vδ .



The following theorem clarifies the role of the regularization parameter α. It
has to be chosen in dependence of the noise level to guarantee approximation of
the solution of (3).

Theorem 5 (Convergence). Let F , domF , U , and V satisfy Assumption 2.

Assume that (3) has a solution in domF and that α : (0,∞) → (0,∞) satisfies

α(δ) → 0 and
δ2

α(δ)
→ 0 , as δ → 0 .

Moreover, let the sequence (δk) of positive numbers converge to 0, and assume
that the data vk := vδk satisfy ‖v − vk‖ ≤ δk.

Let uk ∈ arg min Tα(δk),vk
. Then (uk) has a convergent subsequence to a

solution of (1).

3 Regularization on the Space of Radon Measures

We assume that Ω ⊆ IRn and Ω′ ⊆ IRm are bounded, open and connected with
Lipschitz boundary, respectively.

For the sake of simplicity of presentation we take V = L2(Ω′). Other spaces
can be considered but then the notation is not that transparent anymore.

We consider and study minimization of the functional

T̂α,vδ (u′) :=

∫

Ω′

(Fu′ − vδ)2 + α ‖u′‖RM (5)

over the set of Radon measures on Ω. Here, ‖u′‖RM denotes the norm of the
Radon measure of u′.

Radon Measures

Below we shortly review some facts about Radon measures, and specify the
according properties.

The set of Radon measures is the dual of C0(Ω). Here, C0(Ω) is the space
of continuous functions from Ω into IR with compact support in Ω. We always
consider C0(Ω) equipped with the supremum norm. We denote the dual by
M := (C0(Ω))′ and for u′ ∈ M the Radon measure is defined by

‖u′‖RM := sup

{
∫

Ω

vdu′ : v ∈ C0(Ω), ‖v‖L∞ ≤ 1

}

.

We recall the definition of weak* convergence in M, i.e., a bounded sequence
(u′

k)k in M is weakly* convergent to u′ ∈ M if

lim
k→∞

∫

Ω

fdu′
k =

∫

Ω

fdu′ for all f ∈ C0(Ω) .

Below we show that ‖·‖RM is lower semi-continuous with respect to the
weak* convergence on M.



Lemma 1. ‖·‖RM is lower semi-continuous with respect to the weak* conver-

gence on M.

Proof. Let a sequence of Radon measures (u′
k)k be weakly* convergent to some

measure u′. Then,

‖u′‖RM = sup

{
∫

Ω

vdu′ : v ∈ C0(Ω), ‖v‖L∞ ≤ 1

}

= sup lim
k→∞

{
∫

Ω

vdu′
k : v ∈ C0(Ω), ‖v‖L∞ ≤ 1

}

≤ lim inf
k→∞

‖u′
k‖RM .

Dual of a Sobolev Space

Let s ∈ IN be fixed. In the following we investigate the dual of the Sobolev space
W := W

s,2
0 (Ω), which is a Hilbert space with the inner product

〈w1, w2〉s :=

∫

Ω

∇sw1 · ∇
sw2 ,

where ∇s is the tensor containing all s-th derivatives. The associated norm
is denoted by ‖w′‖s. For w′ ∈ W ′, the dual of W

s,2
0 (Ω), we have ‖w′‖−s :=

sup {w′w̃ : w̃ ∈ W , ‖w̃‖s ≤ 1}. W ′ satisfies the following properties:

1. From the Riesz representation theorem (see e.g. [6, Theorem 3.4]) it follows
that for every w′ ∈ W ′ there exists w ∈ W such that

w′w̃ = 〈w, w̃〉s

for all w̃ ∈ W .
We define the Riesz mapping

Iw′ = w , (6)

and note that I is an isomorphism between W ′ and W , i.e., ‖Iw′‖s = ‖w′‖−s.
In particular, we have that (w′

k)k → w′ with respect to the topology τW′ if
and only if (wk)k = (Iw′

k)k → Iw′ = w with respect to the topology τW .
2. The inner product on the Hilbert space W ′ can be defined by 〈w′

1, w
′
2〉−s =

〈w1, w2〉s, where w1, w
′
1 and w2, w

′
2 are related by the Riesz representation

theorem, respectively.

Now, we state a lemma, which is central for our further considerations:

Lemma 2. Let 2s > n; Recall that s is the order of differentiation in the defi-
nition of W and n is the dimension of Ω. Then

1. ‖·‖RM is convex and lower semi-continuous on W ′.
2. M is closed in W ′.



3. There exists a constant C such that ‖w′‖−s ≤ C ‖w′‖RM for all w′ ∈ M.

Proof. We make some general statements first. Since, by assumption 2s > n, the
Sobolev embedding theorem (see [1, Thm. 5.4]) guarantees that the embedding
from W into C0(Ω) is bounded, i.e., there exists a constant C such that

‖u‖L∞ ≤ C ‖u‖s for all u ∈ W . (7)

Since C∞
0 (Ω) is dense in W and C0(Ω) (with respect to the topologies of W and

C0(Ω), respectively), we have

‖u′‖RM = sup {u′v : v ∈ C0(Ω), ‖v‖L∞ ≤ 1}

= sup {u′v : v ∈ C∞
0 (Ω), ‖v‖L∞ ≤ 1}

=
1

C
sup {u′v : v ∈ C∞

0 (Ω), ‖v‖L∞ ≤ C}

≥
1

C
sup {u′v : v ∈ C∞

0 (Ω), ‖v‖s ≤ 1}

=
1

C
sup

{

u′v : v ∈ W
s,2
0 (Ω), ‖v‖s ≤ 1

}

= ‖u′‖−s .

Thus, M ⊆ W ′.

1. Let (u′
k)k be a sequence of Radon measures, which is convergent to u′ in W ′

(i.e., with respect to τW′). It remains to prove that u′ is a Radon measure.
Since (u′

k)k is bounded in W ′, it is also weakly* convergent in W ′, meaning
that u′

kv → u′v for all v ∈ W . Then, in particular, we have u′
kv → u′v for

all v ∈ C∞
0 (Ω). Now, let v ∈ C∞

0 (Ω) satisfy ‖v‖L∞ ≤ 1, then

u′v = lim
k→∞

u′
kv

≤ lim
k→∞

sup {u′
kṽ : ṽ ∈ C0(Ω), ‖ṽ‖L∞ ≤ 1}

≤ lim inf
k→∞

‖u′
k‖RM .

(8)

Since C∞
0 (Ω) is dense in C0(Ω), the last inequality shows that ‖u′‖RM ≤

lim infk→∞ ‖u′
k‖RM and, thus, u′ is a Radon measure.

2. From (8) it also follows that ‖.‖RM is lower semi-continuous on W ′. The
convexity is trivial.

3. Using (7) it follows that

‖w′‖−s = sup {w′w̃ : w̃ ∈ W , ‖w‖s ≤ 1}

≤ sup {w′w̃ : w̃ ∈ M, ‖w‖L∞ ≤ C}

= C ‖w′‖RM .

This gives the third assertion.



4 Application to Variational Regularization on Radon

Measures

We consider minimization of T̂α,vδ on W ′, the dual of the Sobolev space W
s,2
0 (Ω),

with domF := M, the space of Radon measures, and L : W ′ → L2(Ω′) as in
Assumption 1 bounded. Here W ′, L2(Ω′) play the role of U and V in Assumption
1; i.e., we consider the weak topologies on W ′ (not that since W ′ is a Hilbert
space, weak and weak* convergence can be identified) and L2(Ω′). Note that in
our notation of Assumption 1 we use here F := L|dom F .

In order to apply the general results stated in Section 1 we have to verify
Assumption 2. The requirement in Assumption 1 that domF = M is closed in
W ′, has already been shown in Lemma 2.

1. We recall that every norm on a Hilbert space is continuous and convex with
respect to the weak topology. Therefore, ‖·‖W′ is sequentially weakly lower
semi-continuous with respect to τW′ .

2. The functional R(·) := ‖·‖RM is convex and lower semi-continuous, which
has already been shown in Lemma 2.

3. The set of Radon measures, which equals the domain D, is not empty.
4. Let α > 0, M > 0, and let (u′

k)k be a sequence in Mα(M). We show that
(u′

k)k has a convergent subsequence with respect to τW′ . From the definition

of T̂α,vδ it follows that (‖uk‖RM)k is bounded and, therefore, from Lemma
2 it follows that (u′

k)k is bounded with respect to ‖·‖−s. Thus, (u′
k)k has a

subsequence which weakly converges in W ′. This shows that the sequence is
sequentially precompact with respect to τW′ .

5. Let us follow up on the proof of the previous item.
– Let us denote the weak limit of (u′

k)k by u′ in W ′. We prove that u′ ∈
Mα(M). We use that ‖.‖RM is lower semi-continuous with respect to
W ′. Moreover, since L : W ′ → L2(Ω′) is bounded, the functional w′ →
∥

∥Lw′ − vδ
∥

∥

2
is lower semicontinuous with respect to W ′. Thus, the sum

of both terms is lower semi-continuous and thus u′ ∈ Mα(M). Thus
Mα(M) is sequentially closed.

– The operator L|dom F is weakly continuous and domF is weakly sequen-
tially closed, which follows from Lemma 2, which states that domF = M
is closed and convex, and since L is bounded on W ′.

Therefore, Assumption 2 is satisfied and the assertions follow.
Theorem 5 requires the existence of a solution of (3) in D. Thus, for the

application of this result the existence of a solution with finite Radon measure
is required.

5 Methodological comparison with finite total variation

regularization

The method which we are proposing is methodologically related to total variation
minimization, which can be viewed as the relaxation of W 1,1–regularization,



which in turn consists in minimization of the functional

u →

∫

Ω′

(Fu − vδ)2 + α

∫

Ω

|∇u| .

Total variation minimization consists in minimization of u →
∫

Ω′
(Fu − vδ)2 +

α |Du|, where |Du| is the total variation of u, which is the norm of the finite,
vector valued, Radon measure Du. In our context the regularization is with re-
spect to Radon measures, which is a relaxation of L1–regularization. Thus, total
variation regularization can be considered as a regularization method on Radon
measures for the first derivatives of the function, while according to our theory,
L1-regularization is for the distributions in W−2,2(Ω). The derived analogy is
not completely satisfactory and certainly subject to further research. The anal-
ogy to total variation minimization suggests that the smallest Sobolev space,
which is a Hilbert space and contains the Radon measures, is W−1,2(Ω). How-
ever, based on our analysis so far, this space is slightly too small to perform
analytical studies. Our analysis is based on using the standard Sobolev embed-
ding theorem and as a consequence, slightly more regularity properties on the
linear operator F have to be imposed, than expected from the comparison with
the total variation analysis.

6 Application in Nuclear Medicine

Apart from a purely theoretical background the concept of sparse data also
proves relevant to a variety of real-world applications. As far as the imaging
point of view is concerned we consider the field of nuclear medicine one major
area of interest. Basically, however, any type of peaky (clustered) data on an
otherwise relatively homogeneous background appears suitable for sparsity re-

construction. In the following we give a short description of the above research
topic in order to provide a short introduction to the practical part of spar-
sity regularization: The two most popular techniques in nuclear medicine, PET
(Positron Emission Tomography) respectively SPECT (Single Photon Emission
Tomography), both rely on nuclear disintegration. Here, a tomographic scanner
measures the decay of a radioactive tracer substance which has previously been
injected into the patients body. Such a procedure, e.g., often appears in cancer
diagnosis.

As far as the field of imaging is concerned we consider the related isotopes
our sparse data. Based on the respective measurements we obtain a so-called
sinogram, plotting the number of radioactive disintegrations against the different
scanner angles. The actual image is, then reconstructed according to the given
sinogram. In the medical imaging context sparse variational reconstructions have
already been used for MRI RF excitation pulse design in [15].

6.1 Algorithm Characteristics

The current section focuses on the most important implementation character-
istics of the main reconstruction algorithms involved in sparsity reconstruction.



Firstly, we have decided to apply our sample data (see Paragraph 6.2) to the
following Daubechies, Defrise, DeMol [7] (DDD)-type implementation

uk+1 := uk − λF ∗(Fuk − vδ) − α sgn(uk+1) (9)

where the last term represents the sign (denoted by the sgn) operator, applied

to the next step reconstruction, and may also be expressed by uk+1

|uk+1|
. We, thus,

obtain an alternative formulation

S−1(uk+1) :=

(

1 +
α

|uk+1|

)

uk+1 = uk − λF ∗(Fuk − vδ) . (10)

As indicated by the notation the set valued operator S−1 contains a univariate
inverse and therefore, we get an implementable scheme by applying the inverse
of S−1:

uk+1 = S(uk − λF ∗(Fuk − vδ)) . (11)

where

S(t) :=











t + α if t ≤ −α

t − α if t ≥ +α

0 else.

(12)

We refer to this implementation as of DDD-type, since the implementation is for
function (actually measures) and not basis coefficients, as the original sparsity
is devoted to. Aside from this difference it is the algorithm suggested in [7].
The numerical implementation is for piecewise constant functions approximating
Radon measures. The situation is analogous as in the case of total variation
regularization with finite elements where derivative (which are Radon measures)
are approximated by derivatives of finite element.

6.2 Experimental Results

In order to test the practical relevance of the above method we have created test
data with a constant background exhibiting (clusters of) peaks as we consider
them the most realistic scenario.

Most practical acquisition devices, however, rarely yield noise free data, which
has lead to the decision of adding to our sample data v different types of noise.
I. e., in order to achieve a proper real-world scenario we restrict the input to our
reconstruction algorithms (see Paragraph 6.1) to noisy sinograms vδ only. Since
the tested algorithms are mainly intended for medical use we have decided to
adapt the sample framework to the nature of nuclear medical data acquisition.
Most underlying processes in this field exhibit a clear Poisson nature, which has
motivated the decision to overlay the clear sinogram data with typical Poisson
noise. From a programming point of view we have decided to allow for the spec-
ification of four different parameters, each of which may have a certain influence
on the outcome of the reconstruction process. The weighting parameters λ and
α from Equations (9) to (12) appear an obvious choice in this case. Furthermore,



we have added one algorithm-independent input parameter, i.e., the number of
iteration cycles. With the above implementation details specified, we have, fi-
nally, submitted the DDD-type algorithm from Paragraph 6.1 to different test
cases.

l1 Regularization
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Fig. 1. The above figure is to illustrate the convergence behavior of our proposed
regularization scheme from a practical point of view. The right hand side plot shows the
declining residuals obtained during the computation process yielding the reconstruction
image to the left.

Number of Iterations: As obvious from the problem statement in Equations
(9) to (12) the final reconstruction is created from iteratively updating the
current reconstruction image. In most cases the starting image will be of
random nature. The number of iterations may, thus, have a certain impact on
the outcome of the reconstruction process. For our algorithm we have created
test cycles within the range of [25, 1600], with the remaining parameters
fixed. In this respect we have determined 50 cycles as the minimum value
for obtaining a relatively reliable result. Note, however, that here, object
boundaries appear blurred on an otherwise constant background. With an
increasing number of iterations the different objects become sharper, while on
the other hand we are faced with the problem of an ever more inhomogeneous
background.

Weighting Parameters: As described in paragraph 6.1 the implementation in-
cludes two weighting parameters λ and α closely related to each other. Since
we consider the role of the first one to be of higher importance we have
decided for a ratio-based test environment. I. e., setting λ with the range
of [0.016, 0.16] we have evaluated the quality of the reconstructions with
α at λ

10n , where 1 ≤ n ≤ 4. The described test framework has, further-
more, helped in limiting the computational power involved to a reasonable
extent. Interestingly our experiments have shown that the ratio between λ



and α turns out less important provided the first parameter is selected ’cor-
rectly’. There were no obvious differences between images with α = λ

102 or

α = λ
103 . On the other side, we have noticed lower values of λ producing a

more homogeneous background while higher ones resulted in sharper object
boundaries. In this respect the effects appear similar to those described for
varying numbers of iterations.

α = 0.0036

0

50

100

150

200

α = 0.00036

α = 0.000036 α = 0.0000036

Fig. 2. Decreasing values of α tend to sharpen even smaller object boundaries but at
the same time also produce more background noise. Increasing the parameter, however,
results in a quite homogeneous background while blurring and sometimes even removing
smaller objects.

Finally we may conclude that there exists a certain relation between the number
of iterations and the choice of λ. The higher we set the weighting parameter
the sooner we have to stop the iterative cycle in order to limit the background
inhomogeneities to a certain extent.
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L2 Regularization W1,2 Regularizationl1 Regularization

Fig. 3. The above figures are intended to compare our benchmark results to those of
other popular methods, e. g., L

2 and W
1,2 regularization. Here, l

1, as depicted to the
left tends to yield the clearest approximations of the original objects. We have however
noticed, that in some cases small peaks may not be preserved during the regularization
process. On the other hand, L

2 appears not only slightly more blurred but also fails
to remove the circle object caused by the Radon Transform which we consider a major
drawback. Finally, W

1,2 regularization tends to produce strong object blurs which
may be a problem not only for small and dense peaks but also deteriorate the overall
reconstruction quality.
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