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Abstract. We consider image registration, which is the determination of a

geometrical transformation that aligns points in one view of an object with

corresponding points in another view. In this paper we propose constrained

variational methods which aim for controlling the change of area or volume

under registration transformation. We show that the method is well-posed,

prove convergence of a finite element method, and present numerical examples

for 3D registration.

1. Introduction

Registration is the determination of a geometrical transformation that aligns

points in one view of an object with corresponding points in another view of the

same or a similar object. There exist many instances particularly in medical imaging

which demand for registration. Examples include the treatment verification of pre-

and post-intervention images, the study of temporal series of cardiac images, and

Date: February 17, 2009.
2000 Mathematics Subject Classification. 68U10,65N21.
Key words and phrases. image registration, constrained regularization, area/volume preservation.

1



2 A VARIATIONAL SETTING FOR VOLUME CONSTRAINED IMAGE REGISTRATION

the monitoring of the time evolution of a contrast agent injection subject to patient

motion. Another important application is the combination of information from

multiple images, acquired using different modalities, like for example computer

tomography (CT) and magnetic resonance imaging (MRI), a technique also known

as fusion. In the last two decades, computerized non-rigid image registration has

played an increasingly important role in medical imaging, see, e.g., [13, 21, 21, 24,

27,33] and references therein.

Recent work on image registration concerns about additional features of the

wanted transformation. For example, many applications require that the transfor-

mation has to be one-to-one and the question about an appropriate mathematical

framework arises. Two major direction have been suggested. One approach facili-

tates diffeomorphic or geodesic splines; see, e.g., [5,10,22,23,30,31]. The underlying

idea is to add time as a further dimension and to establish an energy minimizing

flow of corespondent particles. An additional regularization enforces that particles

can not cross and as a consequence, the flow and hence the transformation is one-

to-one. These techniques are of particular interest for constructing transformation

groups and for performing shape analysis. However, these techniques require an

additional time integration and do not provide full control on the transformation.

The second approach is based on constrained optimization; see [18, 19, 29]. After

appropriate discretization, one basically controls the change of volume under trans-

formation. Introducing the displacement u with y(x) = x + u(x), the constraints

are based on the determinant of the Jacobian

C(u)(x) = det (∇(x + u(x))) for almost all x .

Equality C(u)(x) = 1 as well as inequality k(x) ≤ C(u)(x) ≤ K(x) constraints have

been discussed in the literature [16,19]. The choices 0 < k(x) ≤ K(x) < ∞ provide

lower and upper bounds for volume changes. In contrast to the diffeomorphic

approach, the equality constrained approach guarantees that the volume of tissue

is constant under transformation. In particular in medical imaging, this feature
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can be very important for some applications as for example the monitoring of

tumor growth. The inequality approach enables the usage of pre-knowledge. For

example, one could restrict on subregions displaying bones with k(x) = K(x) = 1

and on subregions displaying soft-tissue with some relaxed bounds [15, 25]. These

constrained approaches are based on a so-called discretize then optimize framework

and do not address existence of a minimizer in a variational setting.

In this paper, we use new variational techniques, to present existence theory for a

minimizing element of the constrained optimization problem. From a mathematical

point of view the work most closely related is by [9], where variational regularization

methods motivated from nonlinear elasticity have been used. This model is by its

nature quasi-convex. In comparison, in our approach a constrained variational

method, where the constrained set is quasi-convex.

The paper is organized as follows. In Section 2 we introduce the registration

set-up for this paper, then we quote some important results from the calculus of

variation, that are important for this work. With this we prove the existence of

minimizers of special regularization functionals in Section 4. We are also interested

in the finite dimensional approximation of the minimization problem. Hence in

Section 5 we explain how to approximate the constraints and the involved func-

tionals, and show in Theorem 8 that under certain conditions, the approximated

regularized solution converges to a solution of the original registration problem. At

the end we give a brief outline how we implemented the area/volume preserving

image registration problem, and show a simple numerical result.

2. The Registration Setup

Given are a reference image I0 and a template image I1, which are assumed to

be compactly supported functions I0, I1 : Ω → R, where typically Ω =]0, 1[d⊂ Rd

and d = 2 or d = 3. Hence, I1(x) is a gray value at spatial position x and I0(x) =

I1(x) = 0 for all x 6∈ Ω. The objective is to find a displacement u : Ω → Rd

such that the distance between the transformed template image I1(id + u) and the
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reference is small. In principle every integral based distance measure can be used;

see, e.g., [20, 24,28] for an overview. For ease of presentation, we focus on

(1) S(u) =
∫

Ω

|I1(x + u(x))− I0(x)|2 dx .

The objective of minimizing this distance measure is known to be ill-posed (in the

sense that small perturbations in the input data may lead to significant distortions

in the solution) [9,32] and hence regularization becomes inevitable. Different choices

are listed in Remark 3 but we focus on the squared gradients R(u) =
∫
Ω
∇u ·

∇u dx =
∑∫

∇ui · ∇ui. The registration problem can thus be stated as

(2) minimize T (u) = S(u) + αR(u) subject to u ∈ A ,

where A describes one of the following sets of constraints:

Ap
b := {u ∈ W 1,p | ‖u‖Lp ≤ b}, b < ∞ ,(3)

As,p
E :=

{
u ∈ W s,p | C(u) = 1 a.e. in Ω

}
,(4)

As,p
I :=

{
u ∈ W s,p | k ≤ C(u) ≤ K a.e. in Ω

}
.(5)

The set of bound constraints Ap
b is very general since the data is typically given

on a bounded domain and it is thus no limitation to bound the displacement by

twice the diameter of the domain. Volume preservation is an important feature for

example for tumor growth monitoring, the according transformations are collected

in the sets As,p
E (equality constraints). The elements of the sets As,p

I satisfy more

general volume constraints and enable a fine tuning of the displacement for different

tissue types. Note that for the particular choices K(x) ≡ k(x) ≡ 1 the equality

constraints are a special case of the inequality constraints.

Remark 1. For spatial dimension d = 1 and a smooth and differentiable displace-

ment u, the condition u ∈ A1,p
E implies u′(x) = 0 for all x ∈ Ω. Hence the only

feasible transformation is a translation y(x) = x + b with b ∈ R. For d = 2, the

situation is more complex. For example, any transformation y(x) = x+u(x)T with
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u(x) = (0, g(x1))T does fulfill the constraints C(u) = 1, independent on the choice

of g:

C(u) =

∣∣∣∣∣∣∣
1 0

g′ 1

∣∣∣∣∣∣∣ = 1 .

In general, C(u) = 1 leads to non-linear differential constraints since the determi-

nant results in a polynomial of degree d in the partial derivatives of u. For example,

the determinant for d = 2 is given by det (∇u) = u1
xu2

y − u1
yu2

x .

3. The Variational Setup

The goal of this paper is to characterize and identify feasible choices and combina-

tions of regularization functionals and set of constraints guaranteeing the existence

of minimizing elements of problem (2). The main result in this section is given by

Theorem 5. The first part of this section concentrates on existence results in gen-

eral amd the second part is dedicated to the set of volume constrained functions.

Theorem 4 states under which assumptions these sets are weakly closed.

For the results in the following subsection we use the concept of Carathéodory

functions [8]. It is therefore convenient to rewrite the functional T as

T (u) =
∫

f(x, u(x),∇u(x)) dx,

with f : Ω × Rd × Rd,d → R, (x, u, A) 7→ f(x, u, A) . For example, choosing

R(u) =
∫
Ω
∇u : ∇u dx results in f(x, ξ, A) = |I1(x + ξ)− I0(x)|2 +αA ·A . Finally,

if second order derivatives are involved, we set T (u) =
∫

f(x, ξ, A,H) dx, where

the last component H stands for the second order terms. The following definition

of a Carathéodory function extend straightforwardly to the higher order case.

Definition 1 (Carathéodory [8]). Let Ω ⊂ Rd be an open set and let f : Ω× Rd ×

Rd×d → R ∪ {∞}. Then f is a Carathéodory function if

(1) f(x, ·, ·) is continuous for almost every x ∈ Ω,

(2) f(·, u, A) is measurable in x for every (u, A) ∈ Rd × Rd×d.
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3.1. Existence Theorems in the Calculus of Variations. We summarize con-

ditions on f which ensure that the constrained problem (2) has a minimizing ele-

ment. The following results are collected from [8].

Theorem 1. Let Ω ⊂ Rd be an open bounded domain with a Lipschitz boundary.

Let f : Ω × Rd × Rd×d → R ∪ {∞} be a Carathéodory function satisfying the

coercivity condition

(6) f(x, u, A) ≥ β|A|p + γ(x)

for almost every x ∈ Ω, for every (u, A) ∈ Rd × Rd,d and for some function γ ∈

L1(Ω, R), and β > 0 and p > 1. Assume that f is convex in A. Let A ⊂ u0 +W 1,p
0

be a weakly closed set of admissible functions and

T : W 1,p → R {∞} , u 7→ T (u) =
∫

Ω

f
(
x, u(x),∇u(x)

)
dx .

Moreover, assume that there exists z ∈ A with T (z) < ∞, then T (u) attains a

minimum.

Proof. The central assumption is that the Carathéodory function f is convex with

respect to A. This is a sufficient condition for T to be weakly lower semi-continuous

in W 1,p [8]. From this and the coercivity of f it follows that inf{T (u) | u ∈

u0+W 1,p
0 } attains a minimum. The proof remains the same if one replaces u0+W 1,p

0

by A. Since A is weakly closed by assumption, the minimizing element i.e. the

limit of a minimizing sequence is an element of A. �

Remark 2. In Theorem 1 it is assumed that the weakly closed set A is a subset of

u0 + W 1,p
0 . Thus, the boundary values are given a fixed but unknown u0 ∈ W 1,p.

In the original proof of Theorem 1 in [8] the condition A ⊂ u0 +W 1,p
0 guarantees

that a minimizing sequence (uk)k∈N is bounded in the Lp-norm (via the Poincaré-

inequality). However, in our application all elements of A are bounded in the Lp-

norm and it is sufficient to assume that A ⊂ W 1,p instead of A ⊂ u0 + W 1,p
0 . This

implies that no additional boundary conditions on the transformation have to be
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imposed. To show this, consider Ap
b for some b < ∞. Note that Ap

b is convex and

closed in W 1,p. The mapping M : W 1,p → R, u → ‖u‖Lp is continuous. Thus A1,p
b

is the pre-image of [0, b] under a continuous mapping, thus it is closed with respect

to the W 1,p-norm. Since Ap
b is convex and closed in W 1,p, it is weakly closed in

W 1,p.

The previous theorem can be extended to higher order derivatives.

Theorem 2. Let f : Ω× Rd × Rd×d × Rd×d×d be Carathéodory. Assume that for

each fixed x ∈ Ω, u ∈ Rd, and A ∈ Rd,d the mapping

H 7→ f(x, u, A,H)

is convex. Moreover assume that f satisfies the coercivity condition

(7) f(x, u, A,H) ≥ β|H|p

for some β > 0 and p > 1. Let A ⊂ u0 + W 2,p
0 be a weakly closed set of admissible

functions and

T (u) =
∫

Ω

f
(
x, u(x),∇u(x),H(u(x))

)
dx.

Assume that there exists z ∈ A with T (z) < ∞, then inf{T (u) | u ∈ A} is attained

for some element of A.

Proof. Analogously to [8, Theorem 4.1]. �

3.2. Weak Closedness of the constraint sets. To show the existence of a min-

imizing element for the registration functional we had to assume that the sets of

constraints are closed with respect to the weak topologies (see Theorems 1 and 2).

Therefor we prove in the following the weak closedness of the sets introduced in

the first section. In order to do so we first quote some results on weak continuity

of determinants from [8].

Theorem 3 (Weak Continuity of Determinants). For the Sobolev differentiation

indexes s = 1, 2 assume that uk ⇀ u weakly in W s,p.
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(1) For s = 1 and d = p, it holds in the distributional sense that C(uk) ⇀ C(u)

weakly in D′(Ω): ∀φ ∈ D(Ω) :
∫
Ω

C(uk(x))φ(x) dx →
∫
Ω

C(u(x))φ(x) dx,

where D(Ω) denotes the set of compactly supported C∞-functions.

(2) For s = 1 and d < p, C(uk) ⇀ C(u) weakly in L
p
d (Ω, R).

(3) For s = 2 and p < d, C(uk) → C(u) strongly in L
dp

d−p (Ω, R).

(4) For s = 2 and p = d, C(uk) → C(u) strongly in L
q
d (Ω, R) with p < q < ∞.

(5) For s = 2 and p > d, C(uk) → C(u) weakly in L
p
d (Ω, R).

Proof. For (1), see [8, Chapter 4, Theorem 2.6]; for (2), see [11, Section 8.2.4,

Lemma]; for (4), use W 2,p(Ω) ↪→ W 1,q(Ω), p ≤ q < ∞; then ∇uk → ∇u in Lq and

thus C(uk) → C(u) in Lq/p for p < q. For (3), use W 2,p(Ω) ⊂ W 1, dp
d−p (Ω); see

Compact Imbedding Theorems in [1]; then ∇uk → ∇u in L
dp

d−p and thus C(uk) →

C(u) in L
p

d−p . For 5, use item (2). �

We now prove that that the set of functions satisfying the box constraints A1,p
I ,

A2,p
I — and as a special case the equality constraints A1,p

E and A2,p
E — are weakly

closed. In the following proof, we distinguish the cases p > d and p = d.

Theorem 4.

(1) For d ≥ 2 and p ≥ d, the sets A1,p
I ,A1,p

E are weakly closed with respect to

the W 1,p-topology.

(2) The sets A2,p
I ,A2,p

E are weakly closed with respect to the W 2,p-topology.

Proof. For part (1) we distinguish the cases p = d and p > d. For p > d, the

mapping

M : A1,p
I → L

p
d (Ω, R), u 7→ C(u)

is continuous with respect to the weak topology on both W 1,p and L
p
d (Ω, R); see

Theorem 3. Hence, the set A1,p
I is a pre-image of the closed set {u ∈ Lp/d : k ≤

C(u) ≤ K a.e. in Ω} under the weakly continuous mapping M with respect to the

weak topology on W 1,p. Thus A(1,p)
I is weakly closed.
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For p = d, we assume 0 < K ≤ B < ∞ and define the set

B1,p := {u ∈ W 1,p | ‖C(u)‖L∞ ≤ B}.

First we prove that B1,p is weakly closed with respect to the W 1,p-topology, then

we show that the mapping M : B1,p → Lq(Ω, R), u 7→ C(u) is continuous with

respect to the weak topology on W 1,p and the weak topology on Lq. With this

we can argue as before, that A(1,p)
I is the pre-image closed set of a weakly closed

mapping and consequently it is weakly closed.

Every weak convergent sequence (uk)k in B1,p with weak limit u induces a se-

quence ck := C(uk) in L∞. Since supk∈N {‖ck‖L∞} ≤ B and according to the

Alaoglu-Bourbaki-Kakutani Theorem, (ck)k contains a weak ∗ convergent subse-

quence (cki)i with a weak limit z ∈ L∞,

(8) ∀ φ ∈ L1(Ω, R) : lim
k→∞

∫
Ω

C(uki)φ dx =
∫

Ω

zφ dx

From Theorem 3 we know that for uk ⇀W 1,p u, C(uk) ⇀ C(u) weakly in D′(Ω),

∀ φ ∈ C∞0 :
∫

Ω

C(uk)φ dx →
∫

Ω

C(u)φ dx.

Moreover, since C∞0 (Ω) ⊂ L1(Ω) we have z = C(u) and thus C(u) ∈ L∞(Ω). Hence

B1,p is weakly closed.

Since Ω is bounded, L∞(Ω) ⊂ Lq(Ω) and Lq′(Ω) ⊂ L1(Ω), for 1 < q < ∞,

where 1
q + 1q′ = 1. Hence for uk ∈ B1,p, C(uk) ∈ Lq and thus (8) also holds for

all φ ∈ Lq′ . This implies that the mapping M is weakly closed with respect to the

weak topology on W 1,p and the weak topology on Lq. Thus A1,p
I ⊂ B1,p is the

pre-image of the closed set

{u ∈ Lq(Ω, Rd) | k ≤ C(u) ≤ K a.e. in Ω}

under the weak continuous mapping. Hence, A1,p
I is weakly closed.

For the seond statement we show that A2,p
I is weakly closed.
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According to Theorem 3 there exists δ > 0 such that M : A2,p
I → L1+δ(Ω, R), u 7→

C(u) is continuous with respect to the weak topologies on W 2,p and L1+δ(Ω, R).

The set A(2,p)
I is thus the pre-image of the closed set

{u ∈ L1+δ | k ≤ C(u) ≤ K a.e. in Ω}

under the weak continuous mapping M , and hence weakly closed. �

4. Minimizing Elements for the Registration Problems

In the previous section we proved the weak closedness of the constraint sets. We

are now ready to prove the existence of minimizing elements for the registration

problem (2). According to Theorems 1 and 2, it remains to check the following

conditions for f or f in case of higher order regularization:

(1) f or f is a Carathéodory function,

(2) f or f satisfies the coercivity condition (6) or (7), respectively,

(3) the admissible set of functions A ⊂ A1,p
b is weakly closed with respect

to W 1,p; A ⊂ u0 + W 2,p
0 is weakly closed with respect to W 2,p.

Theorem 5. Assume that I0 and I1 are continuous and that the sets A1,p
b and As,p

I

are as in (3) and (5), respectively. For the following constrained image registration

functionals exist minimizing elements:

(1) for d ≥ 2, p ≥ d, and

T (u) = S(u) +
α

p

∫
|∇u|p dx → min subject to u ∈ A1,p

I ∩ A1,p
b ,

(2) For d ≥ 2, p ≥ 1, and higher order regularization

T (u) = S(u) +
α1

p

∫
|∇u|p dx +

α2

p

∫
|H(u)|p dx → min

subject to u ∈ A2,p
I ∩

(
u0 + W 2,p

0

)
. Here H(u) is the hessian of u.

Proof. Since the images I0 and I1 are assumed to be continuous, the associated f

or f for the higher order case is a Carathéodory function.
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(1) For d ≥ 2 and p ≥ d we have

f(x, ξ, A) = (I1(x + ξ)− I0(x))2 +
α

p
|A|p ,

thus α
p |∇u|p ≤ f(x, u,∇u), and hence f is coercive in W 1,p. Moreover,

A1,p
b ∩A1,p

I is weakly closed with respect to the W 1,p-norm; cf. Theorem 4.

According to Theorem 2, T attains a minimum.

(2) For higher order regularization,

f(x, ξ, A,H) = (I1(x + ξ)− I0(x))2 + α1|A|p + α2|H|p.

Since α2
p |H(u)|p ≤ f(x, u,∇u, H(u)) the coercivity condition is satisfied in

W 2,p. The set of admissible functions A(2,p)
I ∩ (u0 + W 2,p

0 ) is weakly closed

with respect to the W 2,p-norm; cf. Theorem 4. According to Theorem 2,

T (u) attains a minimum.

�

Remark 3 (Different Regularization Functionals). Theorem 5 indicates that the

space dimension d determines the choice of the regularization functional R strongly.

The limiting factor is the determinant constraint, since the determinant is a poly-

nomial of degree d. We comment on a number of popular regularizer.

The diffusion regularizer

Rdiff(u) :=
1
2

∑
i=1..d

∥∥∇ui
∥∥2

L2 =
1
2
‖∇u‖2

L2

penalizes oscillating deformations and consequently leads to smooth displacement

fields. Rdiff is a special case of the regularizer of in Theorem 5(2): α1 = 0 and p =

2. Hence existence of a minimizer of the constrained registration functional is only

guaranteed in space dimension d = 2. For d = 3 case one has to leave the Hilbert

space setting, choose a regularization functional of the form R3(u) := ‖∇u‖3
L3 and

minimize over a subset of W 1,3.
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Various registration methods use elastic regularization [2–4,6, 14,17]:

Relas(u) :=
∑

i=1..d

∑
j=1..d

∫
Ω

(
λ1

2
∂ ui

∂xi

∂ uj

∂xj
+

λ2

4

(
∂ ui

∂xj
+

∂ uj

∂xi

)2
)

dx ,

with material parameters λ1, λ2 > 0. Using min {λ1/2, λ2/4}
∫
|∇u|2 ≤ Relas(u),

and Theorem 5, existence of a minimizing element for the volume preserving con-

straint registration functional is only guaranteed for d = 2.

The curvature regularizer

Rcurv(u) :=
∑

i=1..d

∫
Ω

∆(ui)2dx .

has been introduced in [12]: The integral might be viewed as an approximation to

the curvature of the ith component of the displacement field, therefore does penalize

oscillation. Moreover affine linear transformations are contained in the kernel of

Rcurv, hence this regularization functional enables a direct integration of an affine

linear pre-registration. Since the coercivity condition (7) is not satisfied, Theorem 2

cannot be applied to prove the existence of a minimizing element. A remedy is to

replace Rcurv by
∑

i=1..d

∥∥H(ui)
∥∥2

L2 , where now the existence of a minimizer is

guaranteed for d = 2 and d = 3. The drawback of higher order regularization is the

restriction to u0 + W 2,2
0 , enforcing an initial computation of a meaningful u0.

5. Finite Dimensional Approximation

In this section we study a finite dimensional approximation of the minimization

problem in (2). For ease of presentation we focus on the two dimensional case.

First we explain how we discretize the images and the minimization functional; see

Sections 5.1. The discretization of the volume box constraints is topic of Section 5.2.

The main result of this section is stated in Section 5.3, where we give necessary

assumptions under which the solutions of the discretized minimization problem

converges to a solution the original registration problem.

5.1. Approximation of the Minimization Functional. The goal is to derive a

multi-level representation of the images I0, I1 .We estimate the error of a function
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and its approximation only on triangles for W 1+ε,2 functions; see Theorem 6. Thus,

we restrict ourselves to the case p = 2 and consider the following operator

(9) F : W 1,2 → L2( R2, R), u 7→ I1(id + u).

Assume that Ik ∈ C1
0( R2, R), the components of the gradient of I1 are bounded by

some constant

dI1,max := ‖∇T‖L∞ < ∞ .

Here, we consider projection onto spaces of piecewise affine function such that

‖Ik,m − Ik‖2
L2 ≤ δIk

m and the transformation of the image can be described by the

operator

(10) Fm : W 1,2 → L2( R2, R), u 7→ I1,m ◦ (id + u).

Since we assumed that the images are continuous, the operator F is compact and

satisfies a Lipschitz condition; cf. Lemma 1. This properties are exploited in

Theorem 8 which states convergence to a solution.

Lemma 1. Assume that I1 ∈ C1
0( R2, R), and F, Fm as in (9),(10). Then

(1) F is compact,

(2) F is Lipschitz continuous: there exist ε > 0 and CF such that ‖F (v)− F (u)‖ ≤

CF ‖v − u‖ ,

(3) Assume that 0 < k ≤ det(id + u) < K, then

(11) ‖Fm(u)− F (u)‖2 ≤ k−1δI
1,m for all u ∈ D (F ) ∩ A1,2

I .

Proof.

(1) First we prove that F is compact. Assume therefor that we have a ‖·‖W 1,2-

bounded sequence {ui}, which defines a sequence {F i} in L2( Rd, R), where

Ii
1 := F (id + ui) = I1 ◦ (id + ui) . Since I1 ∈ C1

0( R2, R), F i is bounded in
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W 1,2: ∥∥F i
∥∥

L2 ≤ ‖I1(id + ui)− I1(id) + I1(id)‖L2

≤ ‖I1(id + ui)− I1(id)‖L2 + ‖I1(id)‖L2

≤ dI1,max ‖ui‖L2 + ‖I1(id)‖L2

and
∥∥∇F i

∥∥
L2 ≤ ‖∇I1(id + ui)∇(id + ui)‖L2 ≤ dI1,max ‖∇(id + ui)‖L2 .

Thus F i has a weak convergent subsequence F ik in W 1,2. Using Sobolev

embeddings it follows that F ik is strong convergent in the L2-norm. Hence

F is compact.

(2) For arbitrary x, x̃ ∈ Ω we have |I1(x)− I1(x̃)| ≤ dI1,max |x− x̃| . Thus we

get following Lipschitz-condition for F :

‖F (v)− F (u)‖L2 = ‖I1 ◦ (id + v)− I1 ◦ (id + u)‖L2

≤ dI1,max ‖v − u‖L2 .

(3) Since we assume that 0 < k < det(id + u) ≤ K we can use the transforma-

tion formula and obtain

k

∫
|I1(x + u(x))− I1,m(x + u(x))|2 dx

≤
∫
|I1(x + u(x))− I1,m(x + u(x))|2 det(∇(id + u)(x))dx

=
∫
|I1(x)− I1,m(x)|2 dx ≤ δI1

m .

�

Setting Sm(u) := ‖I1,m ◦ (id + u)− I0,m‖2 and R(u) := ‖∇u‖2 , the discretized

objective functional reads

(12) Tm,n(um,n) = Sm(um,n) + αR(um,n) −→ min .

Here, the index m is connected to the approximation of the images and the index

n to the approximation of the Sobolev spaces.
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5.2. Approximation of the Constraints. The final step is the approximation of

the box constraints A1,2
I by a sequence of finite dimensional subspaces An. We aim

for an approximation which allows easy handling of the determinant-constraint. In

particular, we choose linear finite elements on triangles of polynomial degree one.

With these the determinant of the approximation is a constant on each triangle of

the triangulation.

Starting with a triangulation as shown in Figure 1, a refinement is obtained

by dividing each triangle into four congruent triangles. This leads to a family of

regular triangulations Γn := (τ1, · · · , τ2·22n) .

τ1

τ2 τ1
τ2

Figure 1. Refinement of the triangulation. Left: Γ1, right: Γ2.

Our displacements are elements of the following set:

Un :=
{
u ∈ C0(Ω, R2) | u|τi

∈ Π1(Ω, R2) for every τi ∈ Γn

}
,

where Π1 is the set of polynomials of degree 1,

u|τi
(x) =

a1
i + b1

i x1 + c1
i x2

a2
i + b2

i x1 + c2
i x2

 and hence ∇u|τi
(x) =

b1
i c1

i

b2
i c2

i

 .

By this choice of the refinement we have a nested sequence of spaces

· · · ⊂ Un ⊂ Un+1 ⊂ · · ·
⋃

m∈N
Um and for ω > 0,

⋃
n∈N

Un = W 1+ω,2.
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The challenging part is to incorporate the box constraints. For the ease of pre-

sentation, we restrict ourself to the case of constant bounds k and K and comment

only on the general setting; see Remark 4.

We distinguish two cases: the integrated and the local constraints. The inte-

grated constraints are based on a L1-norm, and give the constraint a global na-

ture. The bound for the discrepancy is a function of the discretization parameter

hn, i.e. basically the size of the triangles. Note that
∥∥det(I2×2 +∇un)− 1

∥∥
L1 ≤

ε(hn) does not prevent det(I2×2 + ∇un) to be negative in some of the triangles.

Here I2×2 ∈ R2×2 denotes the identity matrix. Moreover, if hn is small enough,∣∣det(I2×2 +∇un(x))
∣∣ can be large locally.

The reason for this choice is that under the right choice of the bound ε(hn) in

depencence of hn, (see Lemma 2) we can use the W 1,2-norm projection in order to

project onto this space.

For the global L1-norm based integrated determinant-constraint we work with

A1
ε(hn) :=

{
un ∈ Un |

∥∥det(I2×2 +∇un)− 1
∥∥

L1 ≤ ε(hn)
}

(13)

=
{

un ∈ Un | h2
n

2

∑∣∣(1 + b1
i )(1 + c2

i )− c1
i b

2
i − 1

∣∣ ≤ ε(hn)
}

.

Here ε(hn) is a function of the discretization parameter hn and we assume that

limhn→0 ε(hn) = 0. This assumption implies that the sets A1
ε(hn) are not nested.

This is the reason why we do not project directly onto A1
ε(hn) but use the W 1,2-least

square spline projection onto Un:

(14) P 1
n : W 1,2 → Un, u 7→ argminun∈Un ‖u− un‖2

W 1,2 .

As a consequence we have to specify a condition on ε(·) that guarantees that

P 1
n(u) ∈ A1

ε(hn). This condition is given in Lemma 2.

The measure for the local determinant-constraints based on the L∞-norm. This

implies that we take the maximal change of the determinant on each triangle. A

disadvantage of this choice is, that we cannot guarantee that W 1,2-norm projected
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functions are elements the set of functions satisfying the local determinant con-

straints. Hence we have to introduce an alternative projection operator. Since the

corresponding sets are not convex, the projection onto them need not to be unique.

For the local L∞-norm based determinant-constraint we work with

A∞
n,ε :=

{
un ∈ Un |

∥∥det(I2×2 +∇un)− 1
∥∥

L∞
≤ ε
}

(15)

=
{
un ∈ Un |

∣∣(b1
i + 1)(c2

i + 1)− c1
i b

2
i − 1

∣∣ ≤ ε, i = 1 . . . 2 · 22n
}

,

with a constant ε. As projection operator we choose

(16) P∞
n : W 1,2 → A∞

n,ε, u 7→ argminun∈A∞n,ε
‖u− un‖2

W 1,2 .

Note that a minimizing element of un → ‖u− un‖2
W 1,2 over A∞

n,ε does not have to

be unique, since the sets A∞
n,ε are not convex.

Remark 4. Without the assumption that k, K are constant with k = 1 − ε and

K = 1 + ε, we would consider the sets

A∞
n,k,K : =

{
un ∈ Un | k(x) ≤ det(I2×2 +∇un)− 1 ≤ K(x) f. a. e. x ∈ Ω

}
= {un ∈ Un | min

x∈τi

k(x) ≤ (b1
i + 1)(c2

i + 1)− c1
i b

2
i − 1 ≤ max

x∈τi

K(x),

i = 1 . . . 2 · 22n} .

In the following we provide a Lemma that gives a condition on the function ε(hn)

needed for the definition of the global determinant constraint sets, that assures that

the least squares approximation P 1
n(u) in (14) is an element of the set of integrated

determinant constraints. A central estimation in the proof of Lemma 2 is given by

the following theorem.

Theorem 6 (Approximation of W 1+ω,2 functions [7]). Assume ω ≥ 0, r ≥ 1

(degree of interpolation polynomials) and let Γ be a family of regular triangulations

of Ω. Set

Un
r :=

{
u ∈ Cr−1(Ω, R2) | u|τi

∈ Πr(Ω, R2) for every τi ∈ Γn

}
,
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then

inf
un∈Un

r

‖u− un‖W 1,2 ≤
C

pω
‖u‖W 1+ω,2 hµ−1

n

for every u ∈ W 1+ω,2, where µ := min {1 + ω, 1 + r}

Lemma 2. Let ω > 0, u ∈ W 1+ω,2, and hn is the mesh size parameter. If

ε(hn) ≥ C
∥∥I2×2 +∇u

∥∥
L2 ‖id + u‖W 1+ω,2 hω

n ,

then P 1
n(u) ∈ A1

ε(hn). The constant C depends on Ω and the regularity of the

triangulation..

Proof. We identify R2×2 with R4 such a matrix A is identified with the vector

(A11, A12, A21, A22) and define

∇4 :=

 ∂
∂A11

∂
∂A12

∂
∂A21

∂
∂A22


Then, for A ∈ R2×2 we have

|∇4 det A|R4 =

∣∣∣∣∣∣∣
 ∂

∂A11
(A11A22 −A12A21) ∂

∂A12
(A11A22 −A12A21)

∂
∂A21

(A11A22 −A12A21) ∂
∂A22

(A11A22 −A12A21)


∣∣∣∣∣∣∣

R4

=

∣∣∣∣∣∣∣
 A22 −A21

−A12 A11


∣∣∣∣∣∣∣

R4

≤ |A|R4 .

(17)

Let An ∈ R2×2, then Taylor-expansion gives:

det(An) = det(A)− 〈∇4 det(An), A−An〉R4 + O((A−An)2) ,

which together with (17) implies

|det(An)− det(A)| ≤ |〈∇4 det(An), A−An〉R4 |+ O
(
(A−An)2

)
≤ |∇4 · det(An)| |A−An|+ O

(
(A−An)2

)
≤ |An| |A−An|+ O

(
(A−An)2

)
.
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Hence

|det(An)− det(A)| = |A| |A−An|+ O(|A−An|2) .

For v = id + u ∈ W 1+ω,2 Theorem 6 states that

∥∥P 1
n(v)− v

∥∥
W 1,2 ≤ C ‖v‖W 1+ω,2 hω

n .

Thus we get following estimate:

∥∥det
(
∇P 1

n(v)
)
− det (∇v)

∥∥
L1

=
∫

Ω

∣∣det
(
∇P 1

n(v)(x)
)
− det (∇v(x))

∣∣ dx

≤
∫

Ω

|∇v(x)|
∣∣∇P 1

n(v)(x)−∇v(x)
∣∣ dx + O

(∥∥∇P 1
n(v)−∇v

∥∥2

L2

)
≤ ‖∇v‖L2

∥∥∇P 1
n(v)−∇v

∥∥
L2 + O

(∥∥∇P 1
n(v)−∇v

∥∥2

L2

)
≤ ‖∇v‖L2 C ‖v‖W 1+ω,2 hω

n .

Thus if ε(hn) ≥ C ‖v‖W 1+ω,2 ‖∇v‖L2 hω
n then P 1

n(v) ∈ A1
ε(hn) (set with integrated

determinant constraints). �

A necessary ingredient for the convergence of solutions of the discretized prob-

lems converge to a solution of the inverse problem is that the projection operators

converge to the identity operator.

Theorem 7. Let A1
ε(hn),A

∞
n,ε be as in (13), (15) and P 1

n , P∞
n as in (14), (16) and

ω > 0.

(1) Equality constraints: Assume that u ∈ A1+ω,2
E , limn→∞ ε(hn) = 0 and

ε(hn) ≥ C ‖∇u‖L2 ‖u‖W 1+ω,2 hω
n .

For P 1
n : A1

ε(hn) → W 1,2 we have limn→∞
∥∥P 1

n(u)− u
∥∥

W 1,2 = 0.

(2) Box constraints: Assume u ∈ A1+ω,2
I with constant k and K. For P∞

n :

A∞
n,ε → W 1,2 we have limn→∞ ‖P∞

n (u)− u‖W 1,2 = 0.
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Proof. For the first part we use that P 1
n is the W 1,2-least square spline approxi-

mation of u onto Un and u ∈ A1+ω,2
E ⊂ W 1+ω,2. Hence we can apply Theorem 6.

Moreover Lemma 2 states that P 1
n(u) ∈ A1

ε(hn) by the choice of ε(hn).

For the second part, we denote with the closure in W 1,2 and note that A∞
n,ε =

Un ∩ A1,2
I . Since Un is dense in W 1+ω,2 [7], we have

⋃
n∈N

A∞
n,ε =

⋃
n∈N

Un ∩ A1,2
I =

⋃
n∈N

Un ∩ A1,2
I = W 1+ω,2 ∩ A1,2

I = A1+ω,2
I .

Thus, for u ∈ A1+ω,2
I it holds limn→∞ ‖u− P∞

n (u)‖W 1,2 = 0. �

5.3. Convergence of the Approximate Solutions. The proof that the finite

dimensional solutions converge to a solution of the inverse problem is based on the

following assumptions and definitions.

(1) Assumptions on the constraints: Let Acon denote the constraints and sat-

isfying the volume preserving constraints, i.e Acon = A1,2
E ∩ A2

b or Acon =

A1,2
I ∩A2

b . Assume u ∈ Acon∩W 1+ω,2 for some ω > 0. Let (An)n∈N denote

either A1
ε(hn) with operator P 1

n or A∞
n,ε with operator P∞

n .

(2) Dn := D (F ) ∩ An; since 0 ∈ Dn, Dn 6= ∅

(3) Assumptions on the images: For l = 0, 1, let Il ∈ C1
0( R2, R), with ap-

proximations Il,m as outlined in Section 5.1; thus, ‖Il − Il,m‖2 = δIl
m → 0

as m → ∞; set δm := k−1δI1
m + δI0

m , where k is the lower bound for the

determinant constraint, as in Lemma 1.

(4) let α = α(m,n) such that for m,n →∞ it holds

(18) α → 0, δm/α → 0,
∥∥u† − Pn(u†)

∥∥2

W 1,2 /α → 0.

The following result can be found in a slightly modified version in [26] and is the

main result of this section:

Theorem 8. Let u = u† be a solution of the inverse problem F (u) = I0. Under

the above assumptions and with R(u) := ‖∇u‖2, the sequence {umk,nk
(αk, δk)}
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has a convergent subsequence. The limit of every convergent subsequence is an

R-minimizing solution.

If in addition the R-minimizing solution u† is unique, then

lim
δm→0,m→∞,n→∞

um,n = u† .

Proof. Let n be large enough, then according to Theorem 7, Pn(u†) ∈ An. Recall

that F (u†) = I0, ‖I0 − I0,m‖2 ≤ δ. Moreover according to Lemma 1 the conditions

on I1,m imply that
∥∥Fm(Pn(u†))− F (Pn(u†))

∥∥2 ≤ Cδm. Since um,n minimizes (12)

we have

‖Fm(um,n)− I0,m‖2 + αR(um,n) ≤

≤
∥∥Fm(Pn(u†))− I0,m

∥∥2
+ αR(Pn(u†))

≤ 2[
∥∥Fm(Pn(u†))− F (Pn(u†))

∥∥2
+
∥∥F (Pn(u†))− F (u†)

∥∥2
+∥∥F (u†)− I0,m

∥∥2
] + αR(Pn(u†))

≤ 2
(
k−1δI1

m + C2
F

∥∥u† − Pn(u†)
∥∥2

+ δR
m

)
+ αR

(
Pn(u†)

)
.

(19)

From this we obtain

‖Fm(um,n)− I0,m‖2 ≤
(
k−1δI1

m + C2
F

∥∥u† − Pn(u†)
∥∥2

+ δR
m

)
+α

∣∣R(Pn(u†))−R(um,n))
∣∣ .

Taking the limit m,n → ∞, we know from the assumptions on α, δm and Pn that∥∥u† − Pn(u†)
∥∥2

L
→ 0 and α → 0. Hence

(20) ‖Fm(um,n)− I0,m‖ → 0 .

Moreover, from (19) together with Theorem 7 implying that R(Pn(u†) → R(u†)

and the assumptions on α it follows that
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lim inf R(um,n)

≤ lim inf α−1
(
k−1δI1

m + C2
F

∥∥u† − Pn(u†)
∥∥2

+ δR
m

)
+R

(
Pn(u†)

)
≤ lim supα−1

(
k−1δI1

m + C2
F

∥∥u† − Pn(u†)
∥∥2

+ δR
m

)
+ lim supR

(
Pn(u†)

)
=

(18)
0 + lim supR(Pn(u†)) = R(u†).

Since um,n is a W 1,2-bounded sequence, we know that um,n has a weak-convergent

sequence with limit u ∈ U which we again denote with um,n. Moverover taking

into account (19), the fact that u† is an R-minimizing solution and the weak-lower

semicontinuity of R, we obtain

R (u) ≤ lim inf R (um,n) ≤ R(u†) .

Thus, R (u) = limR (um,n) = R(u†) and I0 = lim F (um,n) = F (u).

Moreover, (11) implies that for any subsequence umk,nk
of um,n

‖F (umk,nk
)− I0‖2 ≤ 2 ‖F (umk,nk

)− Fm(umk,nk
)‖2 + 2 ‖Fmk

(umk,nk
)− I0‖2

≤ 2k−1δI1
mk︸ ︷︷ ︸

→0

+4 ‖Fmk
(umk,nk

)− I0,m‖2︸ ︷︷ ︸
→(20)0

+ 4δI0
m︸︷︷︸

→0

.

Taking the limit mk, nk →∞ such that δm → 0, this implies that

‖F (umk,nk
)− I0‖2 → 0 ,

Hence u is an R-minimizing solution. �

6. Solving Registration Problem with Finite Elements

In order to solve the registration problem numerically we use a finite element

approach, that is, we approximate the solutions by piecewise linear splines on tri-

angles. Particularly, we take least squares functional S as in 1 to compare the
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reference and the deformed template image and R2(u) := ‖∇u‖2 as a regulariza-

tion functional.

At the beginning of this section we introduce a penalty functional P to inco-

operate the determinant constraints. The objective is this to minimize T (u) =

S(u) + αR2(u) + µP(u). We derive the weak formulation of the corresponding dif-

ferential equation and solve this system of equations with a semi explicit fixpoint

iteration.

6.1. Constraints with Penalty Functional. The following penalty-term is used

to include the determinant-constraint u ∈ A∞
n,ε. We define the functional

P(u) :=
∫

φε

(
det
(
I2×2 +∇u(x)

)
− 1
)
dx ,

where

φε : R → [0,∞], φε(c) :=


0 if |c| ≤ ε

1
2 (c− ε)2 if c ≥ ε

1
2 (c + ε)2 if c ≤ −ε

.

6.2. Numerical Example. The above scheme was implemented in C++ (2D and

3D) using the imaging2 class written by Matthias Fuchs. The imaging2 class pro-

vides an object-oriented implementation of basic mathematical objects and func-

tions used in image processing. It includes a FEM module that provides functions

to assemble the stiffness matrix and force vector for user-defined equations. The

following computations are performed on a Intel Core(TM)2 Duo CPU @2.66GHz

under Fedora.

The results for simplified examples are shown in Table 6.2 and Figures 6.1

and 6.1. For a stable solution of the constrained image registration problem we

first calculate 150 iterations with µ = 0, then we start increasing µ in each step.
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Table 1. Parameters of the example shown in Figure 6.1.

unconstrained constrained
regularization parameter: α 0.8 0.8
step size parameter: β 0.5 1.0
penalty parameter: µ 0.0 0.1
box parameter: ε - 0.2
error: ‖I1(u + id)− I0‖ 1.24 1.62

0.020 % 0.025 %
min(det(id + u)) -0.20 0.35
max(det(id + u)) 2.49 1.63
number of iteration steps: 200 800
computation time 40s 80s

template image I1 reference image I0

I1(u + id) unconstrained solution I1(u + id) constrained solution

Figure 2. Image size: 6× 8× 7, Template box: lower left corner
(0, 1, 2) upper right corner at (4, 5, 5), reference box: lower left
corner at (1, 0, 1), upper right corner at (3, 8, 4).

7. Conclusions

In this paper we have investigated the existence of minimizing elements of spe-

cial registration functionals. One motivation for studying these is due our previous
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Figure 3. Deformed grid. Top image: without volume preserving
constraints, the supports of the elements intersect each other. The
color indicates the volume change (red - increase in volume, blue
decrease in volume.

work, where we introduced numerical methods for volume preserving image registra-

tion [17]. Here we used variational techniques to prove the existence of minimizers

of the registration functional.
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Moreover we clarified the difficulties caused by the discretization of the area

preserving constraints and proposed two ways to approximate the set of area con-

strained transformations. At the end we proposed a numerical scheme to implement

area/volume-constrained 2D/3D-registration using finite elements.
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