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Abstract

In this paper we suggest two novel classes of regularization techniques for sys-
tems of nonlinear ill–posed tomographic problems. We analyze variational regular-
ization method as well as iterative regularization techniques analytically. The later
turns out to be of Landweber-Kaczmarz type. We discuss new stopping criteria
for such iterative methods and present a subtle convergence analysis. The stop-
ping criterion is favourable (both analytically and practically) to existing stopping
stratgies.

1 Introduction

In this paper we investigate a new concept of regularization methods for solving non-
linear ill–posed operator equations of the form

(1) a(p, u) = g(p) , p ∈ S

where a(p, ·) : D ⊆ X → Y are operators between separable Hilbert spaces X and Y ,
which are parameterized on the one dimensional sphere S := R/(2πZ). Many inverse
problems, such as impedance tomography [4] and computerized tomography [17, 7] can
be formulated in such a way.

The basic idea of this paper is to rewrite (1) into a system of equations on the space
of Bochner integrable periodic functions H s(S, X), s > 0

(2) a(p, u(p)) = g(p) , p ∈ S ,

(3)

√
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2π

∫

S

∥
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∥

∥

∂su

∂ps

∥

∥

∥

∥

2

X

dp = 0 with some fixed λ > 0 .

If u is a solution of (1) then {p 7→ u(p) ≡ u} is a solution of (2), (3), respectively, and
vice versa. That means that the systems of equations (1) and (2), (3) are equivalent.
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In this paper we develop and analyze Tikhonov and iterative regularization methods
for the solution of embedded equations (2), (3).

In Section 2 we derive and motivate variational and iterative regularization tech-
niques for solving (2), (3). Since the equation (1) is embedded into a system of equations
on a larger function space we call the resulting regularization techniques embedded reg-
ularization methods.

In Section 3 we analyze variational embedded regularization techniques. In partic-
ular, we show that the corresponding regularization techniques are well posed, conver-
gent and stable. In Section 4 we show that the iterative regularization techniques are of
Landweber-Kacmarcz form (cf. [12]) and present convergence results for these modified
Landweber-Kaczmarz iterations.

Here, the Kacmarcz iteration schemes are combined with a reliable and efficient
discrepancy principle which consists in enforcing the residual of each experiment (i.e. for
each p) to be below a certain threshold. This termination criteria has several advantages
(both analytically and numerically) over stopping criteria previously proposed in the
literature. We remark that this stopping criterion also applies to already analyzed
methods, like the Landweber-Kacmarcz iteration.

2 Embedded Regularization Methods

There are at least two basic concepts for solving systems of equations of the form
(1): iterative regularization methods (cf. e.g. [13, 1, 5, 10, 6, 2]) and Tikhonov type
regularization methods [20, 19, 18, 6].

In order to motivate our approach and indicate differences to existing methods we
introduce the function valued operator

A : D ⊆ X → S(S, Y ) ,

u 7→ {p 7→ a(p, u)}

and the data set G = {p 7→ g(p)}, where S(S, Y ) is a space of Bochner measurable
functions.

We can state that u ∈ X is a solution of (1) if it is a minimizer of

(4) ‖A(u) − G‖2
S(S,Y ) ,

where ‖ · ‖S(S,Y ) is a norm on the space S(S, Y ), which in the the sequel (for the clarity
of presentation) we always take the space L2(S, Y ) with the associated norm

(5) ‖G‖2
L2(S,Y ) :=

1

2π

∫

S

‖g(p)‖2
Y dp .

Then, standard Tikhonov regularization consists in approximating a minimizer of (4)
by a minimizer of the functional

(6) ‖A(u) − G‖2
L2(S,Y ) + α‖u− u∗‖2

X ,
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where u∗ ∈ D is some initial guess of the solution to be recovered and α is a regular-
ization parameter.

Gradient type regularization methods aim to approximate the minimizer of (4) via
an iterative procedure. Exemplarily we consider the Landweber iteration, which reads
as follows:

(7) un+1 = un −A′(un)∗(A(un) − G) ,

where A′(u)∗ denotes the adjoint of the Fréchet-derivative of the operator A with respect
to the spaces L2(S, Y ) and X.

Standard Tikhonov regularization for solving (2), (3) consists in calculating a min-
imizer of

(8)

∫

S

‖a(p, u(p)) − g(p)‖2
Y dp+ λ

∫

S
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∥

∥

∥

∂su

∂ps

∥

∥

∥

∥

2

X

dp+ α

∫

S

‖u(p) − u∗‖2
X ,

with a regularization parameter α > 0 .
In practical applications one is committed to a finite number of experiments (rep-

resented mathematically by one equation of the system) instead of an infinitesimal
uncountable number as used in the above motivation. However, mostly it is possible to
identify each experiment with a position on the sphere in a straight foward manner.

For instance in tomography one could identify the position on the sphere with the
angle of emmitted X-rays. In this situation we use the operator

A(u) :=
(

ai(u)
)N−1

i=0
:=
(

a(pi, u)
)N−1

i=0
,

where pi denotes the index of the measurement. Standard iterative methods for the
solution of the operator equation

(9) A(u) = G := (g(pi))
N−1
i=0

become inefficient if the evaluations of ai(u) and a′i(u)
∗ are expensive or if N is large.

In this case typically Kaczmarz-type iterative methods are used. For instance, the
Landweber-Kaczmarz method (cf. [12]) is defined by

(10) un+1 = un − a′i(u
n)

∗
(ai(u

n) − g(pi)) ,

with i satisfying n = bn/NcN + i (here bxc is the largest integer less or equal x).
In this paper we also investigate an embedded Landweber-Kaczmarz type iteration

for the solution of (2) and (3), which we define by:

(11) U (n+1/2) = U (n) −
(

a′i(u
(n)
i )∗(ai(u

(n)
i )) − g(pi))

)

i=0,...,N−1

(12) U (n+1) = U (n+1/2) − L(U (n+1/2)) ,

where
U := (ui)i=0,...,N−1 , with ui ∈ X .
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and L corresponds to a discretized steepest descent direction of the continuous func-
tional

(13) {p 7→ u(p)} 7→ λ
1

2π

∫

S

∥

∥

∥

∥

∂su

∂ps

∥

∥

∥

∥

2

X

dp

onHs(S, X). This scheme is called of Kacmarcz type since the two “blocks” of equations
are considered successively.

In the following we first analyze the embedded Tikhonov regularization and later
on we provide a convergence analysis of the Landweber-Kacmarcz type iteration.

3 Embedded Tikhonov Regularization

A common approach for a stable solution of (1) is to minimize the functional (6) over
D. As mentioned in the introduction we apply Tikhonov regularization to the operator-
equations (3), (2), that is we minimize the functional (8) over Ds := {u ∈ Hs(S, X) :
u(p) ∈ D, p ∈ S}.

Convergence and stability of Tikhonov regularization for the solution of (1) is on
the hand if A is continuous and weakly sequentially closed. We show that we can apply
standard Tikhonov regularization as well as embedded Tikhonov regularization for a
stable solution of (1) if the following assumptions hold true:

T1. The mapping a : S × D → Y is continuous and weakly continuous on bounded
subsets.

T2. The domain D of the operators a(p, ·) is weakly closed.

T3. The (exact) data G is in L2(S, Y ) and (1) has a solution u† in D.

Here a is called weakly continuous on bounded subsets, if a|S×BX
is continuous for

all bounded BX ⊆ X, when S × BX is considered with the product topology of the
usual metric topology on S and the weak topology on X restricted to BX , and Y is
considered with the weak topology.

3.1 Notations and technical results

First we introduce some notations and general results on equi-continuity and Bochner
Spaces (see, e.g., Yosida [22, Sections V.4, V.5]).

Equi-continuity

Let E and F be locally convex spaces, BE ⊆ E and M ⊆ C(BE , F ).
M is called equi-continuous on BE if for every e0 ∈ BE and every zero neighborhood

V ⊆ F there is a zero neighborhood U ⊆ E such that A(e0) −A(e) ∈ V for all A ∈ M
and all e ∈ BE with e− e0 ∈ U . M is called uniformly equi-continuous if for every zero
neighborhood V ⊆ F there is a zero neighborhood U ⊆ E such that A(e) − A(f) ∈ V
for all A ∈ M and all e, f ∈ BE with e− f ∈ U . If BE is compact, then equi-continuity
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PSfrag replacements

(p0, e0) (p, e0)

(p, f)

UE = UE(e0)

α = α(p0, e0)
S

Figure 1: The equi-continuity of {a(p, ·) : p ∈ S} in e0, the continuity of A(·, e0) in p0

and the triangle inequality imply the continuity of A in (p0, u0).

and uniform equi-continuity are equivalent. If E and F are Hilbert spaces then M
is called strongly (resp. weakly) equi-continuous if E and F are considered with the
strong (resp. weak) topology. Finally, a family (resp. sequence) (Aλ)λ∈Λ ⊆ C(BE , F )Λ

is called (uniformly) equi-continuous if the set {Aλ : λ ∈ Λ} ⊆ C(E,F ) is (uniformly)
equi-continuous.

If (E, dE) is a metric space, analogous definitions hold where statements like e−e0 ∈
U have to be replaced by statements like dE(e, e0) < α.

Proposition 3.1. Let BE ⊆ E and a : S × BE → F . If M1 := {a(p, ·) : p ∈ S} ⊆
C(E,F ), M2 := {a(·, e) : e ∈ E} ⊆ C(S, F ) and M1 (resp. M2) is equi-continuous,
then a is continuous.

Conversely, if a is continuous then M1 is equi-continuous and if additionally BE is
compact then M2 is equi-continuous, too.

Proof. Let (ϕλ)λ∈α be a family of semi-norms generating the topology of F . Assume
M1 being equi-continuous and let (p0, e0) ∈ S × BE , λ ∈ Λ and ε > 0. Since M1

is equi-continuous in e0 there is a zero neighborhood UE such that e − e0 ∈ UE and
p ∈ S implies ϕλ(a(p, e) − a(p, e0)) < ε/2. Since a(·, e0) is continuous in p0 there is
η > 0 such that |p − p0| < η implies ϕλ(a(p, e0) − a(p0, e0)) < ε/2. Hence for all
(p, e) ∈ Bη(p0) × (e0 + UE)

ϕλ(a(p, e) − a(p0, e0)) ≤ ϕλ(a(p, e) − a(p, e0)) + ϕλ(a(p, e0) − a(p0, e0)) < ε .

This shows that a is continuous in (e0, b0). To proof that a is continuous when M2 is
equi-continuous is analogous.

Now assume that a is continuous and let e0 ∈ E, λ ∈ Λ and ε > 0. Since a(·, e0) is
continuous there exist α(p) > 0 and zero neighborhoods UE(p) such that ϕλ(a(q, e) −
a(p, e0)) < ε/2 for all (q, e) ∈ Bα(p)(p) × (e0 + UE(p)). Hence

(14) ϕλ(a(q, e) − a(q, e0)) ≤ ϕλ(a(q, e) − a(p, e0)) + ϕλ(a(p, e0) − a(q, e0)) < ε

for all q ∈ Bα(p)(p) and all e ∈ e0 + U(p). Since (Bα(p)(p))p∈S is an open covering of S

and S is compact there is a finite subcovering {Bα(p1)(p1), . . . , Bα(pK )(pK)} of S. Define

UE :=
⋂K

k=1 UE(pk), let e ∈ e0 + UE and q ∈ S. Then there exists k ∈ {1, . . . ,K}
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with q ∈ Bα(pk)(pk) and from (14) it follows that ϕλ(a(q, e) − a(q, e0)) < ε. This shows
that M1 is equi-continuous in e0. The proof for the equi-continuity of M2 can be done
analogously.

Spaces of Bochner integrable functions

Let H be a separabel Hilbert space.
A step function U : S → H is called measurable if U−1(x) is measurable for all

x ∈ H. A function U : S → H, which we will often write in the form U = {p 7→ u(p)}, is
called measurable if there is a sequence Un of step functions such that un(p) → u(p) in
H for a.e. p ∈ S. It is called (Bochner-)integrable, if additionally limn→∞

∫

S
‖un(p) −

u(p)‖H dp = 0, in which case
∫

S

u(p) dp := lim
n→∞

∫

S

un(p) dp := lim
n→∞

∑

x∈H

λ(U−1
n (x))x

is called the integral of U .
A Function U is measurable if and only if it is weakly measurable, i.e., p 7→ 〈u(p), ξ〉

is measurable for all ξ ∈ H (Pettis 1938). If U ,U ′ : S → H are measurable then
p 7→ ‖u(p)‖H and p 7→ 〈u(p), u(p)′〉H are measurable. A measurable function U is
integrable if and only if p 7→ ‖u(p)‖H is integrable (Bochner 1933). Finally L2(S,H)
denotes the space of (equivalence classes of) measurable functions U with

‖U‖2
L2(S,H) :=

1

2π

∫

S

‖u(p)‖2
H dp < ∞ .

Here and in the following two functions are identified if they differ only on a set of
measure zero.

The space L2(S,H) with the scalar product

〈U ,U ′〉L2(S,H) :=
1

2π

∫

S

〈u(p), u′(p)〉H dp

is a Hilbert space with the associated norm ‖U‖L2(S,H) =
√

〈U ,U ′〉L2(S,H).

For U ∈ L2(S,H) we define the Fourier transform Û := (û(k))k∈Z of U by

(15) û(k) :=
1

2π

∫

S

exp(−ikp)u(p) dp .

Since {p 7→ exp(−ikp)u(p)} is weakly measurable and L2(S,R) ⊆ L1(S,R) the
Fourier coefficients in (15) are well defined. It is easy to see, that 〈U ,U ′〉L2(S,H) =
∑

k∈Z
〈û(k), û′(k)〉HC

. Here HC := H ⊕ iH denotes the complexification of H and
〈·, ·〉HC

the associated inner product. Finally H s(S,H) is defined as the space of all
(equivalence classes of) Bochner measurable functions U ∈ L2(S,H) with ‖U‖2

s :=
∑

k∈Z
(1 + |k|s)2‖û(k)‖2

HC
< ∞. Note that Hs(S,H) is a Hilbert space with the scalar

product

(16) 〈U ,U ′〉s :=
∑

k∈Z

(1 + |k|s)2〈û(k), v̂(k)〉HC

and the associated norm ‖ · ‖s.
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Lemma 3.2. Let s > 1/2. Each element U ∈ H s(S,H) has a continuous representative
and the mapping is : Hs(S,H) ↪→ C(S,H) is continuous. Let U ∈ H s(S,H), x ∈ H
and define 〈U , x〉H := {p 7→ 〈u(p), x〉H}. Then 〈U , x〉H ∈ Hs(S) and ‖〈U , x〉‖Hs(S) ≤
‖U‖s‖x‖H .

Proof. Let n < m ∈ N. The Cauchy-Schwartz inequality shows
∥

∥

∥

∥

∥

∥

m
∑

|k|=n

û(k) exp(ikp)

∥

∥

∥

∥

∥

∥

H

≤
m
∑

|k|=n

‖û(k)‖HC
(1 + ks)/(1 + ks)

≤ ‖U‖s

(

2

∞
∑

k=n

1/(1 + ks)2

)1/2

.

Since s > 1/2 the series
∑∞

k=0 1/(1+ks)2 is convergent and hence
∑

|k|≤n û(k) exp(ikp)
is uniformly convergent with limit

∑

k∈Z
û(k) exp(ikp). Since U 7→ (û(k))k∈Z in one to

one it follows that u(p) =
∑

k∈Z
û(k) exp(ikp) and that u is continuous. Using (17) for

n = 0 and taking the limit m → ∞ shows that is is bounded. Now let U ∈ Hs(S,H)
and x ∈ H. Then the Fourier coefficients of 〈U , x〉H are given by

1

2π

∫

S

〈u(p), x〉He−ikp dp = 〈 1

2π

∫

S

e−ikxu(p) dp, x〉HC
= 〈û(k), x〉HC

.

From the Cauchy-Schwartz inequality it follows

‖〈U , x〉‖2
Hs(S) =

∑

k∈Z

(1 + ks)2|〈û(k), x〉HC
|

≤
∑

k∈Z

(1 + ks)2‖û(k)‖2
HC

‖x‖2
H

= ‖U‖2
s‖x‖2

H <∞ .

This shows 〈U , x〉H ∈ Hs(S) and ‖〈U , x〉‖Hs(S) ≤ ‖U‖s‖x‖H .

3.2 Tikhonov Regularization for the solution of A(u) = G
Assumption T1 implies that a(·, u) is continuous for all u ∈ D, therefore a(·, u) ∈
L2(S, Y ) and hence

(17)
A : D ⊆ X → L2(S, Y ) ,

u 7→ {p 7→ a(p, u)}

is well defined. By assumption T3 we have G ∈ L2(S, Y ) and hence (1) is equivalent to
the single operator-equation

(18) A(u) = G .

In order to apply Tikhonov regularization to (18) we use proposition 3.1 to prove
the following lemma:
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Lemma 3.3. The mapping A : D → L2(S, Y ) is continuous and the restricted mapping
A|BX

: D ∩BX → L2(S, Y ) is weakly continuous for all bounded BX ⊆ X.

Proof. Let u0 ∈ D and ε > 0. By assumption T1 a is continuous and from Proposi-
tion 3.1 it follows that M1 = {a(p, ·) : p ∈ S} is strongly equi-continuous in u0. Hence
there is α > 0 such that sup{‖a(p, u) − a(p, u0)‖Y : p ∈ S} < ε for all u ∈ D ∩ Bα(u0).
Hence

‖A(u0) −A(u)‖2
L2(S,Y ) =

1

2π

∫

S

‖a(p, u0) − a(p, u)‖2
Y dp < ε2

for all u ∈ D ∩Bα(u0). This shows that A is continuous at u0.
Now let BX ⊆ X be bounded. Since a|S×BX

is weakly continuous and D is weakly
closed the image a|S×BX

is bounded. This implies that

∫

S

‖a(p, u)‖2
Y dp ≤ R2

for u ∈ BX ∩D. Hence Im(A|BX
) is bounded and the weak topology on Im(A|BX

) is
generated by the semi-norms |〈·, g ⊗ f〉| with g ∈ Y , f ∈ L2(S). To verify that A|BX

is
weakly continuous it is sufficient to show that for all u0 ∈ D∩BX , g ∈ Y , f ∈ L2(S) and
ε > 0 there is a weak neighborhood U of u0 such that 〈A(u) −A(u0), g ⊗ f〉L2(S,Y ) < ε
for all u ∈ U .

Since {a(p, ·) : p ∈ S} is weakly equi-continuous on BX there is a weak zero neigh-
borhood U such that |〈a(p, u) − a(p, u0), g〉Y | < ε/‖f‖L2(S) for all u ∈ D ∩ BX and
p ∈ S1. Hence, from the Cauchy inequality on L2(S), it follows that

4π2
∣

∣〈A(u) −A(u0), g ⊗ f〉L2(S,Y )

∣

∣

2

=

∣

∣

∣

∣

∫

S

〈a(p, u) − a(p, u0), (g ⊗ f)(p)〉Y dp
∣

∣

∣

∣

2

=

∣

∣

∣

∣

∫

S

f(p) · 〈a(p, u) − a(p, u0), g〉Y dp
∣

∣

∣

∣

2

≤2π‖f‖2
L2(S)

∫

S

|〈a(p, u) − a(p, u0), g〉Y |2dp < 4π2ε2 .

This shows that A|BX
is weakly continuous in u0.

If we have only noisy data Gδ := {p 7→ gδ(p)} with ‖G −Gδ‖ < δ and (1) is ill posed
then

(19) a(p, u) = gδ(p) , for p ∈ S

may not have a solution, and even if a solution uδ of (19) exists ‖u∗ − uδ‖X can be
arbitrary large (see, e.g., [6, Chapter 3]). Therefore (1) has to be regularized. Hence
instead of trying to solve (19), one minimizes the Tikhonov functional

(20) Jα,Gδ(u) := ‖A(u) − Gδ‖2
L2(S,Y ) + α‖u− u∗‖2

X

over D, where u∗ ∈ D is some initial guess and α > 0 is a regularization parameter.
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Since X is separable, the weak topology on bounded subsets of X is metrizable.
Therefore weak sequential-continuity and sequential-continuity on bounded subsets are
equivalent. Hence Lemma 3.3 guaranties that the following results for Tikhonov regu-
larization hold true (cf. [6, Chapter 10]):

1. Well-posedness. Let α > 0 and Gδ ∈ L2(S, Y ). Then the functional Kα,Gδ attains
a minimizer over Ds.

2. Stability. Let Gn be a sequence in L2(S, Y ) with Gn → Gδ and let un be a
minimizer of Jα,Gn

. Then there is a convergent subsequence of un and the limit
of any convergent subsequence of un is a minimizer of Jα,Gδ .

3. Convergence. Let α̂(δ) satisfy

lim
δ→0

α̂(δ) = lim
δ→0

δ2/α̂(δ) = 0 .

Assume that (δn)n∈N is a sequence converging to zero and assume that (Gn)n∈N

is a sequence in L2(S, Y ) satisfying ‖Gn − G‖L2(S,Y ) < δn. Let un be a minimizer
of Jαn ,Gn

with αn := α̂(δn).

Then, (un)n∈N has a weakly convergent subsequence. Moreover, each weakly
convergent subsequence is strongly convergent and the limit is an u∗-minimal
norm solution of (18). If (18) has a unique u∗-minimal norm solution u†, then
un → u†.

Convergence Rates

Convergence rates for Tikhonov Regularization can be derived if the solution satisfies a
source wise representation (cf. [6]). are obtained under the so called source conditions.
Let us assume for the rest of this Section that the following additional condition holds
true:

T4. D is convex, {a(p, ·) : p ∈ S} is Fréchet equi-differentiable and D2a : S × D →
B(X,Y ) is continuous.

Here {a(p, ·) : p ∈ S} is called Fréchet equi-differentiable if, for all u0 ∈ D, all ε > 0,
there is η > 0 such that

(21) sup
p∈S

‖a(p, u0 + h) − a(p, u0) −D2a(p, u0)(h)‖Y < ε‖h‖X ,

for ‖h‖X < η, where D2a(p, u0) ∈ B(X,Y ) denotes the Fréchet derivative of a(p, ·) at
u0.

Lemma 3.4. The operator A is Fréchet differentiable and the Fréchet derivative A ′(u0) ∈
B(X,L2(S, Y )) at u0 ∈ D is given by

(22) A′(u0)(h)(p) = D2a(p, u0)(h) .

9



Proof. Let u0 ∈ D, define A′(u0) by (22), and let h ∈ X. Since D2a(·, u0) : S →
B(X,Y ) is continuous and S is compact, we have supp∈S ‖D2a(p, u0)‖B(X,Y ) =: C <∞.
Hence

2π‖A′(u0)(h)‖L2(S,Y ) =

∫

S

‖D2a(p, u0)(h)‖2
Y dp ≤ 2πC‖h‖s ,

and consequently A′(u0) : X → L2(S, Y ) is a bounded linear operator.
Now let ε > 0. Since {a(p, ·) : p ∈ S} is Fréchet equi-differentiable, there exists

η > 0 such that

(23) sup
p∈S

‖a(p, u0 + h) − a(p, u0) −D2a(p, u0)(h)‖Y < ε‖h‖X ,

for ‖h‖X < η. Hence

2π‖A(u0 + h) −A(u0) −A′(u0)(h)‖2
L2(S,Y )

=

∫

S

‖a(p, u0 + h) − a(p, u0) −D2a(p, u0)(h)‖2
Y dp

≤
∫

S

ε2‖h‖2
X dp < 2πε2‖h‖2

X .

This shows, that A is Fréchet differentiable at u0 and its derivative is given by A′(u0).

From Lemma 3.4 it follows that (see, e.g., [6, Theorem 10.7])

Theorem 3.5. Let u† be an u∗-minimum norm solution of (1) and let µ ∈ [1/2, 1].
Assume that there exist γ > 0 and ρ > 2‖u∗ − u†‖ such that

‖A′(u†) −A′(u)‖ ≤ γ‖u† − u‖ , u ∈ Bρ(u
†)

If there exits w ∈ X satisfying γ‖w‖ < 1 and

u† − u∗ = (A′(u†)∗A′(u†))µw ,

and if α ∼ δ2/(2µ+1), then ‖uδ
α − u†‖ = O(δ2µ/(2µ+1)).

In Section 3.4 we prove similar statements for the embedding approach. Note, that
the continuity in p is not needed for Tikhonov regularization, where it would be sufficient
to assume that A(·, u) is measurable for all u ∈ D and {a(p, ·) : p ∈ S} is equi-continuous
and weakly equi-continuous on bounded sets (cf. proof of Lemma 3.3). Nevertheless
this continuity is necessary for the embedding approach (cf. proof of Proposition 3.10).
However the continuity in p seems to be a natural assumption and hold true for many
practical problems.
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3.3 Examples

Example 3.6 (Computerized Tomography). Let Ω := B1(0) ⊆ R
2 denote the unit ball

in R
2 and let p ∈ S. For ϕ ∈ C∞

0 (Ω) and s in (−1, 1) we define

(24) r(p, ϕ)(s) :=

∫

L(p,s)
ϕ(g) dy :=

∫ 1

−1
ϕ(sp+ tp⊥) dt ,

i.e., the integral of ϕ over the line L(s, p) := sp + Rp⊥ (see, e.g., [17]). By applying
the Cauchy Schwartz inequality one can see that ‖r(p, ϕ)‖2

L2(−1,1) ≤ 2‖ϕ‖2
L2(Ω). Since

C∞
0 (Ω) is dense in L2(Ω) there is a unique linear mapping

r(p, ·) : L2(Ω) → L2(−1, 1) : u 7→ g(p) = r(p, u) ,

such that r(p, ϕ) is given by (24) for all ϕ ∈ C∞
0 (Ω) and ‖r(p, ·)‖2 ≤ 2. It is easy to

see that this estimate is sharp, i.e., ‖r(p, ·)‖2 = 2. The function r(p, u) is called the
projection of u in direction p. The Radon transform R : L2(Ω) → L2(S, L2(−1, 1)) ≡
L2(S × (−1, 1),R) is defined by G = R(u) = {p 7→ r(p, u)}.

The aim in Computerized Tomography is to reconstruct u ∈ L2(Ω) from the mea-
sured noisy projections Gδ = {gδ

p}p∈S with ‖Gδ−G‖L2(S,L2(−1,1)) < δ. Due to Lemma 3.1
Computerized Tomography fits in our general framework with D = X = L2(Ω),
Y = L2(−1, 1) and a(p, ·) = r(p, ·) if we can show that {r(p, ·) : p ∈ S1} is equi-
continuous, r(p, ·)|BX

is weakly continuous on bounded sets and {r(·, ϕ) : ϕ ∈ BX} is
weakly equi-continuous for all bounded sets BX ⊆ X.

Since r(p, ·) is bounded and linear it is weakly continuous for all p ∈ S. Since
{r(p, ·) : p ∈ S1} is equi-bounded there is a constant c > 0 such that ‖r(p, ·)‖Y ≤ C for
all p ∈ S. If ε > 0 and ‖u− u0‖X < ε/C then

‖r(p, u0) − r(p, u)‖Y ≤ ‖r(p, ·)‖‖u0 − u‖X < ε ,

for all p ∈ S. This shows, that {r(p, ·)} is equi-continuous. Finally we show that
{r(·, ϕ) : ϕ ∈ BX} is uniformly weakly equi-continuous. Let ψ ∈ C∞

0 (−1, 1) and ε > 0
and d := max{‖ϕ‖X : x ∈ BX}. Then there is α > 0 such that |s − t| < α implies
|ψ(s)−ψ(t)|2 < ε2/(d2π). If |p− q| ≤ α, then |〈p, x〉 − 〈q, x〉| < α for all x ∈ B1(0) and
therefore

|〈ϕ, r(p, ·)∗ψ−r(q, ·)∗ψ〉X |2 ≤ ‖ϕ‖2
X

∫

B1(0)
(ψ(〈p, x〉)−ψ(〈q, x〉))2 dx < d2πε2/(d2π) = ε2

for all ϕ ∈ X. This shows that {r(·, ϕ) : ϕ ∈ BX} is uniformly weakly equi-continuous.

Example 3.7 (Electrical Impedance Tomography (EIT)). Let Ω ⊆ R
2 be a bounded

simply connected domain in R
2 with Lipschitz boundary ∂Ω and outer normal ν and

m > 0 a positive real number. Further let L∞
m (Ω) := {u ∈ L∞(Ω) : ess infΩ(u) ≥ m},

L2
�(∂Ω) := {f ∈ L2(∂Ω) :

∫

∂Ω f(s) ds = 0}, u ∈ L∞
m (Ω) and f ∈ L2

�(∂Ω). In EIT the
function u is interpreted as the conductivity inside some body Ω and f as the applied
boundary current (see [4, 3, 9, 16]).
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Using standard techniques for second order elliptic differential equations (see, e.g.,
[21]) it can be shown that the Neumann problem

∇ · (u∇ϕ) = 0 , in Ω ,(25)

u∇∂ϕ

∂ν
= f , on ∂Ω(26)

attains an unique (weak) solution ϕ = L(f, u) in

H1
� (Ω) := {ϕ ∈ H1(Ω) : T (u) ∈ L2

�(∂Ω)} ,

which can be interpreted as the attuning electrical potential. Here T : H 1(Ω) → L2(∂Ω)
denotes the trace operator (which is bounded linear with norm ‖T‖ < ∞). Note
that H1

� (Ω) is a closed subspace of H1(Ω) and from the Poincaré inequality follows
that 〈ϕ,ψ〉� :=

∫

Ω ∇ϕ · ∇ψ dx defines a inner product on H1
� (Ω) with associated norm

‖ϕ‖� :=
√

〈ϕ,ψ〉� and ‖ · ‖� ∼ ‖ · ‖H1(Ω). The stability estimates

‖L(f, u) − L(f ′, u)‖� ≤ ‖T‖
m

‖f − f ′‖L2
�(∂Ω) ,(27)

‖L(f, u) − L(f, u′)‖� ≤ ‖T‖
m2

‖f‖L2
�(Ω)‖u− u′‖L∞(Ω) ,(28)

hold for all u, u′ ∈ L∞
m (Ω) and f, f ′ ∈ L2

�(∂Ω).
Now let {p 7→ f(p)} be a family of applied boundary currents uniformly bounded

in L2
�(∂Ω) and depending smoothly on p.

(29) H2
m(Ω) := {u ∈ H2(Ω) : inf

Ω
u ≥ m} ⊆ H2(Ω)

is closed and convex and thus weakly closed. Since i : H 2(Ω) → L∞(Ω) is linear and
compact (and thus bounded with norm ‖i‖) the mappings

a(p, ·) : H2
m(Ω) → L2

�(∂Ω) : u 7→ a(p, u) := g(p) := (T ◦ L)(f(p), i(u))

are continuous and weakly continuous on bounded sets. The aim in EIT is to reconstruct
u ∈ L2(Ω) from the measured noisy boundary voltages {p 7→ gδ(p)}. Hence EIT fits in
our general framework with X = H2(Ω), D = H2

m(Ω) and Y = L2
�(S) if we can show

that {a(p, ·) : p ∈ S1} is equi-continuous, {a(p, ·)|BX
: p ∈ S} is weakly equi-continuous

and a(·, ϕ) is continuous for all ϕ ∈ D. From (27) and (29) follows immediately that
a(·, ϕ) is continuous. If we introduce the mappings

ã(p, ·) : L∞
m (Ω) → L2

�(∂Ω) : u 7→ a(p, u) := g(p) := (T ◦ L)(f(p), u)

then we have a(p, ·) = ã(p, ·) ◦ i. Since {p 7→ f(p)} is uniformly bounded it follows
immediately from (28) that {ã(p, ·) : p ∈ S} and hence {a(p, ·) : p ∈ S} is strongly
equi-continuous. The weak equi-continuity of {a(p, ·)|BX

: p ∈ S} for bounded BX ⊆ X
will be a consequence of the following lemma.
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Lemma 3.8. Let (E, ‖ · ‖E) be a Banach space, K : X → E linear and compact,
BX ⊆ X bounded, BE ⊆ E and K(BX) ⊆ BE. If M̃ ⊆ C(BE, Y ) is strongly equi-
continuous, then M := {ã ◦K|BX

: ã ∈ M̃} is weakly equi-continuous.

Proof. Since K is linear and compact it is completely sequentially continuous. Since
the weak topology on BX is metrizable the restriction K|BX

is completely continuous.
Let u0 ∈ BX and ε > 0. Since M̃ is equi-continuous in K(u0) there is α > 0 such
that ‖e − K(u0)‖E < α implies ‖ã(e) − ã(K(u0))‖Y < ε for all ã ∈ M̃. Since K|BX

is completely continuous in u0 there is a weak neighborhood U ⊆ D ∩ BX of u0 such
that u ∈ U implies ‖K(u) − K(u0)‖B < α and hence ‖a(u) − a(u0)‖Y = ‖ã(Ku) −
ã(K(u0))‖Y < ε. This shows that M|BX

is weakly equi-continuous in u0.

Remark 3.9 (Inverse Doping Profile). An application closely related to Example 3.7
is the identification of doping profiles in semiconductor devices. The main difference
between this identification problem and EIT is the fact that the boundary condition
in (26) is substituted by mixed boundary conditions: ϕ = f on ∂Ω0, ϕ = 0 on ∂Ω1,
u∇∂ϕ

∂ν = 0 on ∂Ω\(∂Ω0∪∂Ω1), i.e. the input corresponds to dirichlet data (voltage). The

output is the Neumann trace measured at ∂Ω1 and corresponds to u∇ ∂ϕ
∂ν (current). Here

∂Ω0 and ∂Ω1 represent the Ohmic contacts of the semiconductor, and ∂Ω−(∂Ω0∪∂Ω1)
are the insulating surfaces.

The unknown coefficient u models the doping concentration, which is produced by
diffusion of different materials into the silicon crystal and by implantation with an ion
beam. For a detailed exposition of this inverse problem we refer the reader to [15] and
also to the review paper [14] and the references therein.

3.4 Analysis of Embedded Tikhonov Regularization

Here we consider the solution of (2) and (3) with a Tikhonov regularization method.
For the analysis of this methods we require that s > 1/2, which we assume in the sequel
to hold.

We define

(30)
F : Ds ⊆ Hs(S, X) → L2(S, Y ) ,

{p 7→ u(p)} 7→ {p 7→ a(p, u(p))}

Note that F now plays the role of A but acts on a family of elements U = {p 7→ u(p)}
(pointwise). For a function in Hs(S, X) which is not dependent on p we do not use
caligraphic letters.

Proposition 3.10. The operator F is well defined, continuous and (uniformly) weakly
continuous on bounded sets B ⊆ Ds.

Proof. Lemma 3.2 states that the embedding H s(S, X) ↪→ C(S, X) is well defined and
continuous. Hence, for the continuity of F , it is sufficient to show that F maps C(S, X)
continuously into L2(S, Y ). Let U ∈ C(S, X). Since a is continuous (assumption T1) we
conclude that F(U) = {p 7→ a(p, u(p))} is continuous, hence it is weakly measurable,
{p 7→ ‖F(U)(p)‖2

Y } is bounded, and thus F(U) ∈ L2(S, Y ), proving the first statement.
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Now let ε > 0. Since {a(p, ·) : p ∈ S} is uniformly equi-continuous, there is η > 0
such that for all u, u′ ∈ D with ‖u − u′‖X < η, and all p ∈ S, we have ‖a(p, u) −
a(p, u′)‖2

Y < ε2. Hence

‖F(U) −F(U ′)‖2 =
1

2π

∫

S

‖a(p, u(p)) − a(p, u′(p))‖2
Y dp < ε2 .

for all U ,U ′ ∈ C(S, X) with sup{‖u(p) − u′(p)‖X : p ∈ S} < η. This shows that F is
continuous.

Now assume B ⊆ Ds being bounded.

1. Since Hs(S, X) ↪→ C(S, X) is bounded, U ∈ B implies that {u(p) : p ∈ S} is
uniformly bounded. Let ρ ≥ sup{‖u(p)‖X : p ∈ S}, f ∈ L2(S), g ∈ Y and ε > 0.
Since {a(p, ·) : p ∈ S} ⊆ C(D,Y ) is uniformly weakly equi-continuous on Bρ(0),
there are x1, . . . , xN ∈ X and η > 0 such that |〈a(p, u)−a(p, u′), g〉Y | < ε/‖f‖L2(S)

for all p ∈ S and u, u′ ∈ Bρ(0) with max{|〈u− u′, xn〉X | : n = 1, . . . , N} < η.

2. Since 〈U , xn〉X ∈ Hs(S) and ‖〈U , xn〉‖Hs(S) ≤ ‖U‖s‖xn‖X (cf. Lemma 3.2) there
is a closed bounded ball B̄ ⊆ Hs(S) with 〈U , xn〉X ∈ B̄ for all n ∈ {1, . . . , N}
and U ∈ B. Since Hs(S) is compactly embedded in C(S) and B̄ is compact in the
weak topology of Hs(S) there are fn,1, . . . , fn,M(n) ∈ Hs(S) and ζn > 0 such that
‖f‖C(S) < η for all f ∈ B̄ with max{|〈f, fn,m〉Hs(S)| : m = 1, . . . ,M(n)} < ζn.

3. Define the weak zero neighborhood U :=
⋂N

n=1 Un with

Un := {U ∈ Hs(S, X) : |〈U , xn ⊗ fn,m〉s| ≤ ζn , m = 1, . . . ,M(n)} .

Let U ,U ′ ∈ B and U − U ′ ∈ U . Hence for all n = 1, . . . , N and m = 1, . . . ,M(n)

|〈〈U − U ′, xn〉X , fn,m〉Hs(S)| =

∣

∣

∣

∣

∣

∑

k∈Z

(1 − ks)2〈û(k) − û′(k), xn〉X f̂n,m(k)

∣

∣

∣

∣

∣

= |〈U − U ′, xn ⊗ fn,m〉s| < ζn .

Hence U ,U ′ ∈ B, U −U ′ ∈ U implies (cf. step 2) ‖〈U −U ′, xn〉X‖C(S) < η and from the
Cauchy Schwartz inequality on L2(S) and step 1 it follows that

4π2|〈F(U) −F(U ′), g ⊗ f〉L2(S,Y )|2 =

∣

∣

∣

∣

∫

S

f(p) · 〈a(p, u(p)) − a(p, u′(p)), g〉Y dp
∣

∣

∣

∣

2

≤ 2π‖f‖2
L2(S)

∫

S

|〈a(p, u(p)) − a(p, u′(p)), g〉Y |2 dp < 4π2ε2.

The last inequality shows that F|B is uniformly weakly continuous.

In the following we consider the case where we have only perturbed data G δ with
‖G−Gδ‖L2(S,Y ) < δ. As discussed in the introduction we apply Tikhonov regularization
to the system of equations (3) and (2). Hence we minimize the functional

(31) Kα,Gδ(U) :=
(

‖F(U) − G‖2
L2(S,Y ) + λ|U|2s

)

+ α‖U − u∗‖2
s ,
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over D, where u∗ ∈ D is some initial guess and α a regularization parameter. Since
‖ · ‖2

s = | · |2s + ‖ · ‖2
L2(S,X) and |u∗|2s = 0 we have

(32) Kα,Gδ(U) := ‖F(U) − G‖2
L2(S,Y ) + (λ+ α)|U|2s + α‖U − u∗‖2

L2(S,X) ,

We call the corresponding regularization technique embedded Tikhonov regulariza-
tion for solving (1). The following theorem states that embedded Tikhonov regulariza-
tion is in fact a regularization technique for the solution of (1):

Theorem 3.11. Let s > 1/2.

1. (Well-posedness of embedded Tikhonov regularization) For α > 0 and G δ ∈
L2(S, Y ), the functional Kα,Gδ attains a minimizer on Ds.

2. (Stability of embedded Tikhonov regularization) Assume that Gn is a sequence in
L2(S, Y ) with Gn → Gδ and let Un be a minimizer of Kα,Gn

. Then there exists a
convergent subsequence of Un and the limit of any convergent subsequence of Un

is a minimizer of Kα,Gδ .

3. (Convergence of embedded Tikhonov regularization) Let α̂(δ) satisfy

lim
δ→0

α̂(δ) = lim
δ→0

δ2/α̂(δ) = 0 .

Assume that (δn)n∈N is a sequence converging to zero. Moreover, we assume that
(Gn)n∈N is a sequence in L2(S, Y ) satisfying ‖Gn − G‖L2(S,Y ) < δn. Let Un be
a minimizer of Kαn,Gn

with αn := α̂(δn). Then, (Un)n∈N has a weakly conver-
gent subsequence and each weakly convergent subsequence is strongly convergent
to U† = u† which is an u∗-minimal norm solution of (1) (and therefore constant
with respect to p). If u† is unique, then Un → u†.

Proof. From Proposition 3.10 it follows that the operator

(F ,
√
λ| · |s)T : Ds ⊆ Hs(S, X) → L2(S, Y ) × R

is continuous and weakly continuous on bounded sets. Hence, it follows that minimizing
Kα,Gδ is well posed and stable. Moreover, under the requirements of 3, the sequence
(Un)n∈N has a weak convergent subsequence, and each weak convergent subsequence of
(Un)n∈N is strong convergent with limit U †, where U † is a u∗-minimum norm solution
of F(U) = g, λ|U|2s = 0. Therefore U † = u†, where u† is a u∗-minimal norm solution of
(1). If u† is unique then U † is unique, and consequently Un → u†.

Convergence Rates

Let us assume for the rest of this Section that condition T4 holds true.

Lemma 3.12. The operator F is Fréchet differentiable and the Fréchet derivative
F ′(u0) ∈ B(Hs(S, X), L2(S, Y )) at {p 7→ u0(p)} =: U0 ∈ Ds in direction {p 7→ v(p)} =:
V ∈ Hs(S, X) is given by

(33) F ′(U0)(V)(p) = D2a(p, u0(p))(v(p)) .
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Proof. Let U0 ∈ Ds and V ∈ Hs(S, X). Define Θ(U0) : V 7→ D2a(p, u0(·))(v(·)). Since
D2a is continuous and is : Hs(S, X) ↪→ C(S, X) is bounded linear, Θ(U0)(V) is continu-
ous and hence measurable. Since S is compact andD2a is continuous, p 7→ D2a(p, u0(p))
is bounded, say ‖D2a(p, u0(p))‖ ≤M , for all p ∈ S. Hence

2π‖Θ(U0)(V)‖L2(S,Y ) ≤
∫

S

‖D2a(p, u0(p))(v(p))‖2
Y dp ≤ 2πM‖is‖‖V‖s .

This shows that Θ(U0) ∈ B(Hs(S, X), L2(S, Y )). Now let ε > 0. Since {A(p, ·) : p ∈ S}
is Fréchet equi-differentiable, there is α > 0 such that

‖A(p, u0(p)) −A(p, u0(p) + v(p)) −D2a(p, u0(p))(v(p))‖2
Y < ε2‖v(p)‖2

X ,

for all p ∈ S and ‖v(p)‖X < α. Since Hs(S, X) ↪→ C(S, X) there exists β > 0 such that
‖V‖s < β implies ‖v(p)‖X < α for all p ∈ S. Thus, for all ‖V‖s < β

2π‖F(U0) −F(U0 + V) − Θ(U0)V‖2
L2(S,Y ) =

∫

S

‖a(p, u0(p)) − a(p, u0(p) + v(p)) −D2a(p, u0(p))(v(p))‖2
Y dp ≤

∫

S

ε2‖v(p)‖2
X dp < ε2‖V‖2

s .

This shows, that F is Fréchet differentiable at U0, and that F ′(U0)(V) = Θ(U0)(V).

Analogous to Theorem 3.5 we can prove the following result.

Theorem 3.13. Assume that u† is an u∗-minimum norm solution of (1) in the interior
of Ds and let µ ∈ [1/2, 1]. Assume that there exists γ > 0 and ρ > 2‖u† −u∗‖ such that

‖F ′(u†) −F ′(U)‖2
L2(S,Y ) + λ|u† − U|2s ≤ γ2‖u† − U‖2

s , U ∈ Bs
ρ(u

†) ⊆ Hs(S, X) .

If there exists W ∈ Hs(S, X) satisfying γ‖W‖s < 1 and

(34) u† − u∗ =
(

F ′(u†)∗F ′(u†) + λΛ2s
)µ

W ,

where Λ is the square root of (minus) Laplace-Beltrami operator. Then, for a parameter
choice α = α(δ) ∼ δ2/(2µ+1),

‖Uδ
α(δ) − u†‖s = O(δ2µ/(2µ+1)) .

Remark 3.14. For s = 1 and µ = 1 condition (34) reads as

u† − u∗ =

(

F ′(u†)∗F ′(u†) − λ
∂2

∂p2

)

W .

From this equation we conclude that u† − u∗ satisfies the averaged source condition

u† − u∗ =
1

2π

∫ 2π

0
D2a(p, u

†)∗D2a(p, u
†)w(p) dp ,

where W = {p 7→ w(p)}. For W constant in p this condition is the same as in The-
orem 3.5, and is therefore weaker. However, it should be taken into account that the
closeness condition γ‖W‖s is more restrictive for the embedded Tikhonov regulariza-
tion.
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4 Embedded Landweber-Kaczmarz Iteration

In this Section we review and addend the convergence analysis of the Landweber-
Kaczmarz method, and apply it to the embedding approach discussed in the intro-
duction.

4.1 A Survey and Addendum on the Convergence Analysis of the

Landweber-Kaczmarz Method

For given iteration index n, let us denote by i = i(n) ∈ {0, . . . , N − 1} the integer value
satisfying

n =
⌊ n

N

⌋

N + i .

With this notation we define the Landweber-Kaczmarz iteration for approximating the
solution u ∈ X of a system

(35) ai(u) = g(pi) i = 0, 1, . . . , N − 1 ,

using available noisy data gδ(pi) satisfying

‖gδ(pi) − g(pi)‖ ≤ δi ,

by

(36)

uδ,n+1 = uδ,n − ωna
′
i(u

δ,n)
∗
(ai(u

δ,n) − gδ(pi)) ,

with

ωn =

{

1 if ‖ai(u
δ,n) − gδ(pi)‖ > τδi ,

0 else .

The positive number τ is chosen in dependence of properties of ai (cf. condition (40)
below) such that

(37) τ > 2
1 + η

1 − 2η
> 2 .

Note, that for noise free data we have ωn ≡ 1, and hence the iteration (36) reduces to
the familiar Landweber-Kaczmarz iteration (10). From (37) it follows that

(38) 2(1 + η)δi − (1 − 2η)‖gδ(pi) − ai(u
δ
n)‖ ≥ 0 =⇒ wn = 0 .

The following assumptions are standard in the convergence analysis of iterative
regularization methods (cf., e.g., [11]):

1. We assume that for fixed i ∈ {0, 1, . . . , N − 1}

(39) ‖ai(u)‖ ≤ 1 , ∀u ∈ B2ρ(u
∗) ⊂ D ,

where B2ρ(u
∗) denotes a closed ball of radius 2ρ around the starting value u∗.
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2. Moreover, we assume that the (local) tangential cone condition hold. This is a
central assumption in the analysis of iterative methods for the solution on non-
linear ill–posed problems (cf., e.g., [6, 11]):

(40)
‖ai(u) − ai(ũ) − a′i(u)(u− ũ)‖ ≤ η‖ai(u) − ai(ũ)‖ , η <

1

2
,

u, ũ ∈ B2ρ(u
∗) ⊂ D .

3. In the case of noisy data, iterative regularization methods require early termina-
tion, which is enforced by an appropriate stopping criterion: The termnination
index is denoted by n? := n?(δ) and is the smallest integer multiple of N such
that

(41) uδ,n? = uδ,n?+1 = · · · = uδ,n?+N−1 .

Here we adopt the notation δ := (δ0, δ1, . . . , δN−1).

Before stating the main result of this Section we prove an auxiliary lemma which
guarantees the existence of a finite n?.

Lemma 4.1. For any solution u of (9) the following estimate holds true
(42)

‖uδ,n+1−u‖−‖uδ,n−u‖ ≤ ωn‖gδ(pi)−ai(u
δ,n)‖

(

2(1 + η)δi − (1 − 2η)‖gδ(pi) − ai(u
δ,n)‖

)

,

for all n. Moreover, the stoping rule (41) and (42) imply ωn?+i = 0 for all i ∈
{0, . . . , N − 1}, i.e.

(43) ‖ai(u
δ,(n?)) − gδ(pi)‖ ≤ τδi , i = 0, . . . , N − 1 .

Furthermore,

(44)
n?

N
(τ min(δ))2 ≤

n?−1
∑

n=0

ωn‖gδ(pi) − ai(u
δ,n)‖2 ≤ τ

(1 − 2η)τ − 2(1 + η)
‖u− u∗‖2 .

Proof. Let us prove (42). For n ≤ n? we shall consider two cases: If ωn = 1, then this
inequality is analog to [6, Inequality (11.11)]; for ωn = 0 the inequality is trivial. For
n > n? (42) follows from ωn = 0.

To prove the second assertion note that for n = n? we have

0 ≤ ωn‖gδ(pi) − ai(u
δ,n)‖

(

2(1 + η)δi − (1 − 2η)‖gδ(pi) − ai(u
δ,n)‖

)

.

If ωn 6= 0, we would have 2(1+η)δi − (1−2η)‖gδ (pi)−ai(u
δ,n)‖ ≥ 0, contradicting (38).

To prove (44) we add up (42) from 0 through n? and obtain

‖u− u∗‖ − ‖u− uδ,n∗‖ ≥ (1 − 2η)τ − 2(1 + η)

τ

n?
∑

n=0

ωn‖gδ(pi) − ai(u
δ,n)‖2 .
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This implies the second inequality in (44). The first inequality follows from

n?
∑

n=0

ωn‖gδ(pi) − ai(u
δ,n)‖2 =

n?

N
∑

l=0

N−1
∑

i=0

ωn‖gδ(pi) − ai(u
δ,n)‖2

≥
n?

N
∑

l=0

‖gδ(pi) − ai(u
δ,n)‖2 ≥ n?

N
(τ min(δ))2 .

For the Landweber-Kaczmarz algorithm we have the following results:

Theorem 4.2. Assume that the operators ai are Fréchet-differentiable in the open ball
B2ρ(u

∗) ⊆ ⋂N−1
i=0 D(ai) and satisfy conditions (39) and (40). Moreover, we assume that

the system ai(u) = g(pi), i = 0, 1, . . . , N − 1 has a solution in Bρ(u
∗). Then

1. If δ = 0 (exact data), the Landweber-Kaczmarz iteration converges to a solution
of (35). Additionally, if for all i = 0, . . . , N − 1 we have

(45) N (a′i(u
†)) ⊆ N (a′i(u)) for all u ∈ Bρ(u

†) ,

then un → u†, the solution of (35) with minimal distance to u∗.

2. For noisy data, we assume that δi > 0. The Landweber-Kaczmarz iterates uδ,(n?)

converge to a solution of (35) as δ → 0. If in addition (45) holds, then uδ,(n?)

converges to u† as δ → 0.

Proof. The proof of the first item is analogous to the proof in [12, Proposition 4.3] (see
also [11]). We emphasize that, for exact data, the variants (10) and (36) are identical,
which allows to apply the results of the above papers.

The proof of the second item is analogous to the proof of the corresponding result
for the Landweber iteration as in [10, Theorem 2.9]. For the first case within this proof,
(43) is required. For the second case we need the monotony result from Lemma 4.1.

In the case of noisy data (i.e. the second item of Theorem 4.2), it has been shown
in [12] that the Landweber-Kaczmarz iteration (36) with ωn ≡ 1 is convergent if the
iteration is terminated after the n?-th step, where n? is the smallest iteration index
such that one component of the residual vector

(

ai(u
δ,(n?)) − gδ(pi)

)

i=1,...,N−1
satisfies

(46) ‖ai(u
δ,(n?)) − gδ(pi)‖ ≤ τδi .

4.2 Application to the Embedded Landweber-Kaczmarz Algorithm

Here, we apply the general results of the previous subsection to the embedded Landweber-
Kaczmarz method (11) and (12) (in the case of exact data) and to a variant taking into
account appropriate termination in the presence of noisy data. For the sake of simplicity
we present the case s = 1.
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We use the following notation: For ui ∈ X, i = 0, 1, . . . , N − 1 let

U := (ui)i=0,...,N−1 .

We define the diagonal operator

F :=







F0
...

FN−1






:=







a0

. . .

aN−1






: XN → Y N

and introduce the functional

B(U) :=
N−1
∑

i=0

‖ui − ui−1‖2
X

over XN such that λB(U) replaces the functional (13) in the case s = 1.
We consider the problem of approximating a solution of the following system con-

sisting of N + 1 equations

Fi(U) = g(pi) , i = 0, . . . , N − 1 ,(47)
√

λB(U) = 0 ,(48)

from noisy data Gδ = (gδ(pi))i=0,...,N−1 satisfying

(49) ‖gδ(pi) − g(pi)‖ ≤ δi .

Note that (47), (48) and (35) are equivalent for exact data in the sense that each
solution u of (35) provides a solution U = (u, . . . , u) of (47), (48) and vice-versa.

Since Fi acts on the i-th component of U ∈ XN only, one cycle of the Landweber-
Kaczmarz iteration applied to the system (47), (48) with initial value U ∗ = (u∗, . . . , u∗)
reads as follows:

(50) U δ,(n+1/2) = U δ,(n) − ΩnF
′(U δ,(n))∗

(

F (U δ,(n)) − gδ
)

,

(51) U δ,(n+1) = U δ,(n+1/2) − ω̃λB∗B
(

U δ,(n+1/2)
)

,

were Ωn = diag(ω0
n, . . . , ω

N−1
n ) is the diagonal matrix with

ωi
n =

{

1 if ‖ai(u
δ,n) − gδ(pi)‖ > τδi ,

0 else ,
for i = 1, . . . , N − 1 .

The additional parameter ω̃n ensures a finite stopping index n? for noisy data and is
defined by

ω̃=

{

1 if ‖B(U δ,(n+1/2))‖ > τε ,
0 else ,
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where ε = ε(δ) → 0 as δ := (δ0, . . . , δN−1) → 0. According to (41) the iteration is
terminated if

(52) U δ,(n+1) = U δ,(n+1/2) = U δ,(n)

for the first time. We call (50), (51) the embedded Landweber-Kaczmarz iteration for
the solution of (1)

Note, that in order to determine U δ,(n+1/2) each component can be updated inde-
pendently. Indeed,

u
δ,(n+1/2)
i = u

δ,(n)
i − ωi

na
′
i(u

δ,(n)
i )∗

(

ai(u
δ,(n)
i ) − gδ(pi)

)

, i = 0, . . . , N − 1 .

In the second half-step the U δ,(n+1) is determined from U δ,(n+1/2) by a matrix vector
multiplication with the sparse matrix



















2 − ω̃nλ −1 0 −1

−1 2 − ω̃nλ
. . .

. . .

0
. . .

. . .
. . . 0

. . .
. . . 2 − ω̃nλ −1

−1 0 −1 2 − ω̃nλ



















⊗ IdX .

What concerns the computational effort, we consider the case where X and Y are
approximated by finite dimensional spaces Xh and Yh of dimensions NX and 1. Note,
that in contrast to Kaczmarz and ART (algebraic reconstruction technique, cf. [8, 17, 7]),
for the embedded Landweber-Kaczmarz algorithm 4N · NX additional operations are
required for each cycle.

In order to prove convergence and stability of the Landweber-Kaczmarz iteration
we follow the lines of the proof of Theorem 4.2.

Theorem 4.3. Assume that the operators ai are Fréchet-differentiable in B2ρ(u
∗) ⊆

⋂N−1
i=0 D(ai) and satisfy the conditions (40) and (39). Moreover, assume that system

(1) has a solution in Bρ(u
∗), and

(53) ‖
√
λB‖ < 1 .

Then we have:

1. If δ = 0 (exact data), the embedded Landweber-Kaczmarz iteration (50), (51)
converges to a solution of (47), (48). Additionaly, if for all i = 0, . . . , N − 1 we
have

(54) N (a′i(u
†)) ⊆ N (a′i(u)) for all u ∈ Bρ(u

†) ,

then U (n) → U †, the solution of (47), (48) with minimal distance to U ∗. Further-
more, U † = (u†, . . . , u†), where u† is a solution of (35) with minimal distance to
u∗.
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2. For noisy data, let ε = ε(δ) → 0 as δ → 0, and n? = n?(δ) be defined by (52).
Then the embedded Landweber-Kaczmarz iterates U δ,(n?) converge to a solution of
(47), (48) as δ → 0. If in addition (54) holds, then each component of U δ,(n?)

converges to the minimum distance solution u† as δ → 0.

Proof. For the first assertion, the proof is analogous to the proof of Theorem 4.2. One
has to take into account that (40) and (39) are satisfied with Fi instead of ai, since
Fi(U) = ai(ui). Moreover, since B is linear we have

0 = ‖B(U) −B(Ũ) −B′(U)(U − Ũ)‖ ≤ η‖B(U) −B(Ũ)‖

and, therefore, it satisfies (40). The second assertion follows immediately from the
second item in Theorem 4.2.

Notice that the termination criterium requires that
√
λ‖BU δ,(n?)‖ ≤ τε. This en-

sures that the embedded Landweber-Kaczmarz iteration terminates after a finite num-
ber of iterations.

5 Conclusion

We have suggested two novel regularization techniques for solving a system of ill-posed
operator equations of the form (1). Such equations appear in a variety of applications
such as tomography and impedance tomography, inverse doping profile, to name but
a few. We developed a convergence analysis for both the variational regularization
method as well as the iterative regularization technique. The later turned out to be
of Landweber-Kaczmarz type. However, this modification reveals certain advantages
against previously analyzed methods in terms of appropriate stopping.
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