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Abstract

We study the regularising properties of Tikhonov regularisation on
the sequence space ℓ2 with weighted, non-quadratic penalty term acting
separately on the coefficients of a given sequence. We derive sufficient
conditions for the penalty term that guarantee the well-posedness of the
method, and investigate to which extent the same conditions are also
necessary. A particular interest of this paper is the application to the so-
lution of operator equations with sparsity constraints. Assuming a linear
growth of the penalty term at zero, we prove the sparsity of all regu-
larised solutions. Moreover, we derive a linear convergence rate under the
assumptions of even faster growth at zero and a certain injectivity of the
operator to be inverted. These results in particular cover non-convex ℓp

regularisation with 0 < p < 1.

MSC: 65J20,47A52;

Keywords: Tikhonov regularisation, sparsity, convergence rates.

1 Introduction

Regularisation with sparsity constraints is an impressingly effective method for
the solution of operator equations

Ax = y ,

when it is known that the solution only contains a small number of significant
coefficients. The idea is that, instead of minimising the classical Tikhonov
functional Tα(x, y) = ‖Ax−y‖2 +α‖x‖2

2, one increases the penalisation of small
coefficients of x while at the same time decreasing the penalisation of the large
ones. Following [7], this can be achieved by replacing the ℓ2 term used for the
regularisation by an ℓp norm with p < 2. The corresponding regularisation
functional then reads as

Tα(x, y) = ‖Ax − y‖2 + α‖x‖p
p with p < 2 .
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Applications and solution algorithms for such problems can be found in [4,
5, 6, 7, 18]. The regularising properties of this type of functionals have been
analysed in [7, 10, 11, 14, 17, 20]. In addition, the related constrained opti-
misation problem ‖Ax − y‖2 → min subject to ‖x‖p ≤ δ has been studied in
the context of compressed sensing [3, 8]. Moreover, we refer to [2], where an
overview of sparse regularisation is given.

In this paper we study more general, weighted regularisation functionals of
the form

Tα(x, y) = ‖Ax − y‖2 + α
∑

λ

wλφ(xλ)

with φ : R → [0, +∞] and wλ > 0. We derive necessary and sufficient conditions
for Tα to define a well-posed regularisation method. The main condition turns
out to be the behaviour of φ at zero. Quadratic or faster growth implies the
well-posedness of the method—though slower growth is also possible if it is
compensated by the weights. Linear growth of the function φ at zero implies
that the minimisers of Tα are necessarily sparse. Finally, we derive a linear
convergence rate in the case of sublinear growth under the additional assumption
that the operator A satisfies a kind of finite basis injectivity property.

2 Overview of the Results

Let ℓ2 = ℓ2(Λ) for some countable index set Λ, and let Y be some Hilbert space.
We study the stable solution of the equation Ax = y by means of Tikhonov
regularisation, where A : ℓ2 → Y is a bounded linear operator. For α > 0 we
consider the functional Tα : ℓ2 × Y → [0, +∞],

Tα(x, y) := ‖Ax − y‖2
Y + αR(x) ,

where the regularisation term R : ℓ2 → [0, +∞] has the form

R(x) =
∑

λ

wλφ(xλ) . (1)

Here φ : R → [0, +∞] is some non-negative function and the weights wλ satisfy
wλ > 0 for every λ ∈ Λ.

The first task is, to formulate conditions on φ and the weights wλ that
guarantee that the functional Tα(·, y) admits a minimiser for every α > 0 and
y ∈ Y . This is the case, if the functional R is weakly lower semi-continuous and
weakly coercive; the latter condition means that ‖x‖ℓ2 → ∞ implies R(x) → ∞.
In this paper we prove weak lower semi-continuity and weak coercivity of R
under the following conditions C1–C3 (see Propositions 3.1 and 3.4):

C1 The mapping φ : R → [0, +∞] is lower semi-continuous and φ(0) = 0.

C2 We have lim|t|→∞ φ(t) = +∞.
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C3 There exist p ≥ 1 and q ∈ (0, +∞] satisfying p − 1 = 1/q such that
(w−1

λ )λ∈Λ ∈ ℓq and, for some C > 0,

φ(t) ≥ C|t|2p

1 + |t|2p
for every t ∈ R . (2)

In addition to the sufficiency of these conditions, we investigate to which
extent they are necessary for the weak lower semi-continuity and the weak co-
ercivity of R. We prove the necessity of conditions C1 and C2 and derive some
necessary properties of the weights wλ and the function φ (see Propositions 3.1
and 3.6).

Moreover we consider the special case where the weights wλ are bounded
above. We show that in this situation (2) has to be satisfied with p = 1, and
thus we obtain a complete characterisation of weakly lower semi-continuous
and weakly coercive functionals of the form (1) with bounded weights. This
generalises and completes the results recently derived in [1], where only the case
of constant weights has been investigated.

Also in [1], the question has been asked, whether the functional R satisfies
the Radon–Riesz property, also known as Kadec’–Klee property (see [15]). This
property requires that every sequence (x(k))k∈N ⊂ ℓ2, which converges weakly
to some x ∈ ℓ2 in such a way that R(x(k)) → R(x) < ∞, already satisfies
‖x(k) − x‖ℓ2 → 0. This is important for the derivation of convergence and
stability theorems for Tikhonov regularisation, as it allows one to infer results
in the norm topology instead of merely the weak topology. Generalising [1], we
prove in Proposition 3.7 that the Radon–Riesz property is already a consequence
of conditions C1–C3 and thus naturally satisfied.

As a consequence of the considerations above, it follows that, under con-
ditions C1–C3, the proposed functional Tα satisfies the main properties of a
regularisation method. The weak lower semi-continuity and weak coercivity of
R imply the existence of minimisers for every y ∈ Y and α > 0 (see Propo-
sition 4.1). The Radon–Riesz property implies stability of the method under
perturbations of y and α (see Proposition 4.2). Also, it implies the convergence
of minimisers xδ

α of Tα(·, yδ) to solutions of Ax = y provided the noise level
δ = ‖yδ − y‖ and the regularisation parameter α converge to zero in a suitable
manner (see Proposition 4.3). These results provide further generalisations of
similar statements that have first been derived for weighted ℓp regularisation
with p ≥ 1 in [14, 17], for ℓp regularisation with 0 < p < 1 and constant weights
in [10, 20], and for general symmetric φ but constant weights in [1].

In order to enforce the sparsity of the regularised solutions, it is necessary to
introduce a stronger growth condition for φ at zero. This condition C3′ below
replaces the quadratic or slower growth of φ required in condition C3 by at
least linear growth. In Proposition 4.5 we prove that this condition implies the
sparsity of every minimiser of the functional Tα.
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C3′ We have infλ wλ > 0 and there exists C > 0 such that

φ(t) ≥ C|t|
1 + |t| for every t ∈ R .

For the derivation of linear convergence rates we propose an even stronger
growth condition at zero and a weak regularity condition for the function φ. To
that end recall that the lower Dini derivatives of a function ρ : R → [0, +∞] at
t ∈ R are defined as (see [13, Def. 17.2])

D+ρ(t) = lim inf
h→0+

ρ(t + h) − ρ(t)

h
, D−ρ(t) = lim inf

h→0−

ρ(t + h) − ρ(t)

h
.

C4 For every t ∈ R with φ(t) < +∞ we have

D+φ(t) > −∞ , and D−φ(t) < +∞ .

Moreover

D+φ(0) = +∞ , and D−φ(0) = −∞ .

Following the argumentation in [12], where constrained ℓp regularisation
with 0 < p < 1 has been considered, we add to C1–C4 the condition that the
equation Ax = y has a unique R-minimising solution x†, which is sparse, that
is, the support Ω := supp(x†) :=

{

λ ∈ Λ : x†
λ 6= 0

}

is finite. In addition,
we assume that the restriction of the operator A to ℓ2(Ω) is injective. This is
a special instance of the finite basis injectivity property proposed in [14]. We
prove that these conditions imply the linear convergence of minimisers xδ

α of
Tα(·, yδ) to x† as α ∼ δ = ‖y − yδ‖ → 0 (see Theorem 5.1).

Linear convergence rates for non-convex regularisation have already been
derived in [1, 10], albeit with the much stronger range condition eλ ∈ RangeA∗

for every λ ∈ Ω with (eλ)λ∈Λ denoting the set of standard basis vector of ℓ2. At
the same time, a rate of order O(

√
δ) has been proven in [20] for ℓp regularisation

with 0 < p < 1. There, the less restrictive condition has been assumed that
there exists some ω ∈ Y such that |x†

λ|2−p(A∗ω)λ = x†
λ for every λ ∈ Λ. It

has been noted in [12, 16] that this range condition is a consequence of the
injectivity condition required in our convergence rates result.

Now we present some examples of functions φ to which our results apply. For
simplicity, we always assume that the chosen weights wλ are uniformly bounded
below, that is, infλ wλ > 0.

Example 2.1 (ℓr Regularisation). Here,

φ(t) = |t|r for some r > 0 .

The mapping φ is lower semi-continuous, φ(0) = 0, and lim|t|→∞ φ(t) = +∞,
proving C1 and C2. Condition C3 is satisfied, if r ≤ 2; for r > 2 we require in
addition that (w−1

λ )λ∈Λ ∈ ℓq with 1/q = r/2 − 1. If r ≤ 1, then condition C3′

holds. Finally, condition C4 is satisfied for r < 1. �
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Example 2.2. Assume that

φ(t) = log(|t| + 1) .

Then conditions C1–C3 and C3′ are satisfied, while C4 does not hold. �

Example 2.3 (Positivity Constraints). For any φ : R → [0, +∞] define φ+ : R →
[0, +∞] by

φ+(t) :=

{

φ(t) , if t ≥ 0 ,

+∞ , if t < 0 .

Regularisation with φ+ therefore forces the minimisers to stay non-negative. If
φ satisfies any of the conditions C1–C4 and C3′, then φ+ satisfies the same
conditions. �

Example 2.4 (Hard Constraints). For any φ : R → [0, +∞] and b ≥ 0 define
φb : R → [0, +∞] by

φb(t) :=

{

φ(t) , if |t| ≤ b ,

+∞ , if |t| > b .

This forces the minimisers x of the regularisation functional Tα to obey the
bound ‖x‖∞ ≤ b. If φ satisfies any of the conditions C1, C3, C3′, and C4, then
φb satisfies the same conditions. In addition, φb satisfies condition C2. �

Example 2.5 (ℓ0 Regularisation). Define

φ(t) :=

{

0 , if t = 0 ,

1 , if t 6= 0 .

Then φ satisfies the conditions C1, C3, and C4. The condition C2, however, is
not satisfied, and thus the coercivity of R does not hold.

On the other hand, if we impose in addition a hard constraint b > 0, that
is, we replace φ by the functional (see Example 2.4)

φb(t) :=











0 , if t = 0 ,

1 , if 0 < |t| ≤ b ,

+∞ , if |t| > b ,

then all conditions C1–C4 are met. �

3 Properties of the Regularisation Functional

In the following, we investigate the weak lower semi-continuity and the weak
coercivity of the regularisation term defined in (1). First we prove that C1–C3
are sufficient conditions. Then we turn to the question of their necessity. We
show that C1 and C2 are indeed necessary, while we can only derive condition
C3 with p = 1 in case the weights wλ are assumed to be bounded. Finally,
we prove that the Radon–Riesz property of R is a direct consequence of the
conditions C1–C3.
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Proposition 3.1 (Lower Semi-continuity). Assume that R is proper. Then
the following are equivalent:

1. The mapping φ is lower semi-continuous.

2. The functional R is lower semi-continuous.

3. The functional R is weakly lower semi-continuous.

Proof. First note that the implication 3 =⇒ 2 is trivial.
In order to show the implication 2 =⇒ 1, choose some x ∈ Dom(R). Let

t ∈ R and tk → t. Choose some µ ∈ Λ and define y(k) ∈ ℓ2 by y
(k)
µ = tk and

y
(k)
λ = xλ for λ 6= µ. Define moreover y ∈ ℓ2 by yµ = t and yλ = xλ for λ 6= µ.

Then y(k) → y and therefore

lim inf
k

wµφ(tk) = lim inf
k

[

R(y(k)) −R(x) + wµφ(xµ)
]

≥ R(y) −R(x) + wµφ(xµ) = φ(t) .

Thus φ is lower semi-continuous.
For the implication 1 =⇒ 3 note that the lower semi-continuity of the map-

ping φ implies that for every finite set Λ′ ⊂ Λ the mapping x 7→ ∑

λ∈Λ′ wλφ(xλ)
is weakly lower semi-continuous. Since φ is non-negative, we have

R(x) =
∑

λ∈Λ

wλφ(xλ) = sup
{

∑

λ∈Λ′

wλφ(xλ) : Λ′ ⊂ Λ is finite
}

.

Therefore the mapping R is the supremum of a family of weakly lower semi-
continuous functions and therefore itself weakly lower semi-continuous. �

Remark 3.2. The argument for the proof of the implication 2 =⇒ 1 is taken
from [9, Thm. 6.49], where the same basic idea is applied to the study of lower
semi-continuity of integral functionals on Lebesgue spaces. �

Remark 3.3. In [1], Fatou’s Lemma has been used to prove that the conditions
1 and 2 are equivalent to weak sequential lower semi-continuity of R. Though
yielding a slightly weaker result, this approach has the advantage that it also
can be applied when φ only satisfies an estimate of the form φ(t) ≥ −Ct2. �

Proposition 3.4 (Sufficient Conditions for Coercivity). Assume that the
conditions C2 and C3 are satisfied. Then R is weakly coercive.

Proof. Let K > 0. Since (w−1
λ )λ∈Λ ∈ ℓq, it follows that infλ wλ > 0. The

condition lim|t|→∞ φ(t) = +∞ therefore implies that there exists some L > 0
such that

|t| ≤ L whenever inf
λ

wλφ(t) ≤ K .
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Now let x ∈ ℓ2 satisfy R(x) ≤ K. Then in particular |xλ| ≤ L for every
λ ∈ Λ. In case p = 1 and q = +∞, we therefore obtain that

K ≥ R(x) =
∑

λ

wλφ(xλ) ≥ C infλ wλ

1 + L2

∑

λ

x2
λ =

C infλ wλ

1 + L2
‖x‖2

ℓ2 ,

which implies the weak coercivity of R.
In case p > 1 and q < +∞, we apply the (reverse) Hölder inequality (see for

instance [13, Thm. 13.6]) to obtain the estimate

K ≥ R(x) =
∑

λ

wλφ(xλ) ≥ C

1 + L2p

∑

λ

wλ|xλ|2p

≥ C

1 + L2p

(

∑

λ

w−q
λ

)−1/q(∑

λ

x2
λ

)p

.

Thus

‖x‖2p
ℓ2 ≤ K(1 + L2p)

C

(

∑

λ

w−q
λ

)1/q

,

which proves the assertion. �

Lemma 3.5. Let ρ : R → [0, +∞] satisfy lim inft→0 ρ(t)/t2 = 0. Then there
exists a sequence (xλ)λ∈Λ such that

∑

λ x2
λ = ∞ and

∑

λ ρ(xλ) < ∞.

Proof. Assume for simplicity of notation that Λ = N. Since lim inft→0 ρ(t)/t2 =
0, there exists for every k ∈ N some tk ∈ R with 0 < |tk| < 1 and ρ(tk) < 2−kt2k.
Choose now an increasing sequence 1 = n1 < n2 < . . . such that 1 ≤ t2k(nk+1 −
nk) ≤ 2 and define xλ := tk if nk ≤ λ < nk+1. Then

∑

λ

x2
λ =

∑

k

nk+1−1
∑

nk

t2k ≥
∑

k

(nk+1 − nk) = +∞ ,

while

∑

λ

ρ(xλ) =
∑

k

nk+1−1
∑

nk

ρ(tk) ≤
∑

k

nk+1−1
∑

nk

2−kt2k ≤
∑

k

2−k+1 = 2 .
�

Proposition 3.6 (Necessary Conditions for Coercivity). Assume that R
is proper and weakly coercive and that φ(t̂) < ∞ for some t̂ 6= 0. Then the
following hold:

1. infλ wλ > 0.

2. lim inf |t|→0 φ(t) = 0.

3. lim|t|→∞ φ(t) = +∞.
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4. For every ε > 0 we have inf |t|>ε φ(t) > 0.

5. If supλ wλ < +∞, then there exists C > 0 such that

φ(t) ≥ Ct2

1 + t2
for every t ∈ R . (3)

Proof. Let x̂ ∈ ℓ2 be such that R(x̂) < ∞.

In order to prove Item 1 assume to the contrary that infλ wλ = 0. Then
there exists an infinite subset Λ′ ⊂ Λ such that

∑

λ∈Λ′ wλ < ∞. For every finite

subset Γ ⊂ Λ define now x(Γ) ∈ ℓ2 by x
(Γ)
λ = t̂ if λ ∈ Γ and x

(Γ)
λ = x̂λ if λ 6∈ Γ.

Since t̂ 6= 0, it follows that supΓ‖x(Γ)‖ℓ2 = ∞. On the other hand,

R(x(Γ)) =
∑

λ∈Γ

wλφ(t̂) +
∑

λ6∈Γ

wλφ(x̂λ) ≤ φ(t̂)
∑

λ∈Λ′

wλ + R(x̂)

is uniformly bounded, which contradicts the coercivity of R.

Item 2 follows from the fact that x̂ ∈ ℓ2 and the estimate

∑

λ

φ(x̂λ) ≤ R(x̂)

infλ wλ
< ∞ .

Assume now to the contrary that Item 3 does not hold. Then there exists a
sequence tk with |tk| → ∞ and supk φ(tk) =: c < ∞. Now choose some µ ∈ Λ

and define x(k) ∈ ℓ2 by x
(k)
µ = tk and x

(k)
λ = x̂λ for λ 6= µ. Then ‖x(k)‖ℓ2 → ∞

while supk R(x(k)) ≤ R(x̂) + c < ∞, which is a contradiction to the coercivity
of R.

Now assume that Item 4 does not hold. Then, for some ε > 0, there exists
for every λ ∈ Λ some tλ ∈ R satisfying |tλ| ≥ ε such that

∑

λ wλφ(tλ) < ∞.

For every finite subset Γ ⊂ Λ we define now x(Γ) ∈ ℓ2 by x
(Γ)
λ = tλ if λ ∈ Γ

and x
(Γ)
λ = x̂λ if λ 6∈ Γ. Then supΓ‖x(Γ)‖ℓ2 = ∞, while R(x(Γ)) ≤ R(x̂) +

∑

λ wλφ(tλ), again contradicting the coercivity of R.

Now assume that supλ wλ < +∞, but (3) does not hold. Since Items 3
and 4 hold, it follows that lim inf |t|→0 φ(t)/t2 = 0. From Lemma 3.5 we obtain
a sequence (xλ)λ∈Λ satisfying

∑

λ x2
λ = +∞ and

∑

λ φ(xλ) =: c < +∞. In
particular, R(xλ) =

∑

λ wλφ(xλ) ≤ c supλ wλ, which, as above, contradicts the
coercivity of R. �

Proposition 3.7 (Radon–Riesz Property). Assume that conditions C1–C3
hold. Let (x(k))k∈N ⊂ ℓ2 converge weakly to x ∈ ℓ2 such that R(x(k)) → R(x) <
∞. Then ‖x(k) − x‖ℓ2 → 0.

Proof. We only consider the case p > 1 and q < +∞. The proof for p = 1 and
q = +∞ is similar.

Let ε > 0. There exists a finite set Γ ⊂ Λ such that
∑

λ6∈Γ

wλφ(xλ) ≤ ε , and
∑

λ6∈Γ

|xλ|2 ≤ ε .
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Since x
(k)
λ → xλ for every λ ∈ Λ and Γ is finite, there exists some k0 ∈ N such

that
∑

λ∈Γ

|x(k)
λ − xλ|2 ≤ ε

for every k ≥ k0. Since φ is lower semi-continuous, there exists k1 ≥ k0 such
that

∑

λ∈Γ

wλφ(x
(k)
λ ) ≥

∑

λ∈Γ

wλφ(xλ) − ε ≥ R(x) − 2ε

for every k ≥ k1. Conversely, the assumption that R(x(k)) → R(x) implies the
existence of k2 ≥ k1 such that

R(x(k)) ≤ R(x) + ε

for every k ≥ k2. Thus

∑

λ6∈Γ

wλφ(x
(k)
λ ) = R(x

(k)
λ ) −

∑

λ∈Γ

wλφ(x
(k)
λ ) ≤ R(x) + ε − (R(x) − 2ε) = 3ε

for every k ≥ k2. In particular, we have for every k ≥ k2 and λ 6∈ Γ that

3ε ≥ wλφ(x
(k)
λ ) ≥ Cwλ

(x
(k)
λ )2p

1 + (x
(k)
λ )2p

,

and therefore

(x
(k)
λ )2p ≤ 3ε

C infλ wλ − 3ε
=: Kε .

Consequently, the reverse Hölder inequality implies that

3ε ≥
∑

λ6∈Γ

wλφ(x
(k)
λ ) ≥ C

∑

λ6∈Γ

wλ
(x

(k)
λ )2p

1 + (x
(k)
λ )2p

≥ C

1 + Kε

∑

λ6∈Γ

wλ|x(k)
λ |2p

≥ C

1 + Kε

(

∑

λ∈Λ

w−q
λ

)−1/q(∑

λ6∈Γ

(x
(k)
λ )2

)p

for every k ≥ k2, and thus

∑

λ6∈Γ

(x
(k)
λ )2 ≤

(3(1 + Kε)

C

)1/p(∑

λ∈Λ

w−q
λ

)1/pq

ε1/p =: K ′
εε

1/p .

Summarising the above estimates, we obtain that

‖x(k) − x‖2
ℓ2 ≤

∑

λ∈Γ

|x(k)
λ − xλ|2 + 2

∑

λ6∈Γ

|xλ|2 + 2
∑

λ6∈Γ

|x(k)
λ |2 ≤ 3ε + 2K ′

εε
1/p

for every k ≥ k2. Since K ′
ε tends to zero as ε → 0, the assertion follows. �
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Remark 3.8. The proofs in this section have made no use of the Hilbert space
structure of ℓ2. Indeed, each result can be formulated analogously for functionals
on ℓr with 1 ≤ r < +∞ by simply replacing every occurence of the exponent 2
by r. In particular, the inequality (2) would read as

φ(t) ≥ C|t|rp

1 + |t|rp
for every t ∈ R .

The same holds true for the results in Sections 4 and 5. �

4 Well-posedness

Now we consider the regularising properties of the functional Tα with R satisfy-
ing the conditions C1–C3. These results are a consequence of the Radon–Riesz
property and the weak lower semi-continuity and weak coercivity of R. Instead
of providing complete proofs, only references to [17] are given. In addition,
we show that the stronger growth condition C3′ implies the sparsity of every
minimiser of Tα(·, y).

Strictly speaking, the results in [17] do not apply, as there the convexity of
the regularisation term R is assumed. Also, the stability theorem in [17] does
not consider varying regularisation parameters. An inspection of the proofs,
however, shows that the assumption of convexity is only needed for the deriva-
tion of convergence rates and that the stability proof still holds if also the
regularisation parameter is perturbed.

Proposition 4.1 (Existence). Assume that the conditions C1–C3 hold. For
every α > 0 and y ∈ Y the functional Tα(·, y) has a minimiser.

Proof. See [17, Thm. 3.22]. �

Proposition 4.2 (Stability). Assume that the conditions C1–C3 hold. Let
α(k) → α > 0 and y(k) → y ∈ Y . Then every sequence

x(k) ∈ arg min
{

Tα(k)(x, y(k)) : x ∈ ℓ2
}

has a subsequence (x(kl))l∈N converging to a minimiser xα of Tα(·, y) such that
R(x(kl)) → R(xα). If the minimiser xα is unique, then x(k) → xα.

Proof. Following the proof of [17, Thm. 3.23], we obtain a subsequence (x(kl))l∈N

converging to xα such that R(x(kl)) → R(x). The norm convergence of the
sequence then follows from Proposition 3.7. �

Proposition 4.3 (Convergence). Assume that the conditions C1–C3 hold.
Let α(k) → 0 and y(k) → y ∈ Y such that

‖y(k) − y‖2

α(k)
→ 0 .
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Assume that there exists x ∈ DomR with Ax = y. Then every sequence

x(k) ∈ arg min
{

Tα(k)(x, y(k)) : x ∈ ℓ2
}

has a subsequence (x(kl))l∈N converging to an R-minimising solution x† of the
equation Ax† = y such that R(x(kl)) → R(x†). If the R-minimising solution x†

is unique, then x(k) → x†.

Proof. The weak convergence of a subsequence (x(kl))l∈N to x† together with
the convergence of

(

R(x(kl))
)

l∈N
to R(x†) follows from [17, Thm. 3.26]. The

strong convergence of this sequence then follows from Proposition 3.7. �

Corollary 4.4. Assume that the conditions C1–C3 hold. Let y ∈ Y be such
that the equation Ax = y admits a unique R-minimising solution x†. Define the
function H : R>0 × R>0 → R≥0,

H(α, δ) := sup
{

‖xδ
α − x†‖ℓ2 : xδ

α ∈ arg min
x

Tα(x, yδ), ‖yδ − y‖ ≤ δ
}

.

Then for every ε > 0 there exists γ > 0 such that H(α, δ) < ε whenever 0 <
α < γ and 0 < δ2 < αγ.

Proof. Assume to the contrary that there exists ε > 0 such that for every k ∈ N

there exist 0 < α(k) < 1/k and 0 < (δ(k))2 < α(k)/k such that H(α(k), δ(k)) ≥ ε.
Then the definition of H implies that there exist sequences (y(k))k∈N with ‖y(k)−
y‖ ≤ δ(k), and x(k) ∈ arg minx Tα(k)(x, y(k)) such that ‖x(k) − x†‖ℓ2 ≥ ε/2 for
all k ∈ N. In particular, the sequence (x(k))k∈N has no subsequence converging
to x†, which contradicts Proposition 4.3. �

Proposition 4.5 (Sparsity). Assume that the conditions C1, C2, and C3′

hold. Let α > 0, y ∈ Y , and x ∈ arg min
{

Tα(x, y) : x ∈ ℓ2
}

. Then x is sparse.

Proof. Define for µ ∈ Λ the sequence x̂(µ) := x − xµeµ. Since x minimises
Tα(·, y), it follows that

‖Ax − y‖2 + α
∑

λ

wλφ(xλ) = Tα(x, y)

≤ Tα(x̂(µ), y) = ‖Ax − y − xµAeµ‖2 + α
∑

λ6=µ

wλφ(xλ) .

Consequently,

αwµφ(xµ) ≤ x2
µ‖Aeµ‖2 + 2xµ〈Aeµ, Ax − y〉 ≤ x2

µ‖A‖2 + 2xµ〈eµ, A∗(Ax − y)〉

for every µ ∈ Λ. With the estimate

Cαwµ
|xµ|

1 + |xµ|
≤ αwµφ(xµ)
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we obtain therefore that

|xµ| ≤
(1 + ‖x‖ℓ2)

(

xµ‖A‖2 + 2
〈

eµ, A∗(Ax − y)
〉)

Cα infλ wλ
xµ =: Kµxµ .

for every µ ∈ Λ. Since x ∈ ℓ2 and A∗(Ax − y) ∈ ℓ2, it follows that the set
Λ′ :=

{

µ ∈ Λ : |Kµ| ≥ 1
}

is finite. Since xµ = 0 whenever µ 6∈ Λ′, this proves
that x is sparse. �

5 Linear Convergence

Finally, we show that, under certain additional assumptions, the strongest
growth condition at zero, C4, implies the linear convergence of minimisers xδ

α

to x†. The proof of this result closely resembles the proof of [12, Prop. 6.11],
where the same convergence rate has been derived for constrained ℓp regulari-
sation with 0 < p < 1.

Theorem 5.1 (Linear Convergence). Assume that conditions C1–C4 hold.
Let y ∈ Y be such that the equation Ax = y admits a unique R-minimising
solution x†. Assume that Ω := supp(x†) is finite and that the restriction of A
to ℓ2(Ω) is injective. Define the function H : R>0 × R>0 → R≥0,

H(α, δ) := sup
{

‖xδ
α − x†‖ℓ2 : xδ

α ∈ arg min
x

Tα(x, yδ), ‖yδ − y‖ ≤ δ
}

.

Then there exist constants β1, β2 > 0 such that

H(α, δ) ≤ β1δ
2

α
+ β2δ +

β2
2α

4β1

whenever α > 0 and δ2/α > 0 are small enough.

Proof. Denote by πΩ, π⊥
Ω the projections

πΩx =
∑

λ∈Ω

xλeλ , π⊥
Ω x =

∑

λ6∈Ω

xλeλ .

As in the proofs of [11, Thm. 14, Thm. 15] one can prove the existence of C1 > 0
such that

‖x − x†‖ℓ2 ≤ C1‖A(x − x†)‖ +
(

1 + C‖A‖
)

‖π⊥
Ωx‖ℓ2 (4)

for every x ∈ ℓ2.
Since by assumption D+φ(t) > −∞ and D−φ(t) < +∞ for every t ∈ R and

φ is bounded below by zero, there exists for every t ∈ R some C(t) > 0 such
that

φ(s) − φ(t) ≥ −C(t)|t − s|

12



for every s ∈ R. Now define for σ ∈ {±1}Ω the sequence ζ(σ) ∈ ℓ2(Ω) by

ζ(σ)λ = sgn(σλ)wλC(x†
λ). Then

wλφ(x†
λ) − wλφ(t) ≤ ζ(σ)λ(t − x†

λ)

for every λ ∈ Ω and t ∈ R with σλ = sgn(t − x†
λ). In particular,

max
σ∈{±1}Ω

∣

∣〈ζ(σ), πΩx − πΩx†〉
∣

∣ ≥ R(x†) −R(πx) (5)

for every x ∈ ℓ2.
Denote now by iΩ : ℓ2(Ω) → ℓ2(Λ) the embedding iΩx = x. Then by assump-

tion A◦iΩ : ℓ2(Ω) → ℓ2(Λ) is injective. Thus (A◦iΩ)∗ = πΩ ◦A∗ : ℓ2(Λ) → ℓ2(Ω)
is surjective (see [19, Cor. VII.5.2]). In particular, ζ(σ) ∈ Range(πΩ ◦ A∗) for
every σ ∈ {±1}Ω. Hence there exists for every σ ∈ {±1}Ω some ω(σ) ∈ Y such
that πΩ ◦ A∗ω(σ) = ζ(σ). Denote now

C2 := max
σ∈{±1}Ω

‖ω(σ)‖Y .

Then

∣

∣〈ζ(σ), πΩx − πΩx†〉
∣

∣ ≤
∣

∣〈A∗ω(σ), x − x†〉
∣

∣ +
∣

∣〈A∗ω(σ), π⊥
Ω x〉

∣

∣

≤ C2‖A(x − x†)‖ + C2‖A‖ ‖π⊥
Ωx‖ℓ2 .

Consequently, using (5),

C2‖A(x − x†)‖ ≥ R(x†) −R(πx) − C2‖A‖ ‖π⊥
Ωx‖ℓ2 . (6)

Since by assumption D+φ(0) = +∞ and D−φ(0) = −∞, there exists ε > 0
such that

(

C2‖A‖ + 1
)

|t| ≤ wλφ(t) whenever |t| ≤ ε .

Thus we have for every x ∈ ℓ2 with ‖π⊥
Ωx‖ℓ∞ ≤ ε that

(

C2‖A‖ + 1
)

‖π⊥
Ω‖ℓ2 ≤

(

C2‖A‖ + 1
)

‖π⊥
Ω‖ℓ1

=
∑

λ6∈Ω

(

C2‖A‖ + 1
)

|xλ| ≤
∑

λ6∈Ω

wλφ(xλ) = R(π⊥
Ω x) .

With (6) we therefore we obtain for every x ∈ ℓ2 with ‖π⊥
Ωx‖ℓ∞ ≤ ε the estimate

‖π⊥
Ωx‖ℓ2 ≤ R(π⊥

Ω x) − C2‖A‖ ‖π⊥
Ωx‖ℓ2 ≤ R(x) −R(x†) + C2‖A(x − x†)‖ ,

and thus, using (4),

‖x−x†‖ℓ2 ≤ (1+C1‖A‖)
(

R(x)−R(x†)
)

+
(

C1+(1+C1‖A‖)C2

)

‖A(x−x†)‖ . (7)

Define now

β1 := 1 + C1‖A‖ , β2 := C1 + (1 + C1‖A‖)C2 . (8)

13



From Corollary 4.4 it follows that there exists γ > 0 such that H(α, δ) < ε
whenever 0 < α < γ and 0 < δ2 < αγ. Let these constraints hold, let yδ ∈ Y
satisfy ‖y − yδ‖ ≤ δ, and choose some xδ

α ∈ argminx Tα(x, yδ). Then

‖Axδ
α − yδ‖2 + αR(xδ

α) ≤ ‖Ax† − yδ‖2 + αR(x†) ≤ δ2 + αR(x†) ,

and thus

R(xδ
α) −R(x†) ≤ δ2 − ‖Axδ

α − yδ‖2

α
.

Since ‖xδ
α − x†‖ℓ2 ≤ H(α, δ) < ε, we obtain using (7) and (8) that

‖xδ
α − x†‖ ≤ β1

(

R(xδ
α) −R(x†)

)

+ β2‖Axδ
α − y‖

≤ β1δ
2

α
− β1‖Axδ

α − yδ‖2

α
+ β2‖Axδ

α − yδ‖ + β2δ

≤ β1δ
2

α
+ β2δ +

β2
2α

4β1
,

which proves the assertion. �

6 Summary

In this paper, we have studied Tikhonov regularisation on ℓ2 with general
weighted penalty terms of the form R(x) =

∑

λ wλφ(xλ). Fairly general require-
ments have been given that guarantee the well-posedness of the regularisation
method. Moreover, under an additional boundedness assumption for the chosen
weights, these requirements have been shown to be necessary for the weak lower
semi-continuity and weak coercivity of the regularisation term. In particular,
these conditions encompass weighted ℓp regularisation with 0 < p ≤ 2, but also
ℓ0 regularisation with additional hard constraints.

A central focus of this paper lies on the possible application of the considered
regularisation method to the recovery of sparse sequences. We have formulated
a sufficient growth condition for φ at zero that enforces the minimisers of the
Tikhonov functional Tα to be sparse. In addition, we have treated the question of
convergence rates. Here we have assumed that the unique R-minimising solution
x† of Ax = y is sparse and that A satisfies a kind of finite basis injectivity
property. Requiring that φ has a superlinear growth at zero, we have shown
that the minimisers of Tα(·, yδ) converge linearly to x† as α ∼ ‖yδ − y‖ → 0.
At the moment, these are the weakest conditions on x† and A, under which a
linear convergence rate has been derived.
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