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Abstract

We introduce a total variation based, locally adaptive method for im-
age denoising and deblurring. The algorithm iteratively updates the reg-
ularisation parameter, until a uniform, user specified regularity of the
output image is reached. Here, the regularity is measured in terms of
local oscillations, which are estimated using a dual formulation of total
variation regularisation. Because of the chosen approach, no information
on the noise level present in the corrupted images is required. Several
numerical experiments are presented that indicate the suitability of the
proposed algorithm for dealing with unknown noise in image restoration
problems.

1 Introduction

Let Ω ⊂ R
2 be a bounded domain with Lipschitz boundary, and assume that

f ∈ L2(Ω) is a given noisy image. A standard method for the denoising of f is
total variation regularisation (see [1, 3, 7, 10, 11, 14, 25, 26, 27]), which consists
in minimising the functional

T (u;α) :=
1

2

∫

Ω

(

u(x) − f(x)
)2

dx + α|Du|(Ω)

for some fixed regularisation parameter α > 0. Here |Du| is the total variation

of the function u ∈ L2(Ω) (see [20]). The minimiser of T (·;α) is a function
uα ∈ BV(Ω) that is close to the input data f , but at the same time the number
of oscillations is decreased, that is, the function uα is smoother than f .

The amount of smoothing is determined by the regularisation parameter α.
A small value implies that most emphasis lies on staying close to the input data.
As α increases, the resulting image uα will become more and more cartoon-like,
mainly consisting of large, uniform regions well separated by distinct edges.
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In order to find a good value for the regularisation parameter, a standard as-
sumption is that the data f are the sum of a true image f0 ∈ BV(Ω) and some
random noise n ∈ L2(Ω), which is assumed to have zero mean and variance
∫

Ω
n(x)2 dx = σ2 > 0. In this case, it is reasonable to choose α in such a way

that
∫

Ω

(

uα(x) − f(x)
)2

dx = σ2 (see [7, 10, 26]). In the context of regularisa-
tion theory, this parameter selection method is known as Morozov’s discrepancy

principle (see [18]).
In fact, most of the noise models assume that the function n is the re-

alisation of an i.i.d. random variable. Then one can not only expect that
∫

Ω
n(x)2 dx = σ2, but that on most subsets E ⊂ Ω one has that

∫

E
n(x)2 dx ≈

σ2L2(E)/L2(Ω). As a consequence, a reasonable parameter choice should entail

that
∫

E

(

uα(x)−f(x)
)2

dx ≈ σ2L2(E)/L2(Ω) for a suitable collection of subsets
E ⊂ Ω. This, however, is only possible, if the regularisation parameter α is al-
lowed to vary locally, depending on the amount of smoothing needed at a point
x ∈ Ω. Consequently, one has to use a regularisation function α : Ω → (0,+∞),
and consider the minimisation of the space dependent total variation functional

T (u;α) :=
1

2

∫

Ω

(

u(x) − f(x)
)2

dx +

∫

Ω

α(x) d|Du| . (1)

The idea of adjusting the regularisation function α locally using statistical
properties of the residuum uα−f has first been applied in [13] to one-dimensional
data f : I ⊂ R → R. Starting from a large initial guess, the regularisation func-
tion α is iteratively squeezed locally, until the residuum resembles white noise.
Independently of [13], generalisations to two-dimensional data have recently
been proposed in [15, 16]. Moreover, the method presented there can also be
used for the restoration of colour images and for deblurring. A very similar
method has also been discussed in [22] with the goal of preserving texture in
noisy images. In contrast to [13, 15, 16], the algorithm in [22] also allows the
regularisation function to increase again, if the residuum becomes too small.

The application of space dependent regularisation has also been proposed
independently of statistical motivations or justifications. In [21, 29], the regular-
isation parameter is increased locally near edges in order to further enhance the
edge preserving properties of total variation regularisation. A similar enhance-
ment of edges and even corners has also been obtained by applying anisotropic
total variation regularisation [6, 24, 28] (see also [19]).

In [29, 30], a different approach to adaptive regularisation has been sug-
gested, relying on the scale sensitivity of the total variation. The method is
based on the observation that the speed at which objects in a total variation
smoothed image disappear mainly depends on their scale, which is defined as the
ratio of volume and perimeter (a precise derivation can be found in [2]). This
knowledge can be used in an iterative algorithm that adapts the local regular-
isation function, until all features of sufficiently small scale have been removed
from the noisy input image. In contrast to the other methods, this approach
requires no knowledge of the noise level, as the choice of the regularisation func-
tion depends only on the regularity of the solution, not on properties of the
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residual.

In this paper, we propose a different algorithm, which also bases the choice
of the regularisation function on the final solution. As opposed to the method
of [29, 30], our algorithm does not remove small scale features completely, but
rather attempts to reach a uniform regularity over the whole image, measured
in terms of the oscillations of a dual variable. The proposed method elaborates
on the algorithm presented in [23]. In addition, generalisations to the denoising
of colour images and to deconvolution problems are given.

2 Local Variation

Using basic results of convex analysis, one can show that the minimisation
of the functional T (·;α) defined in (1) is equivalent to the solution of a dual
minimisation problem. This dual problem reads as

J (V ) :=

∫

Ω

(

f(x) + div V (x)
)2

dx → min

|V (x)/α(x)| ≤ 1 almost everywhere on Ω ,

V (x) · ν(x) = 0 almost everywhere on ∂Ω .

(2)

Here ν(x) denotes the outward normal to Ω at x ∈ ∂Ω. The solution of the dual
problem is carried out on the space L∞(Ω; R2) of essentially bounded, vector
valued functions V : Ω → R

2. Thus, the divergence div V and the boundary
conditions V · ν = 0 have to be interpreted in a distributional sense: v = div V
and V · ν = 0 on ∂Ω, if and only if

∫

Ω

∇φ(x) · V (x) dx = −

∫

Ω

φ(x) v(x) dx

for every φ ∈ C∞(R2).
The primal and the dual problem are equivalent in the sense that Vα solves (2)

if and only if uα := f +div Vα minimises T (·;α). Moreover, the solution Vα can
be characterised by the Kuhn–Tucker conditions

div Vα = uα − f and Vα(x) ∈ α(x)
dDuα

d|Duα|
(x) ,

which shows that the scaled function Vα/α equals the direction of the gradient
of uα whenever it is non-zero.

This relation between Vα and uα can be exploited for estimating the amount
of noise still left in uα. The remaining traces of noise are marked by fast os-
cillations of uα, which in turn entail rapid changes of the direction of Duα.
Consequently they can be observed as variations of the variable Vα. For mea-
suring these variations, we choose some smooth convolution kernel η ∈ C∞

0 (R2),
that is, η(x) ≥ 0 for every x ∈ R

2 and
∫

R2 η(x) dx = 1. If η is concentrated at
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zero, we can use it for defining a local mean Mη(Vα/α) : Ω → R
2 as

Mη(Vα/α)(x) = η ∗ (Vα/α)(x) =

∫

Ω

Vα(y)

α(y)
η(x − y) dy ,

and a local variance Vη(Vα/α) : Ω → R≥0 as

Varη(Vα/α)(x) = η ∗
(∣

∣η ∗ (Vα/α) − Vα/α
∣

∣

2)
(x)

=

∫

Ω

∣

∣

∣
Mη(Vα/α)(y) −

Vα(y)

α(y)

∣

∣

∣

2

η(x − y) dy . (3)

The function Varη(Vα/α) provides a rough estimate of the local regularity
of uα. If Varη(Vα/α)(x) = 0, then dDuα/d|Duα| = ζ is constant near x.
Then there exists a monotonous function g such that uα(y) = g

(

ζ · (y − x)
)

near x. Conversely, if Varη(Vα/α)(x) = 1—the largest value that can possibly
be attained—, then whenever a direction ζ of dDuα is present near x also its
negative −ζ appears near x, implying that uα is still irregular. Consequently, a
large value of Varη(Vα/α) indicates that, locally, the regularisation parameter
should be increased in order to achieve higher regularity of the solution, while
in regions where Varη(Vα/α) oversmoothing might have occured and therefore
the regularisation parameter should be decreased.

3 The Core Algorithm

In the following we propose an algorithm that achieves the parameter adaptation
suggested in the previous section. To that end, we choose some target variation
0 < θ < 1 and a convolution kernel η. The algorithm will iteratively adapt
the function α, until the solution Vα of (2) satisfies Varη(Vα/α) ≈ θ. In the
numerical experiments below, the kernel η was chosen as an isotropic Gaussian
of variance σ2. In this case, the size of σ corresponds to the size of features
expected in the denoised function uα.

Start with any regularisation function α0 : Ω → R>0. For i = 1, 2, . . .,
compute

Vi = arg min

{
∫

Ω

(

f(x) + div V (x)
)2

dx : ‖V/αi−1‖∞ ≤ 1, V · ν = 0 on ∂Ω

}

.

Compute the variance Varη(Vi/αi−1) of the scaled, tentative solution Vi/αi−1

according to (3). Update the regularisation function by

αi(x) = αi−1(x)
(Varη(Vi/αi−1)(x)

2θ
+

1

2

)

. (4)

Repeat until convergence of ui := f + div Vi.

By the choice of the update of the regularisation function α in (4), the al-
gorithm should terminate, when Varη(Vi/αi−1)(x) = θ for every x ∈ Ω. In
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practice, however, one cannot expect that this equality will, or even can, be
reached. Since the regularity will only increase by applying total variation reg-
ularisation, this can, for instance, happen, if the data f are already more regular
than indicated by the parameter θ. Though in this case Varη(Vi/αi−1) will al-
ways stay below θ, the algorithm will nevertheless converge: the regularisation
parameter will tend to zero and the functions ui to the data f .

Still, it is sensible to introduce a regularising element into the algorithm. To
that end, we smooth the function αi in each step by convolving it with some
kernel ρ. The steps then read as

αi(x) = ρ ∗
(

αi−1

(Varη(Vi/αi−1)

2θ
+

1

2

))

(x) . (5)

Besides stabilising the update of α, this smoothing has the side-effect of sup-
pressing too rapid variations of the regularisation function αi.

The method is summarised in Algorithm 1.

Data: noisy image f ∈ L2(Ω);
Input: variance θ > 0; convolution kernels η, ρ; tolerance ε > 0;
Result: denoised function u;

Initialization: i = 1; α0 > 0; V0 = 0;
repeat

Vi = arg minV

{

‖div V + f‖2 : ‖V/αi−1‖∞ ≤ 1
}

;

Varη(Vi/αi−1) = η ∗
(
∣

∣η ∗ (Vi/αi−1) − Vi/αi−1

∣

∣

2)
;

α̃i = αi−1

(

Varη(Vi/αi−1)/θ + 1
)

/2;
αi = ρ ∗ α̃i;
i 7→ i + 1;

until ‖div Vi − div Vi−1‖ < ε ;
u = f + div Vi;

Algorithm 1: Basic adaptation algorithm

Accelerated algorithm

In each step of Algorithm 1 an instance of total variation regularisation with
parameter function αi is solved. This is achieved by an iterative projected
gradient method (see [4, 9, 17]), setting

Ṽ
(k)
i = V

(k−1)
i + τ∇

(

f + div V
(k−1)
i

)

,

V
(k)
i =

Ṽ
(k)
i

max{1, |Ṽ
(k)
i |/αi−1}

.
(6)

Here the parameter τ should satisfy 0 < τ < 1/4 in order to ensure convergence.

In the iteration (6), it is necessary to choose some initial data V
(0)
i in each

update step of α. An obvious candidate is the solution Vi−1 of the previous
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iteration step, as it already is a solution of the dual of total variation regular-
isation with the same data f , albeit with a different regularisation parameter.

More precisely, in order to satisfy the constraint |V
(0)
i | ≤ αi−1, we choose

V
(0)
i =

Vi−1

max{1, |Vi−1|/αi−1}
.

This choice of the initial data greatly decreases computation times compared to

the trivial choice V
(0)
i = 0.

As a further speed improvement, it is possible to calculate a new regularisa-
tion function α well before convergence of the iteration (6). Indeed, a sufficiently
good guess on whether to increase or decrease α can in general already be ob-
tained after a small number of projected gradient steps. Thus we propose to stop
each iteration (6) after some maximal number kmax of steps—in the numerical
experiments in Section 5, this number was chosen as kmax = 10.

This approach is summarised in Algorithm 2.

Data: noisy image f ∈ L2(Ω);
Input: variance θ > 0; convolution kernels η, ρ; tolerance ε > 0; number

of inner steps kmax ∈ N; step size 0 < τ < 1/4;
Result: denoised function u;

Initialization: i = 1; α0 > 0; V0 = 0;
repeat

V 0
i = Vi−1/max{1, |Vi−1|/αi−1};

repeat

Ṽ k
i = V k−1

i + τ∇
(

f + div V k−1
i

)

;

V k
i = Ṽ k

i /max{1, |Ṽ k
i /αi−1|};

k 7→ k + 1;
until ‖div V k

i − div V k−1
i ‖ < ε or k = kmax ;

Vi = V kmax

i ;

Varη(Vi/αi−1) = η ∗
(
∣

∣η ∗ (Vi/αi−1) − Vi/αi−1

∣

∣

2)
;

α̃i = αi−1

(

Varη(Vi/αi−1)/θ + 1
)

/2;
αi = ρ ∗ α̃i;
k = 0; i 7→ i + 1;

until ‖div Vi − div Vi−1‖ < ε ;
u = f + div Vi;

Algorithm 2: Accelerated adaptation algorithm

Adaptation to Colour Images

The Algorithm 2 can be generalised in a straightforward manner to the denoising
of vector valued data such as, for instance, colour images. The only difference
to the scalar valued case is that, in the colour setting, the gradient of an image
u : Ω → R

3 is a tensor valued mapping ∇u : Ω → R
3⊗R

2 ∼ R
3×2. Consequently,
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also the dual variable V is tensor valued, that is, V : Ω → R
3⊗R

2. Moreover, the
divergence of V has to be interpreted componentwise in the sense that div V =
(div V1,div V2,div V3) : Ω → R

3. Also, the boundary condition is interpreted
componentwise, that is, Vi · ν = 0 on ∂Ω for all i. The norm on R

3 ⊗R
2, which

is needed in the formulation of the dual problem (2), is the usual Euclidean one.

4 Application to Deconvolution

In the previous section, we have only discussed the problem of denoising, where
the functional to be minimised is

T (u;α) :=
1

2
‖u − f‖2 +

∫

Ω

α(x) d|Du| .

Now we will apply the same ideas to the problem of deconvolution. Here one
has to minimise the functional

T (u;α) :=
1

2
‖Ku − f‖2 +

∫

Ω

α(x) d|Du| , (7)

where K : L2(Ω) → X is a bounded, compact, linear operator (the convolution
operator) mapping L2(Ω) to the Hilbert space X.

Because of its compactness, the operator K is not continuously invertible.
As a consequence, the dual problem cannot be easily formulated in a manner
similar to (2). This lack of a suitable dual formulation also makes a straightfor-
ward generalisation of our adaptive parameter selection method to deconvolu-
tion problems impossible. Still, one can apply the ideas of the previous section
to deconvolution, if one uses a particular iterative method for minimising (7).

In [4, 5, 12], it has been shown that one can minimise (7) using the iteration

wn = un + µK∗(f − Kun) ,

un+1 = arg min
u

(1

2
‖u − wn‖

2 +

∫

Ω

µα(x) d|Du|
)

.
(8)

Here K∗ : X → L2(Ω) denotes the adjoint of the operator K. If µ > 0 is cho-
sen in such a way that µ‖K∗K‖ < 1, then the sequence (un)n∈N converges to
a minimiser of (7). Thus the deconvolution problem can be solved by itera-
tively applying denoising steps to the current iterate after adding the smoothed
residual.

In order to adapt the regularisation function α, it is now possible to apply
after each denoising step the method presented in Section 3. Note however that,
instead of α, the smaller regularisation function µα is used in the iteration steps
of (8). Thus the local variance of the functions Vi/µαi−1 determines the update
of the regularisation function. The complete adaptive deconvolution algorithm
is summarised in Algorithm 3.
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Data: blurred, noisy image f ∈ L2(Ω);
Input: variance θ > 0; convolution kernels η, ρ; tolerance ε > 0; number

of inner steps kmax ∈ N; step size 0 < τ < 1/4; convolution
operator K; 0 < µ < ‖K∗K‖−1;

Result: regularised solution u of Ku = f ;

Initialization: i = 1; α0 > 0; V0 = 0; w0 = µK∗f ;
repeat

V 0
i = Vi−1/max{1, |Vi−1|/µαi−1};

repeat

Ṽ k
i = V k−1

i + τ∇
(

wi−1 + div V k−1
i

)

;

V k
i = Ṽ k

i /max{1, |Ṽ k
i /µαi−1|};

k 7→ k + 1;
until ‖div V k

i − div V k−1
i ‖ < ε or k = kmax ;

Vi = V kmax

i ;

Varη(Vi/µαi−1) = η ∗
(∣

∣η ∗ (Vi/µαi−1) − Vi/µαi−1

∣

∣

2)
;

α̃i = αi−1

(

Varη(Vi/µαi−1)/θ + 1
)

/2;
αi = ρ ∗ α̃i;
ui = wi−1 + div Vi;
wi = ui + µK∗(f − Kui);
k = 0; i 7→ i + 1;

until ‖ui − ui−1‖ < ε ;
u = ui;

Algorithm 3: Adaptation algorithm for deconvolution problems

5 Numerical Results

In this section we apply the adaptive algorithm to different test examples. For
the numerical results we have used a discretisation by finite differences proposed
in [8] (see also [4]). The rectangular domain Ω is partitioned into a uniform grid
of size N × M . The discrete gradient of a vector u ∈ R

N×M is then defined as

(∇u)
(1)
i,j =

{

ui+1,j − ui,j , if i < N ,

0 , if i = N ,

(∇u)
(2)
i,j =

{

ui,j+1 − ui,j , if j < M ,

0 , if j = M ,

its norm as

‖∇u‖ =
∑

i,j

∣

∣(∇u)i,j

∣

∣ =
∑

i,j

√

(

(∇u)
(1)
i,j

)2
+

(

(∇u)
(2)
i,j

)2
.
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The adjoint div of −∇ with respect to the Euclidean scalar product is defined
for V ∈ (R2)N×M as

(div V )i,j =











V
(1)
i,j − V

(1)
i−1,j , if 1 < i < N ,

V
(1)
i,j , if i = 1 ,

−V
(1)
i−1,j , if i = N ,

+











V
(2)
i,j − V

(2)
i,j−1 , if 1 < j < M ,

V
(2)
i,j , if j = 1 ,

−V
(2)
i,j−1 , if j = M .

For the kernels η and ρ, which are used in the definition of the variance
and also for the smoothing of the regularisation function, we have chosen (dis-
crete approximations to) symmetric Gaussian kernels of variance ση and σρ,
respectively. In order to reduce boundary artifacts, the convolutions have been
computed assuming mirrored boundary conditions.

Gray level images

Our first test example is an image distorted by increasing levels of i.i.d. Gaussian
random noise (see Figure 1, first row). We have applied our algorithm both to
the original, noise-free image and the different noisy versions (see Figure 1, last
row). The variances of the Gaussian convolution kernels η and ρ used in the
adaptive method were chosen as ση = 2 and σρ = 0.5, the total image measuring
256 × 256 pixels. The target variation was set to θ = 0.7, allowing for larger
details to remain in the image while removing small scale texture.

For comparison, we have also applied standard total variation regularisation
with a constant, non-adaptive regularisation parameter to the same test images.
The regularisation parameters were determined in such a way that they yield
optimal results in terms of signal to noise ratio for one specific noise level:
in the case of a low noise level, α was set to 7 (see Figure 1, second row);
for the highest noise level, the parameter choice α = 45 has been used (see
Figure 1, third row). As a consequence, good denoising results are obtained for
the optimal noise levels.

If, however, one uses the non-adaptive method for the denoising of images
with a non-optimal noise level, the results deteriorate significantly. If the regu-
larisation parameter is chosen too small, then almost no smoothing is obtained;
there is hardly any difference between the noisy and the smoothed image. On
the other hand, a too large regularisation parameter yields to oversmoothing,
removing all but the largest scale features.

The situation is notably different for our adaptive method. While the images
are not as good as standard total variation regularisation with optimal para-
meter choice, it yields useful results over the whole range of noise levels. Note
moreover, that the optimal regularisation parameters for the standard methods
have been chosen with knowledge of the original image, whereas no knowledge
even of the noise level is assumed for the adaptive algorithm.

In order to illustrate the influence of the parameter θ, the target variation
of the denoised image, we have applied our method to a noise-free image for
varying θ. The results are shown in Figure 2. One sees that with decreasing θ,
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Figure 1: Comparison of the adaptive algorithm with standard total variation
regularisation. First row: Original image, distorted with Gaussian random noise
(variance σ = 0, 10, 30, 50). Second row: Result of standard total variation
regularization; the regularisation parameter was chosen optimal for the noise
level σ = 10. Third row: Result of standard total variation regularization; the
regularisation parameter was chosen optimal for the noise level σ = 50. Fourth

row: Result of the adaptive algorithm with θ = 0.7.
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Figure 2: Influence of the regularity parameter θ. Upper row: Original image
and adaptively denoised image with θ = 0.8, 0.7. Lower row: Denoised image
with θ = 0.6, 0.4, 0.2.

more and more details are lost in the image, starting with texture and the finest
scale structures, until only the largest scale structures in the image are left. In
some sense, the parameter θ acts therefore in a similar manner as the (inverse
of the) regularisation parameter in standard total variation regularisation.

Colour images

In Figure 3 we have applied our denoising algorithm to a colour image, which is
distorted by i.i.d. Gaussian random noise of increasing variance (see Figure 3).
Again, the adaptivity of the algorithm is clearly visible in the result. In the case
of the original image, the fur is treated as noise, while the rest of the image is
interpreted as already being clean. As the noise level increases, the amount of
regularisation applied to the different parts of the image also increases uniformly
(see Figure 3, third column). Only at the most prominent edges between the
different colours present in the image, the increase in the regularisation func-
tion is slower. Thus one sees that the adaptive algorithm adds a further edge
preserving effect to total variation regularisation.

Deconvolution

The final example concerns the application of the proposed algorithm to de-
blurring. Because of the ill-posedness of the problem, it is necessary to choose
smaller target variations θ than for the task of denoising in order to obtain good
results. For the numerical tests in Figure 4, the target variation was chosen as
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original image denoised image regularisation function

σ
=

0
σ

=
30

σ
=

50
σ

=
10

0

Figure 3: Adaptive total variation regularisation for denoising of colour images.
Left column: Original image, distorted with Gaussian random noise (variance
σ = 0, 30, 50, 100). Middle column: Result of the adaptive algorithm with
θ = 0.8. Right column: Finally chosen regularisation function; darker pixels
indicate higher values of α.
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original θ = 0.7 θ = 0.5

σ
=

0
σ

=
2

σ
=

5
σ

=
10

Figure 4: Adaptive total variation regularisation for deconvolution. Left column:

Blurred image, distorted with Gaussian random noise (variance σ = 0, 2, 5, 10).
Middle column: Result of the adaptive algorithm with θ = 0.7. Right column:

Result of the adaptive algorithm with θ = 0.5.
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θ = 0.7 and θ = 0.5. The convolution kernel defining the blurring was a sym-
metric Gaussian kernel of variance 3, the image measuring 256 × 256 pixels. In
addition, i.i.d. Gaussian random noise of variance up to 10 was added to the
blurred image. For small noise levels or a noise free image, the reconstruction
is reasonable for both target variations, θ = 0.7 and θ = 0.5. For higher noise
levels, however, the resulting image tends to be too irregular in case of the larger
target variation; artifacts stemming from noise are retained. In contrast, the
reconstruction with the smaller target variation remains quite good.

6 Conclusion

For the denoising of images with unknown or varying noise levels by means of
total variation regularisation, it is necessary to adapt the regularisation parame-
ter locally. The adaptation method proposed in this paper is based on the ideas
presented in [23]. It bases the choice of the ensuing regularisation function on
the regularity of the final image, which is measured using the variations of a
dual variable. These variations correspond to local changes in the direction of
the gradient of the output image, and therefore can indicate, whether noise is
still present in the solution. The proposed algorithm can be directly applied to
the denoising of both gray value and colour images. In addition, a generalisa-
tion to the inversion of linear operators, as for instance blurring operators, has
been presented. The numerical examples support the claim that the algorithm
is suited for the reconstruction of noise images without knowledge of the noise
level.
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