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Abstract: Imaging the full acoustic field around an object by use of an
optical phase contrast method is used to accelerate the data acquisition in
photoacoustic tomography. Images obtained with a CCD-camera at a certain
time show a projection of the instantaneous pressure field in a given
direction. In this work a reconstruction method is presented to obtain the
two-dimensional initial pressure distribution by back propagating the
observed wave pattern in Radon space. Numerical simulations are used to
prove the accuracy of the reconstruction algorithm and to demonstrate a
method for correcting limited data artifacts. Finally, the overall performance
is shown with experimentally obtained data.
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1. Introduction

Photoacoustic tomography (PAT) is a hybrid biomedical imaging technique combining optical
contrast with ultrasound resolution. Acoustic waves are excited via the thermoelastic effect.
By illuminating a sample with nanosecond laser pulses, each light absorbing inclusion acts as
an individual acoustic source. The distribution of the initial pressure in these sources is
determined by the optical properties of the sample. After propagating from their initial source
position towards the surface the acoustic waves are detected at defined detector positions
around the sample. Subsequently the recorded time resolved signals are used to reconstruct
the initial three dimensional pressure distribution with a resolution that is determined by the
acoustic part of the imaging procedure [1-3].

Piezoelectric detectors are commonly used to record the acoustic waves due to their high
sensitivity, their flexibility to manufacture arbitrary shapes, and their applicability to parallel
detection. However, in the last decade efforts have been spent to develop optical ultrasound
detectors, which are preferable in some applications because of their uniform amplitude
response over a wide frequency range and their optical transparency for the excitation laser
pulse. Furthermore, in applications where the active sensing area should be as small as
possible (“point like”) optical sensors based on interferometry are more sensitive than
piezoelectric sensors [4-6].

Despite their advantages, PAT devices using optical detection will have difficulties entering
commercial applications as long as it is not possible to realize compact optical parallel
detection. The main problem is the need for some kind of array detector. Charge coupled
device (CCD) cameras have parallel detection capabilities but at very limited camera frame
rate. For real-time detection in PAT the desired frame rate would have to be in the range of
megahertz, which is not possible at reasonable costs. An alternative approach to speed up the
data acquisition is to use the spatial information content of a single captured image at a certain
time instead of using time resolved signals recorded at defined detector positions. Under
certain conditions a single snapshot of the acoustic wave pattern outside an object contains all
information to reconstruct a two-dimensional (2D) projection of the initial pressure
distribution inside the object. The proof of principle for use of a CCD camera in real-time
PAT has already been demonstrated [7,8].



There are different ways for visualizing the acoustic wave pattern and for the reconstruction
of the initial pressure distribution. Commonly the Schlieren or dark field method is used to
visualize acoustic waves or similar optical phase objects. The fields of application vary from
the observation of flow dynamics in liquids or gases to the estimation of the focusing
properties of ultrasound transducers [9-14]. However, as these methods do not deliver a
contrast proportional to the phase variations they are not ideally suited for PAT. As an
alternative, if the pressure induced phase shift of the probe laser beam is much smaller than 7,
interferometry delivers a linear relation between the detected light intensity and the pressure
values. This relationship is based on a linear dependence of the change of optical refractive
index on acoustic pressure. The phase contrast technique, developed by Fritz Zernike, uses the
interference between diffracted and non-diffracted light in an optical imaging setup and also
delivers a contrast in the captured images which is proportional to the pressure amplitude
[13,15].

All the imaging methods described above use illumination of a clear coupling liquid
surrounding a sample with a collimated light beam. The gained information about the optical
phase shift in the coupling liquid is therefore a representation of the pressure field at a given
time, projected or integrated along a certain direction. This method is related to the concept of
using integrating line detectors in PAT [16-18]. Instead of a single detector that measures time
resolved signals from a single line detector (a free or guided light beam), full field detection
(FFD) uses a detector array, interrogating the integrated pressure at a given time from a 2D
array of line detectors. To obtain the initial three dimensional (3D) pressure distribution, first
of all the acoustic wave pattern has to be captured from several directions. Each individual
pattern is used to calculate a 2D projection of the pressure distribution at time zero. The
second step is to apply the inverse Radon transform (RT) to the projection dataset calculated
in the previous step, to obtain the initial 3D pressure distribution.

The projection images of the initial pressure distribution can be obtained either by convolving
or deconvolving the captured acoustic wave pattern with the Green function of the 2D wave
equation. These methods, however, yield a limited accuracy of the resulting reconstructed
images. The convolution is equivalent to simultaneous forward and backward propagation in
time of the 2D acoustic wave pattern, leading to distributions which are not completely
spatially separated. The deconvolution on the other hand is very sensitive to noise.
Furthermore both methods are not ideally suited to obtain accurate reconstruction results from
limited data, when parts of the pressure distribution are missing.

In this work a reconstruction method is presented to obtain the 2D initial pressure
distribution from projection images of the pressure field. Numerical examples are shown to
point out the accuracy of the proposed reconstruction method. Next, a strategy is presented for
improving the image quality in the limited data case, and finally the overall performance is
shown with experimentally obtained data.

2. Reconstruction method
2.1. The formal problem in full field detection

In PAT, the propagation of an acoustic wave, originating at the absorbing inclusions in an
object after illumination by a short laser pulse, is governed by the wave equation
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Here c is the speed of sound and p((x)denotes the initial pressure distribution. In the FFD,

linear projections of the pressure p(x,7), for some fixed time7 , are recorded. The
measurement time 7' has to be chosen large enough, such that essential parts of the acoustic
wave have left the domain {x : Do (X) # 0}.

We denote by E° the plane that is orthogonal to the direction c=(cos¢9,sin6?,0)

corresponding to the angle @€ [0,7]. Moreover, we denote by v,,v, two orthogonal unit
vectors in E°, such that x=x(q,s):=qV,+¢,V,+s6 , with q=(q1,q2) denoting the

coordinates in the plane E°® and § denoting the coordinate orthogonal to E°. Finally, we
denote by

(X, (@)= [ hlx(q.9)ds

the X-ray transform in direction e of the function h(x). As illustrated in the left image of
Fig. 1, the X-ray transform is the linear projection of h(x) onto the imaging plane E°,

obtained by integrating that function along lines orthogonal to E° and passing through the
point x(q,0) .

In the FFD, pictures of the instantaneous projections of the pressure field at a fixed positive
time T > 0 are captured, given by

P(@.T)=(X,p)@D) = [ plx(q.s).T)ds.

The imaging problem in FFD consists in reconstructing the initial pressure p(x) from the

observed data P,(q,7). In the following section, we decompose this imaging problem into
several 2D problems, and present an explicit solution method for the resulting 2D problem:s.

(L.

Vi

Fig.1. Graphical representation of the reconstruction procedure. FFD measures linear

projections of p(X,T) onto planes E ® (left). The Radon transform of the projection image

reduces the 2D wave propagation to sets of two counter-propagating plane waves (right).



2.2. Reconstruction process

The X-ray transform and the Laplace operator satisfy the commutation relation [19]

(XoAqsp)a.1) = A, (X, p)a.1). e)
82 2 2
with A, :F+F and A, =A, +8_2 denoting the Laplace operator in two and three
9 9, §

spatial dimensions, respectively. Because the Laplace operator is invariant with respect to
rotations around the (0,0,1) axis, Eq. (1) also holds for the new coordinates (g,,q,,s)
Therefore, commutation relation (2) yields

2
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This implies, that the linear projections
P.(a.0)=(X,p)@.) = [ plx(g,s).t)ds

satisfy the 2D wave equation,
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The FFD provides data P,(q,7) for a fixed time 7. Below we will demonstrate how to
recover the projection of initial pressure P, (q) in (3) from such data. Having found the
projection images P, 4(q):=(X;py)(q) the 3D initial pressure distribution py(x) can be

reconstructed by inverting the X-ray transform, which is well known from classical X-ray
computed tomography.

In the following we assume that the direction o is fixed, and denote by
(RP))(d,p,t) = Jm P, (d(~cos@,sing)+ u(sing,cos@).t) du

the Radon transform of P,(q,?). The Radon transform (RPF,)(d,@,t) consists of all integrals
of P.(q,t)over lines pointing in direction (sin@,cos @) with ge[0,7] and having signed

distance d € R from the origin (see the right image in Fig. 1).

The Radon transform and the Laplace operator satisfy a commutation relation, similar to the
one in Eq. (2), see [19]. Therefore, we can argue as before, and conclude that (RP,)(d,®,t)

satisfies, for every ¢ [0, 7], the 1D wave equation,
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Here (RP;)(d,¢) denotes the Radon transform of the initial pressure Fy,(q) . According to
D'Alemberts formula for the solution of the 1D wave equation, see [20], (RP,)(d,®,t) can be
expressed in terms of (RF; ()(d, ),

(RP,)(d,.1) = %[(RPG’O)(d —ct,0)+ (RP, )d +ct,9). (5)

Equation (5) states that (RP,)(d,¢,t) is the sum of two counter-propagating plane waves,
obtained by translating the initial data (RF;)(d, @) in directions *d (see Fig. 1).

Recall that the FFD measures data P,(q,7’) for a fixed time, and that one can compute the
Radon transform (RF,)(d,¢,T) from such data. The initial data (RF;)(d,#) thus can be

recovered by simply reversing the translation in Eq. (5). Applying the translation
(RP,)(d £cT,p,T) to the data (RP,)(d,®,T) and using D'Alemberts formula (5), shows that

(RP))(d +cT,9,T)+(RP,)d —cT,p,T)= (RPG,O)(d, ¢)+ (RP,)(d,9,2T). 6)

Now assume that the initial pressure p(x) is contained inside a ball with radius r around the
origin in R*®. In such a situation, the Radon transform (RP;)(d,9) is strictly contained

inside the interval [—r,r]. Moreover, if one chooses T > r/c , then Huygens principle for the
1D wave equation (which immediately follows from D'Alemberts formula (5)) implies that
(RP,)(d,9,2T) is strictly contained outside the interval [—r,r]. Therefore, (RPG,O)(d ,¢) and

(RP,)(d,9,2T) are spatially separated, and Eq. (6) implies the following explicit inversion

formula,

(RP))(d +cT,9,T)+(RP,))(d —cT,9,T), ifdel-r,r]

(RP6,0>(d,¢)={ 0 tdeir D

The overall process for reconstruction the three dimensional initial pressure p,(X) can now be
outlined as follows:

1.Fix a direction o=(cos(d),sin(),0), and compute the Radon
transform (RP,)(d,¢,T) of the measured data P,(q,7). Then, apply the inversion
formula (7) to reconstruct (RFP; )(d,¢), from which P, ,(q) is recovered by means

of any existing Radon inversion algorithms [21-23]. This procedure is repeated for
every direction ¢ .

2.1f Pyo(q)=(X4po)Qq) is known for all directions o, we also know the Radon

transform of the initial pressure distribution py(x) in each plane orthogonal to the



(0,0,1) axis. Applying the inverse Radon transform in each of these planes gives the

desired 3D reconstruction of py(x).

2.3. Numerical examples

All numerical calculations were performed on a 200x200 grid, using the MATLAB
programming environment with the embedded imaging toolbox. First, to show the
performance of the developed reconstruction method the acoustic wave pattern at time T=8 us
was computed (see Fig. 2b) from a structure consisting of five squares as shown in Figure 2a.
For this purpose we used the solution formula of the 2D wave equation [20], and assumed the
speed of sound in water with 1.5 mm/us. Figure 2b shows an image which would be captured
under ideal conditions in the experiment. Applying the Radon transform to the acoustic wave
pattern results in an image consisting of two separated structures (bands), as mathematically
outlined in Eq. (5). Each column of this Radon transform denotes plane waves counter-
propagating in direction (—cos¢,sin¢), separated by twice the propagation distance cT

(black arrow in Fig. 2¢). Equation (6) performs the sum of the two bands after left and the
right translation by an amount of ¢7 and yields three bands from which only the one in the
middle is significant, representing the Radon transform of the initial 2D source. This is shown
in Fig. 2d where, according to Eq. (7), the two bands localized around *2¢T have already
been removed. Finally, by applying the inverse Radon transform, the initial source is obtained
(Fig. 2e). Fig. 2f shows a comparison of horizontal and vertical profiles through the center of
the initial source and the reconstruction. Both, the amplitude and the shape of the profiles
taken from the reconstructed image and from the original source fit perfectly together, proving
the accuracy of the reconstruction method.

In order to test the stability of the outlined reconstruction method against noise we added
20% noise (RMS relative to the image maximum) to the computed acoustic wave pattern.
The noisy wave pattern and the resulting reconstruction are shown in Fig. 3. Comparing these
two images it can be clearly seen that the reconstruction algorithm increases the signal to
noise ratio, and consequently enhances the contrast. This is mainly due to the fact that the
Radon transform involves an integration that tends to smear out the statistical fluctuations of
the noise.

Equation (4) and Fig. 2(c) show that there is redundancy in the Radon transform of the
measured data, because each of the two counter propagating solutions (or bands in the Radon
transform) contains the same information. Only one band would be sufficient to recover the
initial source, offering the possibility to improve the reconstruction when only limited data are
available. For instance, in the experiment this is the case when the sample holder blocks a
certain region of the imaging field of view. In Fig. 4a the Radon transform is shown when the
acoustic wave pattern is available only outside the region indicated by the dashed line in
Fig 2b. Mainly the lower band is distorted by the missing data. Consequently, removing the
lower band by setting the pixel values of the lower half space, corresponding to d >0 to zero
and weighting the image with a factor of two leads to a significant improvement of the
reconstructed image. Using limited data without any corrections the reconstruction of the
squares appears distorted, as shown Fig. 4c. Applying the correction greatly improves the
reconstruction (see Fig. 4d). This is shown in more detail in Fig. 4b, by comparing the
horizontal and the vertical profiles crossing the square localized in the center.

Also mentionable in this context is that the Radon transform of a fully accessible ideal 2D
acoustic wave pattern contains only nonnegative pixel values (see Fig. 2¢) representing the
two counter-propagating plane waves. This is not the case in the realistic situation, where data
are missing in the captured image (see Fig 4a). Consequently, negative pixel values appear
after applying the Radon transform and cause artifacts in the reconstructed images. These
artifacts are significantly reduced by applying the correction method described above.
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Fig. 2. Numerical examples proving the performance of the reconstruction method. (a)
Mathematical phantom representing the projection of the initial pressure distribution. (b)
Computed acoustic wave pattern at time T=8 us. (c)-(d) Radon transform of the acoustic wave
pattern and the reconstruction procedure in Radon space. (e¢) Reconstruction of the initial 2d
source. (f) Horizontal and vertical profiles through the center of images (a) and (e) .
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Fig. 3. (a) Computed acoustic wave pattern with added 20 % noise. (b) Result of reconstruction
from noisy data.
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Fig. 4. Numerical examples for limited data reconstruction. (a) The effect of missing data on
the Radon transformed image. (c) and (d) Reconstruction from limited data with and without
proposed correction method. (b) Comparison of horizontal and vertical profiles. Red line:
without correction, blue line: with correction, black dotted line: original source distribution.

3. Experimental details

The experimental setup for capturing a picture of the acoustic wave pattern (the phase object)
is shown in Fig. 5. To excite the initial acoustic source, the sample was illuminated from three
directions. Laser pulses with 10 ns duration and with variable wavelength were generated by
an optical parametric oscillator (OPO) pumped by a frequency tripled Nd:YAG laser system.



The OPO pulses illuminated the sample from two sides. To achieve a reasonably homogenous
light distribution in the sample, an additional illumination beam came from the front side. Due
to limitations of the OPO pulse energy from our system this beam was taken from the
frequency doubled output (532 nm) of the Nd:YAG pump laser. The sample itself was
positioned in the water tank, in the center of the probe beam and in the rear focal plane (object
plane) of the Fourier transforming lens (L2). Two lenses (Obj., L1) and a pinhole were used as
a telescopic beam expander. The probe beam coming from a continuous, diode pumped solid
state laser with a wavelength of 532 nm (DPSS laser) was collimated and expanded to a beam
diameter which was at least three times the size of the sample. This ensured that the outgoing
acoustic waves, although the central part of the image was obscured by the sample, could be
fully captured in the clear coupling medium (water) outside the sample. Since it is not
possible to visualize the pressure distribution inside a light scattering sample, the factor of
three is necessary for letting the waves generated in all parts of the sample propagate into the
coupling liquid.

The interaction of the ultrasonic field with the collimated probe beam causes diffraction of the
latter and consequently higher spatial frequency components in the Fourier plane of L2
(backside focal plane). A phase plate arranged at the position of this plane performs an optical
filtering process. For phase contrast imaging it should introduce a phase shift of a quarter of
the optical wavelength between the diffracted light and the central spot, containing the non-
diffracted light. These components are then able to interfere with each other in the image
plane, giving rise to an intensity modulation proportional to the accumulated phase shift
[13,15]. The lens L3 is arranged in a way that its rear focal plane and the phase plate coincide,
producing a reversed image of the phase object on the CCD element of the camera. Snapshots
of the pressure distribution were taken with an image intensified, time gated CCD camera
(PCO DiCAM, 8 Bit dynamic range). With the control unit the exposure time and the time
delay with respect to the laser pulse could be adjusted.

BS
I\y Z 445-650nm
M

Nd-YAG laser,
OPO

—I monitor
control unit —

N—

image intens.
CCD-camera

phase |3
plate

v

L

Fig. 5. Experimental setup to capture a snap shot of the acoustic wave pattern at time 7. M:
mirror, BS: beam splitter, PH: pin hole.

The inset in Fig. 6b shows the sample which was used in the experiment. It was a thread
of black plastisol with a knot and was attached to a plastic frame. The total radiant exposure
of the sample was 100 mJ/cm? from all sides as mentioned before. The exposure time of the
camera set to 40 ns. Hence, the propagation distance of the sound wave in water (speed of
sound: 1.5 mm/us) within this time limited the spatial resolution to 60 um. Ten times
averaged snapshots of the acoustic wave pattern were taken 3 ps after the excitation laser



pulse. A second image was taken at a delay time at which the acoustic waves had already left
the field of view and was subtracted from the first image. This removed most of the disturbing
background in the image caused by the impurities of the non ideal optical components along
the optical path and by the phase change caused by heat flow around the sample. What
remained was an image showing the acoustic wave pattern (Fig. 6a). Finally, the linear
projection of the initial pressure distribution was reconstructed, by applying the proposed
Radon reconstruction method (Fig. 6b). Apart from a small region which was not illuminated
and is therefore not visible, the reconstructed image shows quite well the shape of the
phantom.

q, (mm)

-5 0 5
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Fig. 6. (a) Captured acoustic wave pattern. (b) Reconstructed projection of the initial pressure
distribution. The inset shows the plastisol phantom.

4. Discussion

A phase contrast optical imaging method providing full field data of a photoacoustically
generated pressure distribution and a corresponding image reconstruction algorithm have been
proposed. The method is based on capturing projection images of the acoustic wave that has
propagated from the imaging object into a surrounding, clear coupling liquid. The
reconstruction yields a 2D image of a projection of the initial pressure distribution in a
selected direction. Since only two laser pulses are necessary to acquire the data for the
projection image, this method has real time imaging capability. Provided the imaging data are
complete, the proposed reconstruction algorithm is exact. It uses a reduction to a 1D problem,
in a similar way as the previously proposed photoacoustic tomography method using large,
planar detectors [24]. In the current study we restricted ourselves to the 2D imaging problem,
however, the extension to a 3D imaging procedure only requires additional rotation of the
sample during data acquisition and an inversion of the standard Radon transform in the
reconstruction. Considering the short time to obtain imaging data for one projection, it should
take about one minute or less to gain information for a 3D image, only limited by the laser
repetition rate and the frame rate of the CCD-camera.

The reconstruction step involving the Radon transform (Fig. 2c) makes the redundancy in
the imaging information visible, which can be used to correct for artifacts that arise due to
incomplete data. This is an important property of the imaging method, since in practice it is
difficult to obtain an image of the complete acoustic field around a sample. Interestingly, it is
the omission of data (zero/one weighting) which clearly improves the result of the
reconstruction. A similar positive effect of omission or weighting of redundant data has
recently been demonstrated for photoacoustic tomography with point or line detectors [25,26].

The phase contrast technique for acquiring the pressure field images combines several
advantages. First, it gives rise to an imaging contrast proportional to the relevant quantity, the



projected pressure variations. Furthermore, although it is an interferometric technique, it is
inherently stable because it uses properties (separation of diffracted and undiffracted portions)
of the same illumination beam and therefore does not require any stabilization as other
interferometric methods. A disadvantage seems to be the limited sensitivity. In the current
study we used a quite high radiant exposure and also a high contrast imaging object. However,
several improvements of the setup can be made to increase the sensitivity. One obvious
improvement is to use a camera with higher dynamic range. The camera used in this study can
resolve intensity modulations in the range of 0.5 % due to its resolution of 8 bit. In further
studies, a camera with 12 bit resolution will be used. Cooling the CCD chip and using a
pulsed light source instead of the gated image intensifier will improve the signal to noise ratio
and enable a higher dynamic range. Finally, the phase contrast method can be optimized by
use of a partly absorbing phase plate [13,15].

In conclusion, a concept for photoacoustic tomography using optical array detection of
acoustic waves has been demonstrated. With the envisaged improvements of the sensitivity,
fast 3D imaging will be possible.
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