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The difficult issue of effects of and corrections for the attenuation of acoustic
waves in photoacoustic imaging has been studied [8, 1, 10, 6], although no complete
conclusion on the feasibility of this models has been reached. Mathematical models
of attenuation are formulated in the frequency domain, since the attenuation is
known to be strongly frequency dependent. Let Gy, G be the Green functions of
the wave equation and the attenuated wave equation, respectively. The common
attenuation model reads as follows:

(1) ]:G(xaw) = exp (—ﬂ(|$|,W))fGO($,w) :

Here F denotes the Fourier transform with respect to time, w is the frequency, and
x is the space coordinate. The complex function 3(|x|,w) is called the attenuation
coefficient. Well known models, are power laws, Szabo’s model [11, 12], and the
thermoviscous wave equation (see e.g. [4]), which are characterized by different
functions .

Distinctive features of unattenuated wave propagation (i.e., the solution of the
standard wave equation) are causality and finite front wave speed. It is reasonable
to assume that the attenuated wave satisfies these distinctive properties as well.

The standard photoacoustic imaging problem consists in backpropagation of
waves p(s,t), where s is an element of the recording surface, to f(z) = p(z,0),
where x € €0, and () is domain of interest, bounded by the measurement surface.
Thereby p is considered the solution of the wave equation
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The parameter f is the imaging parameter in photoacoustics. For a series of
methods for backpropagation we refer to [7]. If attenuation is taken into account,
and equation (1) is considered the basic model for attenuation, then the imaging
problem decouples into the standard photoacoustic imaging problem for the wave
equation and a deconvolution problem with kernel F~! (exp (—f(|z|,-))) ().

[3] state “Power attenuation laws have been used in phenomenological acoustics
because of their extreme simplicity as well as their conformity with the physical
requirements of causality and dissipativity.” However, as it is also been stated in
[3], causality and dissipativity restricts the frequency dependence of attenuation
in a power-law medium where A = Const X |w|* to 0 < a < 1. This can also
be deduced in a mathematically rigorous way from a distribution theory [2]. In
contrast to previous work the powerful mathematics of distribution theory allows
to prove or disprove causality very efficiently.
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Power laws with exponent greater than one are of relevance in photoacoustic
imaging, since for biological specimens and oils, the power law index has been
experimentally identified to be larger than one.

Inversion techniques based on an un-physical model are questionable. We there-
fore propose using an approximate power law [6]: The philosophy behind this ap-
proach is to calculate an attenuation law, which approximates a power law in the
frequency spectrum where it has been experimentally validated and it is extended
outside of the measured spectrum in such a way that the wave model becomes
causal. Based on the results from [6], we developed such approximation models
that satisfy the needs of causality and in addition have a finite front wave speeds.

A work, which is concerned with causal attenuated wave equations, which starts
modeling at constitutive laws is [9]. There the derived equations are defined via
relazation and currently cannot simulate power laws with fractional index.
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