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Abstract

Because of their sparsity enhancing properties, ¢* penalty terms have
recently received much attention in the field of inverse problems. Also,
it has been shown that certain properties of the linear operator A to
be inverted imply that ¢*-regularisation is equivalent to ¢°-regularisation,
which tries to minimise the number of non-zero coefficients. In the con-
text of compressed sensing, one usually assumes a restricted isometry
property, which requires that the operator A acts almost like an isome-
try on certain low dimensional sub-spaces. In this paper, we show that
similar properties appear naturally, when one studies the question of well-
posedness of £*-regularisation. Moreover, we derive a complete characteri-
sation of those linear operators A for which £°-regularisation is well-posed.
It turns out that neither boundedness nor invertibility of A are necessary
conditions; compact operators, however, are shown not to be suited for
£°-regularisation.
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1 Introduction

While the basic assumption of classical regularisation methods for the stable
inversion of ill-posed operator equations is either boundedness or smoothness
of the solution, the theory of sparse regularisation is based on the assumption
that the true solution has a finite expansion with respect to some given basis
of the space of definition. This sparsity of the solution can be enforced by
employing the number of non-zero coefficients as a regularisation term. There
are two major problems with this approach: The first problem is the fact that,
in general, this does not yield a well-posed regularisation method, because the
number of non-zero coefficients is no coercive functional. The second difficulty
lies in the actual computation of the solution, provided it exists.

In order to obtain a problem that is computationally tractable, it has been
suggested in [4] to use the £!-norm as a sparsity enforcing regularisation term.
Then one obtains a convex minimisation problem that can be solved by standard
methods. This approach has been rigorously justified later, when it has been



shown that, under certain assumptions, the ¢!-minimiser is at the same time
the sparsest solution (see, for instance, [2, B} [5]). In [3], the main assumption is
that the operator A to be inverted satisfies a certain restricted isometry property,
which requires that A acts almost like an orthogonal operator on the class of all
sufficiently sparse vectors (see also [I]).

In [7, 9] [10], the method of ¢!-regularisation has been considered from an
inverse problems point of view. It has been shown there that ¢'-regularisation
provides a well-posed regularisation method and, in addition, that it may have
exceedingly good properties: If the true solution of the considered equation is
sparse and satisfies a range condition, and the operator A satisfies a certain
restricted injectivity property, then the regularised solution converges linearly to
the true solution as the noise level decreases to zero. In [8], the injectivity con-
dition has been replaced by the assumption of uniqueness of the ¢'-minimising
solution. In addition, it has been shown that the restricted isometry property
implies a uniform range condition on the set of all sufficiently sparse elements.

There are, however, fundamental differences between the latter results and
those on compressed sensing. First, the convergence rates derived from re-
stricted isometry properties hold uniformly on the set of sufficiently sparse vec-
tors, while those in [8] depend strongly on the solution. Second, the results
on convergence rates for ¢'-regularisation in [§] make no assertion concerning
the question whether the £!-minimising solutions are actually the sparsest ones.
Indeed, the range condition postulated in [8] seems not be strong enough to
guarantee such a sparsity. On the other hand, it might be possible to substan-
tially weaken the assumptions in [3] and still be able to obtain this equivalence
of £! and ¢°-regularisation. Also, it might be possible that weaker assumptions
would at least imply the equivalence of (°-regularisation and ¢P-regularisation
for some 0 < p < 1.

If one aims for the derivation of more general equivalence results, it makes
sense to study first the properties of £-regularisation more closely. In particu-
lar, because regularisation with ¢P-penalty terms is well-posed for every p > 0
(see [0]), one should derive conditions for the operator A that guarantee this
well-posedness also for the case of an %-penalty term. In this paper, we will
approach this task by studying the method of quasisolutions, where one as-
sumes that a strict bound for the penalty term is known. In the setting of
sparse regularisation, this means that an upper bound s for the number of non-
zero coefficients of the expected true solutions is known a—priori. The same
assumption is also present in the theory of compressed sensing.

The main result of the paper is Theorem where a characterisation of
those linear operators is given for which the assumption of s-sparsity leads to
a well-posed problem. It turns out that the conditions one obtains are closely
connected to the restricted isometry property, though far less restrictive. As a
consequence of these conditions, we obtain that compact operators are only in
the finite dimensional case susceptible to °-regularisation. Still, the class of op-
erators for which s-sparsity is a meaningful regularisation assumption contains
more operators than only isomorphisms. We show by means of two explicit
examples that neither the boundedness of the operator A nor the closedness of
the range of A are necessary for (-regularisation to be well-posed.



2 Sparse Regularisation

Let A be some countable index set, Y some Hilbert space, and A: £?(A) — Y a
linear operator. The goal is to solve, for given data y € Y, the operator equation

Az =y. (1)

If the operator A is ill-posed, then solving this equation, if possible, in general
does not yield any meaningful results, as small errors in the data y can lead
to arbitrarily large errors in the solution. In order to obtain useful results
nevertheless, it is necessary to have some additional a—priori knowledge about
the solution of the equation and to use it in some approximate solution process.
One possibility for such a—priori knowledge is sparsity, where one assumes that
the support of the solution z' of 7 that is, the set

supp(zf) = {)\ eN: x; #* O} ,

is a finite set.

There are several methods for exploiting this knowledge. If only the fact is
known that supp(z1) is finite, but an additional estimate of the data error in the
form ||y —y°|| < 6 is available, then one can solve the constrained minimisation
problem

|[supp(z)| — min subject to ||Az — 0% < 62 . (2)

Also, it is possible to apply a Tikhonov type of regularisation, and solve the
unconstrained minimisation problem

| Az — y°|| + afsupp(z)| — min, 3)

where the regularisation parameter o > 0 is chosen in some suitable manner.
If, on the other hand, an explicit bound for |supp(z')| is given, for instance
the knowledge that |supp(z')| < s, then it makes sense to compute the quasi-
solution of , which is defined as

z®) = argmin{||Az — y|*: z € X, }, (4)

where
X, :={z € X :[supp(z)| < s} .

The problem with all of the three models , , and is that, in general,
none of them is well-defined. The reason is that, while the mapping = —
|supp(z)| is weakly lower semi-continuous, it is not coercive (see [6]). Thus,
direct methods for proving the existence of solutions can only be applied, if the
non-coercivity of [supp(z)| is compensated by the coercivity of the fidelity term
| Az —°||? on the set X,. To see what can happen in the general case, consider
the following example:

Ezample 1. Define A: ¢?(N) — R? by

cos(k)er + sin(k)es

Aek = A




Then

b = (32 ()

< (Z D) (Ze) + (250 (Z+2)
< e,

showing that A defines a bounded linear operator on ¢?(N).

Now note that the set A(X7) = {A(Xe) : A € R, k € N} is dense in R%
Thus, whenever y € R? \ A(X;) is given, the problem of minimising || Az —
y||? over X; has no solution. Even more, the Tikhonov functional attains
no solution, if |ly|> > «. Indeed, the density of A(X;) in R? implies that
inf,ex, ||Ar — y||> = 0 and therefore

inf (||Az — y|? <a.
wellg(m(ll z —y|I* + alsupp(z)]) < a

On the other hand, with = 0 we have ||Az — y||? + alsupp(z)| = ||y|? > «,
which implies that x = 0 is no minimiser. If, however, + € X; were a minimiser,
then || Az — y||? = 0, contradicting the assumption that y ¢ A(X1). =

In the following, we will concentrate on the concept of quasi-solutions, that
is, the model . These types of models are classically treated within the
concept of well-posedness classes [11]:

Definition 2. Let X and Y be topological spaces and let A: X — Y. The set
X C X is a well-posedness class for A, if the restriction of A to X is well-posed
in the sense of Hadamard. That is, the following conditions are satisfied:

e The restriction of 4 to X is continuous.
e The restriction of 4 to X is injective.
e The mapping A~ ': A(X') — X is continuous. n

In the following section, we will derive necessary and sufficient conditions
for the linear operator A that guarantee that the sets X, for given s € N, are
well-posedness classes for A.

3 Well-posedness Classes

Let

ps = sup{leH tx € Xs\{o}},

el

oy = inf{ 142, e x,\ {0}} 7

el

Moreover, define for z € ¢?(A) with Az # 0

o (Az, Az) . - B
T?(x) T Sup{ HA.T”HA%H HEUNS XS) Supp(‘r) N Supp(x) - ®7 A

8

N

(an)
—



define for Q C A
75(Q) := sup{7,(z) : supp(z) C Q, Az # 0},

and let
Tosr =sup{7s(Q) : Q C A, |Q <5’}

the (s, s)-orthogonality constant of A (see [3]).

Theorem 3. The set X is a well-posedness class for the operator A, if and
only if the following hold:

ps < 00, (5)
os >0, (6)
Ts(2) < 1 for every Q C A with |Q] <s. (7)

Proof. Assume first that X is a well-posedness class for A, that is, the restric-
tion of A to X is continuous, injective, and has a continuous inverse. We show
by contradiction that the conditions f@ are satisfied. Assume first that
does not hold. Then there exists a sequence (z(*)),eny C X, with ||2)|| < 1 for
all k and ||Az®)|| — oo. Setting (¥ := z(¥) /|| Az®)||, it follows that #*) — 0
while ||AZ(®)|| = 1 giving a contradiction to the continuity of A on Xj.

Now assume that @ does not hold. Then there exists a sequence (z*))en C
X, such that |[|#®)| = 1 for all k¥ and Az®) — 0. Obviously, this contradicts
the continuous invertibility of A|x,.

Finally assume that (7)) does not hold. Let Q@ C A be such that [Q] < s
and 7,(Q) = 1. Then there exist z € £2(A) with supp(z) C 2 and a sequence
(z"))ren C X, such that supp(z®) Nsupp(z) = O for all k, |2 || = ||lz]| = 1
and

(Az®) | Az(F))
[ Az R[]l AR

Now define w := z/||Az| and w®) := 2*) /|| Az*)||. Then || Aw®|| = ||Aw|| =1
for all k and (Aw®) Aw) — 1. Moreover,

[A(w® —w)||? = |Aw™® |? + || Aw]|> = 2(Aw™) | Aw) = 2(1—(Aw™®) | Aw)) — 0.

On the other hand (6) implies that |[w®| = [|z®)|/[|Az®™|| > o, > 0 and
similarly ||w|| > o,. Because supp(w®)Nsupp(w) = @, this implies that [jw*) —
wl|| > /20, showing that Aw®) converges to Aw while w®*) does not converge
to w. This gives the necessary contradiction.

— 1.

For the converse direction, assume that 7 hold. We first show that
Alx, is continuous. Let therefore x € X, and assume that (")pen C X,
converges to x. Denote 7, : X — X the projection on the subspace spanned by
the basis elements in the support of z, that is,

Wz(:%) = Z <.’i,€)\>€)\,
A€supp(x)

and define 7+ := Id —7m,. Then z — 7, (z®) € X, for all k and, similarly,

xT

7k (z®) € X, for all k. Therefore,

1A@® — )] < A(ra(a™) - 2)]| + [ Am (D))
< pa(ms(@®) = ] + s (@ 9)]) < V2pulle® ],



proving the continuity of Alx,.

Now assume that = € X, and (z®)),cy C X, are such that Az(®) — Az
We have to show that also (*) — 2. Let Q := supp(z). Then by assumption
74(Q) < 1. Moreover, we have supp(r, (z*)) —z) C supp(z) C Q, and therefore,
as [supp(mt (z™))| < s and supp (L (=) N Q =0,

(A(mo (@) = @), Ang (20) < 7, (Q)]|A(me (2®) = 2) ||| An3 (@)
for all k. Thus,

A" — )|
= [|A(me (zW) = 2)|* + [| Ay (@ ®)|P = 2(A (e (2 ) — 2), Ay (™))
> [|A(m (2 ) — 2)|* + | Ay ()2
— T () Al (a®)) = 2)]|[| A (z))
2
= (|A(re (a®) = 2)|| = || Ay (®)]))
+2(1 = ()| A (a) — )| | Amy (2 )
>0.
Since by assumption || A(z*) —z)|| converges to zero and 1—7,(Q) > 0, it follows

that so do the sequences [|A(7, () — 2)|| — [|Art (™) and || A(7, (z*F)) —
z)|| ||A7- (2))]|. Consequently, we obtain that

1A (2™) —2)| =0 and  Ax; (@®)] —o0. (8)

Because m,(z(¥)) — 2 € X, and 7 (z(¥)) € X, for all k € N, it follows from (6]
that

l2® = 2]? = e (@) — 2] + g ()2
< o2 ([A(ma(@®)) = 2)|* + || Amy (a))) -
Now the convergence of (z(*)) to z follows from (8). O

Corollary 4. Assume that X is a set of well-posedness for the linear operator
A: (?(N) — Y and that A is an infinite set. Then A is non-compact.

Proof. For ease of notation we assume without loss of generality that A = N.
Assume to the contrary that A is compact and consider the sequence of basis
vectors {ex }ren. This sequence converges weakly to zero in £2(N). Moreover,
the compactness of A implies in particular that A is bounded, and therefore
also the sequence {Aey }ren converges weakly to zero. Now the compactness of
A implies that {Aey }ren converges to zero with respect to the norm, and thus
||Aeg]| — 0. This, however, is a contradiction to the assumption that X; is a set
of well-posedness for A, as Theorem [3]in particular implies that ||Ae| > o1 >0
for all £ € N. (]

4 Examples

In this section we show by means of two concrete examples that the conditions in
Theorem [3|imply neither boundedness nor bounded invertibility of the operator
A, even if they are satisfied for every s € N. In the first example, we construct
an unbounded operator, for which X is a set of well-posedness for each s € N.



Example 5. Consider the sets

A-:{ -k,leN,lglgk},
={(k,):k,leN, 0<I<k}.

Let moreover A: (2(A) — ¢2(A’) be any linear operator satisfying
Aeg = epo + epy for (k,1) € A .

In the following, we show that the operator A is unbounded, but that every set
X, is a set of well-posedness for A.

In order to see that A is unbounded, consider (*) C ¢2(A) defined as z(*) :=
> 1<i<k €k,i- Then Az = ker,o 4+ > 1 <1<k €k, and therefore

282 = &, while |Az®)|2 = k2 + k. (9)

Now let s € N be fixed. In order to show that the set X, is a set of well-
posedness for A, we have to show that ps < 00, 05 > 0, and 75(2) < 1 for every
Q C A with |Q] < s.

Assume to that end that =", >, ;< ®r€r1 € X,s. Then

||Az22( 3 xlir[Z xkl] > (10)

1<i<k 1<i<k

This immediately shows that ||Az||?> > |lz||?, implying that o, > 1. Moreover,
because = € X, it follows that there exist at most s pairs (k,[) such that x; #
0. Consequently, making use of the estimate (y; +...+ys)? < s(y? +... +42),
we obtain that

1Az> <> > A+ s)ai, = (1 +s)el?,

k 1<I<k

showing that p, < /1 + s. Together with @ we obtain that, in fact, we have

equality, that is, ps = v/1 + s.
Now let & = >, > <j; Tr1€k, € X be such that supp(z) Nsupp(z) = 0.
Then z,%,,; = 0 for every (k, l) € A, showing that

(Az, A7) Z( > it (2 o) (X a))

1<I<k 1<I<k 1<I<k
(S (5 )

% 1<I<k 1<I<k
< E (’ E xle E fk,lD .

kN i1<i<k 1<I<k

Now note that the fact that |supp(z)| < s implies the inequality



which in turn shows that

2
lUIcl E 3 wk,l)
‘ Z \/: ko T E , J
1<I<k 1<i<k 1<I<k

and, similarly,

¥ sy T e (X a)

1<i<k 1<I<k 1<I<k
Therefore,
N 2 B 2
(s, 47) < sHZ S o (X )\ [T @ (T )
1<I<k 1§l§k 1<I<k 1<I<k
2
S ZZ%Z*( xk,l)'
k 1<I<k 1<I<k
2
XY @+ (X A
kE 1<i<k 1<I<k
s _
= —[|A=||[|Az|,
s+1

which shows that 75(z) < s/(s+ 1) for every z € X, and therefore 75, <
s/(s+1). n

In the following example, we construct an operator A that is bounded, in-
jective, and has non-closed range in such a way that every set X, is a set of
well-posedness for A.

Ezample 6. Let again A := {(k,l) ck,leN, 1<I< k} and let

\/—Zekl

1<i<k

Then the vectors n; form an orthonormal system in ¢2(A). Choose now any
sequence {cptreny with 0 < ¢ < 1 for all k¥ and limg oo cx = 1. Define
A: 2(A) — £2(A) by

Az =2z — Z ek (@, i) M
keN

Then we obtain with the abbreviation dj := 2¢;, — cz

1Az ]? = Jl|* =2 enfe,me)® + Y e, me)

keN keN
= l2ll* = " 2ex — ), i) an
keN
d 2
el = (B 3 o))
keN 1<I<k

In particular, ||Ax||? < ||z||?, showing that A is bounded. Moreover, it is obvious
that A is not boundedly invertible, as |Ang||? =1 —dx — 0 as k — oo.



Now we show that every set X is a set of well-posedness for A. Because A
is bounded, we have to show that o, > 0 for all s € N and 75(z) < 1 for all
s € Nand x € X,. Let therefore s € N and let z € X;. Because |supp(x)| < s,

it follows that )
(Z xk’l) < min{k, s} Z Ty -

1<i<k 1<i<k

Thus implies that

dp
JAz|? > flal)? = Y (mingk, s} D aF))

keN 1<I<k
. dk 2
= 1 — min{k, s}— T,
>(( v) 2 )
in{k
S

Because the term dy, is strictly smaller than 1 and min{k, s}/k tends to zero as
k — o0, it follows that

9 . min{k, s}
> — _ .
s = élég(l =, ) >0

Now let & € X, be such that supp(Z) N supp(z) = 0. Define the mapping

Tk X — X,
Wk(j) = Z aAckJekJ .
1<I<k
Then
(Az, AZ) = Z(Awkx,Aﬂ'k@ .
keN
Moreover,

(Ampx, Am) = (mpa, TpZ) — di(w, ) (T, k)

= —dp (@, ) (T, M) = _dk( > xk’l)(

H
A
IA
>
2
=
N
—~
—
[\)
S—

Now denote

ng := |supp(x) N supp(nk)| and i, == |supp(Z) N supp(nk)| -

Then implies that

(Ampr, Amd)? < 05 (S0 a2,) (30 a1 (13)

1<i<k 1<i<k

Moreover, as dini/k < 1 and dgng/k < 1 for all k,

| Ay |2]| A ]|2 > (1 —dk%)(l —dk%)( 3 le)( 3 :zz,l) . (14)

1<i<k 1<i<k



and supp(z) N

Now note that the assumptions |supp(z)| < s, [supp(Z)| < s,
1 k € N, and therefore,

supp(Z) = 0 imply that ngf, < min{s? k?/4} for all k
defining,
i k/2 1
95 = Supdk%’/} <=,
kEN k 2

we obtain that for all k € N

ngmn 1
2Tk <92 < 2

dkk?*S 4

Now, the inequalities 0 < dyng/k < 1, 0 < dpfig/k < 1, and dingng/k* < 6
imply that for all £k € N

(1 _ dk%) (1 —dk%’“) > (1-6,)2.

Consequently, we obtain from and that
2

~\2 s

| Az |?|| Az .

Consequently,

(Az, AZ) = Z<Aﬂ'kl‘, AmE)

keN
0 .
< 7= 2l Amal] | Am|
keN
05 _
< == [ lAmal? [3 | Am|?
5\ keN keN
05 .
= 7 sl

Because 65 < 1/2, the assertion follows with

Teoe < —— < 1.
s,s_l_eS -

5 Conclusion

We have derived a characterisation of those linear operators between ¢2 spaces
and general Hilbert spaces for which the assumption of sparsity constraints leads
to well-posed problems. For this well-posedness to hold, the operator A as well
as its inverse have to be bounded on the set X, consisting of all s-sparse ele-
ments of £2(A). In addition, if #, # € X, have a disjoint support, then the angle
between Ax and AZ has to be strictly larger than some positive number. These
conditions are closely related to various formulations of a restricted isometry
property that is commonly encountered in the context of compressed sensing.
There, this property implies first the stability of sparse regularisation and, sec-
ond, that its solution can be computed by minimising the ¢'-norm instead. The

10



results of the present paper indicate that conditions that are similar to a re-
stricted isometry property appear naturally when treating sparse regularisation
problems. Also, the examples show that, although the approximate inversion
of compact operators with sparse regularisation can lead to problems, the the-
ory is not restricted to invertible operators. Instead, there exist operators with
non-closed range for which every set X, is a well-posedness class, that is, any
restriction of the support of the solution yields a well-posed problem.
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