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Abstract. Multigrid methods provide fast solvers for a wide variety of
problems encountered in computer vision. Recent graphics hardware is
ideally suited for the implementation of such methods, but this potential
has not yet been fully realized. Typically, work in that area focuses on
linear systems only, or on implementation of numerical solvers that are
not as efficient as multigrid methods. We demonstrate that nonlinear
multigrid methods can be used to great effect on modern graphics hard-
ware. Specifically, we implement two applications: a nonlinear denoising
filter and a solver for variational optical flow. We show that performing
these computations on graphics hardware is between one and two orders
of magnitude faster than comparable CPU-based implementations.

Key words: GPGPU, multigrid methods, optical flow, partial differen-
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1 Introduction

Many important building blocks of computer vision algorithms, like denoising
and dense optical flow calculation, necessitate solving complex systems of nonlin-
ear Partial Differential Equations (PDEs). Multigrid methods [12, 18, 4, 5] belong
to the fastest and most versatile schemes available for the numerical solution of
such systems. In addition to their fast convergence, multigrid methods have
another advantage: they can be composed of operations that are completely
data-parallel and are thus able to benefit immensely from parallel hardware ar-
chitectures.

Recent efforts in General Purpose computation on Graphics Processing Units

(GPGPU) aim to use one ubiquitous type of such parallel hardware: modern
graphics processors. However, despite the suitability of multigrid methods to
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GPUs, there have only been a very limited number of publications attempting
to combine the two [3, 11, 16]. Furthermore, multigrid methods for nonlinear
systems – in the form of Full Approximation Schemes (FAS) [4] – have not
appeared in the GPGPU literature at all.

In this paper, we demonstrate the possibilities offered by FAS on GPUs. We
present in detail an implementation of variational optical flow computation on
standard consumer graphics hardware which achieves rates of up to 17 dense
high quality flow fields per second at a resolution of 5112 pixels, more than 30
times as fast as comparable CPU-based implementations.

1.1 Background

GPGPU. Since the introduction of user-programmable shaders (see [13]) inter-
est in using the vast computational capabilities offered by GPUs for tasks not
directly related to graphics rendering has been on the rise. Modern graphics
hardware is comprised of a large number of parallel floating point units paired
with high-bandwidth memory and a cache structure optimized for 2D locality.
Evidently, such a hardware architecture should be well suited to image process-
ing.

Multigrid Methods. The mathematical basis of our work is provided by multigrid
methods, in particular FAS since we deal with nonlinear problems. In this context
we use the standard terminology as provided in Brandt [4] and Trottenberg et
al. [18].

Nonlinear PDEs in Image Processing. To demonstrate the wide applicability
of FAS schemes – and thus also of our GPGPU implementation – in computer
vision we chose two common problems that lead to nonlinear PDEs. The first,
relatively simple process is denoising using a nonlinear filter based on the model
developed by Rudin, Osher, and Fatemi (ROF) [15]. We solve the resulting
system of equations using a FAS scheme with a damped Jacobi smoother.

The second, far more complex and computationally intensive task is optical
flow computation. The best models proposed in the literature [8] use variational
formulations that lead to coupled PDEs with a large number of nonlinear terms.
We will describe the mathematical foundation of such an approach in the next
section, and discuss our GPU-based implementation of this algorithm after that.

Previous Work. Durkovic et al. [9] explored optical flow computation on GPUs,
and demonstrated the performance advantages compared to CPUs. However,
their work has two decisive drawbacks. Firstly, in terms of quality, the methods
they implemented (the modified Horn-Schunck and Nagel algorithms presented
in [2]) do not achieve results comparable to the most recent algorithms. Secondly,
in terms of performance, they do not use a multigrid solver – these have been
proven (in [7]) to give speedups of factor 200 to 2000 for optical flow calculation
compared to standard iterative methods. In contrast, we implement one of the
leading optical flow estimators in literature and use a multigrid method.



2 Optical Flow Model

In this section we review the variational model used in our implementation,
which is essentially based on [8]. We also present some necessary adaptations
of the numerical scheme to make the process more tractable on data-parallel
architectures such as GPUs.

2.1 The Approach of Bruhn et al.

Let I(x) be a presmoothed image sequence with x = (x, y, t)T . Here, t ≥ 0
denotes the time while (x, y) denotes the location in the image domain Ω. Let
u = (u, v, 1)T be the unknown flow field between two frames at times t and t+1.
Bruhn et al. [8] compute the optical flow as minimizer of the energy functional

E(u) = ED1
(u) + αED2

(u) + βES(u) (1)

with the data and smoothness terms

ED1
(u) =

∫

Ω

ψ(|I(x + u) − I(x)|2) dx , (2)

ED2
(u) =

∫

Ω

ψ(|∇I(x + u) −∇I(x)|2) dx , (3)

ES(u) =

∫

Ω

ψ(|∇u|2 + |∇v|2) dx (4)

and weighting parameters α, β ≥ 0. Thus the first data term ED1
models the grey

value constancy assumption, and the second data term ED2
adds a constancy

assumption of the spatial image gradient ∇I to improve robustness against vary-
ing illumination. The term ES provides for spatial smoothness of the flow field.
All three terms are modified by the non-quadratic penalizer

ψ(s2) =
√

s2 + ǫ2 . (5)

The Numerical Scheme. From the Euler-Lagrange equations corresponding to
the energy functional outlined above, Bruhn et al. derive the finite difference
approximation

0 = ΨD1i(S11idui + S12idvi + S13i) + αΨD2i(T11idui + T12idvi + T13i)

− β
∑

j∈N (i)

ΨSi + ΨSj

2

uj + duj − ui − dui

h2
, (6)

0 = ΨD1i(S12idui + S22idvi + S23i) + αΨD2i(T21idui + T22idvi + T23i)

− β
∑

j∈N (i)

ΨSi + ΨSj

2

vj + dvj − vi − dvi

h2
(7)

with the symmetric tensors

S := I∇I∇
T , (8)

T := I∇xI∇x
T + I∇yI∇y

T (9)



and abbreviations

ΨD1
:= Ψ((du, dv, 1)TS(du, dv, 1)) , (10)

ΨD2
:= Ψ((du, dv, 1)TT (du, dv, 1)) , (11)

ΨS := Ψ(|∇(u+ du)|2 + |∇(v + dv)|2) (12)

containing nonlinear terms. In (6) and (7) the set N (i) denotes the spatial
neighbours of pixel i. In (8) and (9) we use the definitions I∇ := (Ix, Iy, Iz)

T ,
I∇x := (Ixx, Iyx, Izx)T and I∇y := (Ixy, Iyy, Izy)T , with subscripts x and y

denoting spatial derivatives and Iz := I(x + u) − I(x).

2.2 Adaptations of the Numerical Scheme

Instead of using a Gauss-Seidel method (as in [8]) to solve the nonlinear system
of equations given by (6) and (7) we adopt a damped Jacobi solver, retaining the
coupled point relaxation and frozen coefficients approach proposed in [10]. While
offering slightly better convergence rates, a standard Gauss-Seidel solver can not
be efficiently implemented on current GPUs because it accesses values computed
in the current iteration step and is thus not fully data-parallel. An alternative
would be a Gauss-Seidel solver with Red/Black ordering of grid points (see [18]),
but the access pattern required by such a method would greatly reduce the
GPU cache efficiency. As the main purpose of the iterative solver in a multigrid
application is reducing high-frequency error components, using a damped Jacobi
scheme does not significantly decrease the efficiency of the algorithm (see [5]).

Using a point coupled damped Jacobi method the system of equations that
must be solved for each pixel i at iteration step n is given by

(

dun+1

dvn+1

)

=
1

3

(

dun

dvn

)

+
2

3
(Mn)−1

(

rn
u

rn
v

)

(13)

with matrix entries

Mn
11 = Ψn

D1iS
n
11i + αΨn

D2iT
n
11i + β

∑

j∈N (i)

Ψn
Si + Ψn

Sj

2h2
, (14)

Mn
22 = Ψn

D1iS
n
22i + αΨn

D2iT
n
22i + β

∑

j∈N (i)

Ψn
Si + Ψn

Sj

2h2
, (15)

Mn
12 = Mn

21 = Ψn
D1iS

n
12i + αΨn

D2iT
n
12i (16)

and right hand side

rn
u = −Ψn

D1iS
n
13i + αΨn

D2iT
n
13i + β

∑

j∈N (i)

Ψn
Si + Ψn

Sj

2

uj + dun
j − ui

h2
, (17)

rn
v = −Ψn

D1iS
n
23i + αΨn

D2iT
n
23i + β

∑

j∈N (i)

Ψn
Si + Ψn

Sj

2

vj + dvn
j − vi

h2
. (18)



2.3 Our Multigrid Algorithm

Our multigrid algorithm is derived by reformulating (6) and (7) as

Ah(xh) = fh (19)

with h denoting the discretization width, Ah a nonlinear operator and the vec-
tors xh = ((duh)T , (dvh)T )T and fh = ((fh

1 )T , (fh
2 )T )T . We use a standard

FAS approach, with (13) serving as a smoother. The grid hierarchy is created
by standard coarsening with full weighting as restriction operator and bilinear
interpolation as prolongation method.

It is important to note that, unlike Bruhn et al. [8], we use V-cycles. While W-
cycles or other variations may offer slightly better convergence rates, they require
significantly more computations at very small grids where the parallelization
advantages of GPUs are reduced, as shown in Table 3.

3 Optical Flow GPU Implementation

Implementing an algorithm on the GPU requires mapping the necessary data
structures to textures and reformulating the computation as a series of pixel
shader applications. When aiming to develop a high-performance GPU imple-
mentation, special attention must be paid to the flow and storage of data through
the individual computational steps. We will now describe the data structures and
the most important shader programs used in our implementation.

Data Structures. The number of texture reads and buffer writes has a signifi-
cant impact on the throughput of a shader program. For this reason, it is very
advantageous to pack related data values into 4-component (RGBA) textures to
minimize the amount of read and write accesses to different buffers required in
the shaders.

Our final implementation uses four buffers that are exclusive to the finest
grid level, storing [I;J ], [Ix; Iy;Jx;Jy], [Iz; Ixz; Iyz] and [Ixx; Ixy; Iyy] with J :=
I(·, ·, t + 1). Furthermore, on each grid level ten buffers are required. Three of
them store the symmetric tensors S and T (with six independent components
each), three are general purpose buffers used for different types of data through-
out the computation, and the last four store [du; dv;un; vn], [ΨD1

;ΨD2
;ΨS ],

[f1; f2;u; v] and [A(u);A(v)]. These values correspond to the formulas provided
in Section 2, except for un := u+du and vn := v+dv, which are stored to speed
up the computation and greatly reduce the number of texture reads required.

Shader Programs. The actual computation of our GPU implementation takes
place in shader programs, the six most important of which we will now describe.
There are a few helper programs used in our application, but those only imple-
ment basic mathematical operations or are used to move and restructure data.

– calcIdJd calculates the spatial derivatives of the source images.



– calcIzIxzIyz computes the differences between the first image relocated by
the current flow field and the second image.

– calcST calculates the tensors S and T .
– calcdpsi calculates the nonlinearities ΨD1

, ΨD2
and ΨS .

– calcAuAv is used to compute the residual and right hand side for each coarser
grid level. It calculates A(u) and A(v).

– coupledJacobi is the most complex shader program, performing one step
of point-coupled damped Jacobi relaxation.

Computation. We shall now illustrate how the shader programs and data objects
described above are used to perform the optical flow calculation. Figure 1 shows
the computations required before starting each V-cycle of the multigrid solver.
The spatial derivatives of the images are calculated, and the tensors S and T

are computed from them. These operations are only performed at the finest
grid level – the tensors are subsequently restricted to the coarser grids. In the
following we will call a cycle of the algorithm that includes the recomputation
of these tensors an outer cycle.

c a l c I d J dI , J

I x , I y , J x , J y

I x x , I x y , I y y

c a l c I z I x z I y z I z , I x z , I y z c a l c S T

S 1 , S 2 , S 3 , S 4

S 5 , S 6 , T 1 , T 2

T 3 , T 4 , T 5 , T 6

Fig. 1: Computations performed before starting each V-Cycle. Boxes represent data
buffers, ellipses denote pixel shaders.

Pre- and postsmoothing operations at each level of the hierarchy follow the
outline provided in Fig. 2. Note that this depiction is somewhat simplified: GPUs
do not allow writing to an input buffer, therefore 2 alternating buffers are used
for [du; dv;un; vn].

At each grid level, after some steps of presmoothing have been applied,
calcAuAv is used in a similar manner to coupledJacobi above. However, the
resulting values [A(u);A(v)] are required to compute the residual, which is sub-
sequently restricted to a coarser grid level. There, f1 and f2 are calculated and
the cycle is restarted at this coarser grid. Once the computation is complete, the
correction is prolongated to the next finer grid and a number of postsmoothing
steps are performed.

4 Results

The focus of our optical flow implementation is to achieve high performance,
however doing so is meaningless unless the high quality of the flow field provided



S 1 - 6 , T 1 - 6 d u , d v , u n , v n

c a l c P s i p s i D 1 , D 2 , S c o u p l e d J a c o b i

f 1 , f 2

Fig. 2: Applying one smoothing iteration on the GPU. S1-6,T1-6 is an abbreviated
form which actually represents 3 separate buffer objects.

by the original algorithm of Bruhn et al. [8] is maintained. To evaluate this aspect
we measure the average angular error (see [2]) achieved by our method on the
well-known Yosemite test sequence.

Table 1 shows the qualitative performance of our algorithm and compares
it to some of the best results that can be found in literature. GPU refers to
our implementation using ten outer cycles composed of two V-cycles each and
demonstrates the optimum accuracy possible using our approach, without real-
time capability at high resolutions. GPU-RT uses five outer cycles with a single
V-cycle each. This setting represents a good trade-off between accuracy and real-
time performance. In both cases two pre- and postsmoothing iterations are used.
The weighting parameters α and β do not change the execution time, but have
a significant impact on the quality of the result and have to be chosen carefully
depending on the scene and computation method. For GPU we use α = 0.1 and
β = 0.08, for GPU-RT α = 0.15 and β = 0.06.

Table 1: Accuracy compared to results from literature. Table adapted from
Bruhn et al. [8] AAE = average angular error STD = standard deviation.

Method AAE STD

Horn-Schunck, mod. [2] 9.78 16.19
Uras et al. [2] 8.94 15.61
Alvarez et al. [1] 5.53 7.40
Mémin-Pérez [14] 4.69 6.89
GPU-RT 3.48 7.75

GPU 2.65 7.12

Brox et al. [6] 2.46 7.31
Bruhn et al. [8] 2.42 6.70

The slight loss in accuracy compared to Bruhn et al. can be explained by a
variety of factors. In terms of the numerical scheme, they use a fourth-order ap-
proximation for spatial derivatives, while we use a second-order approximation.
Also, on GPUs, our computations are limited to single-precision (32 bit) float-



ing point values. Finally, the built-in hardware linear texture filtering we use to
determine values of I(x+u) is not as accurate as a software implementation on
the CPU.

Despite these minor drawbacks, we have established that a GPU-based solver
can come very close in quality to the best results found in literature. We will
now move on to examining the quantitative performance of our method.

All times in the following tables have been measured on a standard desktop
PC with a Geforce 8800 GTX graphics card. Table 2 shows that our implementa-
tion achieves rates of more than 17 dense flow fields per second at a resolution of
511 pixels squared. In terms of flow vectors per second, this is a 35-fold speedup
compared to the results shown by Bruhn et al. using their CPU-based implemen-
tation. Note however that this gain comes with a slight decrease in the quality
of the result.

Table 2: Time required and FPS achieved for GPU-RT optical flow.

Resolution (pixels) Time (ms) FPS

2552 33.192 30.128
5112 57.409 17.419
10232 206.107 4.852

One surprising fact that can be seen in Table 2 is that calculating a 2552

flow field is only about twice as fast as calculating a field with four times as
many flow vectors. This means that while the computational effort increases
nearly fourfold, the computation also gets twice as efficient on the larger grid.
Conversely, switching over from 5112 to 10232 causes the theoretically expected
change of a factor of four.

To better understand this behaviour, Table 3 shows the performance of our
implementation on image sequences different sizes. Evidently, at grids up to and
including 2552, our algorithm is not completely limited by GPU performance.
Rather, external factors like driver interaction and housekeeping operations seem
to dominate the computation time, as it increases at a nearly constant pace
with the number of grid levels required. The time per pixel values support this
notion: realizing the full potential performance of the GPU implementation is
only possible at image sizes of 5112 and beyond.

The largest drawback of this performance profile is that it renders the Full
Multigrid (FMG) algorithm (see [18]) much less attractive, as that method re-
quires a higher number of cycles at very small grid sizes to achieve its the-
oretical performance advantage. To weaken the impact of this overhead and
parallelization problem, one interesting option is the development of a combined
GPU/CPU solving strategy that performs the computations on small grids on
the CPU. For simple linear problems this was shown to be effective in [17].

To demonstrate the versatility of the FAS on GPU approach we would like
to add some results for the denoising filter described in Section 1.1. For this



Table 3: Performance at various resolutions with 6 pre-/postsmoothing iterations.
Outer Cycles contain a single V-Cycle.

Grid Levels Resolution (pixels) V-cycle (ms) Outer cycle (ms) Time/Pixel (µs)

1 12 0.325 0.519 519.350
2 32 1.509 1.916 212.867
3 72 2.686 3.337 68.101
4 152 3.957 4.478 19.902
5 312 5.193 6.126 6.375
6 632 6.193 7.566 1.906
7 1272 7.751 9.045 0.561
8 2552 8.979 10.520 0.162
9 5112 20.465 22.785 0.087
10 10232 76.942 84.388 0.081

algorithm, we measure 14.2 ms for filtering 5112, and 49.8 ms for 10232 RGBA
color images. This translates to 80 megapixels per second of single-component
throughput and enables the real-time filtering of high-resolution color video
streams with spare performance for subsequent processing. Note that, due to
the multigrid approach used, these computation times are much less dependent
on the filtering strength than explicit Euler time stepping or standard iterative
implicit solvers.

5 Summary and Conclusions

By implementing a state-of-the-art optical flow algorithm on graphics hardware
and achieving unprecedented performance, we have demonstrated that multi-
grid solvers for nonlinear PDEs are well suited to data-parallel architectures like
GPUs. We achieved a 35-fold speedup with only small losses in accuracy com-
pared to the best CPU-based implementations in literature. Additionally, we
implemented a fast ROF-based denoising filter as another example showing the
applicability of GPU-based FAS to image processing.

We hope that our contributions enable further development in two distinct
ways: Firstly, the real-time application of complex nonlinear filters to high-
resolution video streams should prove beneficial in the field of computer vision.
Here, using mostly the graphics hardware and keeping CPU cycles free for sub-
sequent processing is an additional advantage. Secondly, any research in using
GPGPU techniques for solving nonlinear systems of equations should also be
encouraged by our findings.
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