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Abstract. We introduce a locally adaptive parameter selection method
for total variation regularization applied to image denoising. The al-
gorithm iteratively updates the regularization parameter depending on
the local smoothness of the outcome of the previous smoothing step. In
addition, we propose an anisotropic total variation regularization step
for edge enhancement. Test examples demonstrate the capability of our
method to deal with varying, unknown noise levels.

1 Introduction

Because of its ability to generate images with piecewise smooth structures that
are well separated by pronounced edges, total variation regularization is one of
the most widely used techniques for image denoising and related tasks. Since
the first proposal by Rudin, Osher, and Fatemi [14] of using the total variation
for denoising purposes, that is, the L1-norm of the gradient, this method has
been applied to a wide range of applications in imaging and inverse problems.
We refer to [1–3, 5, 12, 13, 15] to name but a few contributions to this field.

Given a noisy function f ∈ L2(Ω) on some open and bounded domain Ω ⊂
IRn, n ∈ IN, the goal of denoising is to find a new function u close to f that
retains the important features of f while noise, consisting of fast oscillations, is
removed. Noting that edges belong to the most prominent features in images,
this task can be achieved by minimizing the total variation functional

T (u; α) :=
1

2

∫

Ω

(

u(x) − f(x)
)2

dx + α|Du|(Ω) (1)

with respect to u ∈ BV(Ω). The regularization parameter α > 0 in (1) controls
the amount of smoothing that is desired: the larger α, the more the regularized
function uα tends to consist of well separated homogeneous regions. Conversely,
a small parameter α implies a function lying close to the input data, but also
possibly exhibiting a significant number of oscillations.

The relation between α and uα, however, exists only on a qualitative level.
There is no simple connection between the value of α and the smoothness of
uα, or even between α and the difference f − uα, which is simply the part
of the data classified as noise by the functional T . The necessity of taking into



account both the data and the expected noise level is a well established fact in the
theory of inverse problems (see for instance [8]). Because for many applications of
mathematical imaging, in particular tasks that are to be completely automated,
a precise knowledge of the noise is not available, this leads to the conclusion that,
in these cases, a-priori parameter choices are not feasible. Instead, one should
adapt α until both uα and the perceived noise f − uα are satisfactory.

Though better than a fixed a-priori choice, also adaptation of the regulariza-
tion parameter need not be sufficient for good results. It may happen that the
noise on the image f is not identically distributed but varies locally. In this case,
it is difficult to find a compromise between oversmoothing in noise-free regions
caused by too large a parameter choice, and a still noisy output resulting from a
small parameter. Similar effects can be observed, if the structure of the noise-free
data itself changes over the image. Then, the regularization parameter should
be larger for homogeneous parts of the image than for parts with small details.

The problem of finding a parameter that is suited for the whole image can be
circumvented by passing from a global parameter α > 0 to a parameter function
α : Ω → IR>0. Then, the regularization functional reads as

T (u; α) =
1

2

∫

Ω

(

u(x) − f(x)
)2

dx +

∫

Ω

α(x) d|Du|(x) . (2)

This functional is well-defined, if α is continuous, and, using direct methods, can
readily be shown to attain a minimizer, if α is bounded away from zero.

Total variation regularization with non-constant regularization parameter
has already been studied in several other articles [6, 9–11, 16, 17]. In [16, 17], the
choice of α is based on the scale of the features one wants to recover. In [10],
at first the uniform problem is solved with an automatically identified optimal
regularization parameter α. The result of the first denosing attempt is used
for extracting the edges in the image, at which subsequently the regularization
parameter is locally increased. Then the minimization problem is solved a second
time with the localized parameter α(x).

The approach in [11] uses statistical properties of the residual in order to
decide whether the local regularization parameter is suited. The criterion em-
ployed there is based on the local variance of the residual: If it is close to the
noise level, one can expect that mostly noise has been filtered. It it is higher,
then the residual probably contains texture and therefore the regularization pa-
rameter has to be decreased. The estimates in [11] are closely related to the
inequalities in [10], though the approaches by which they are reached differ con-
siderably. Note moreover that the same idea has already been employed in [6]
for one-dimensional total variation regularization.

In this paper, we propose to target some a-priori specified smoothness of
the output uα, which is measured in terms of the oscillations of the direction
∇uα/|∇uα| of the gradient of the image. This direction can be determined by
passing to a dual formulation, as it essentially equals the rescaled dual variable.
This idea of parameter adaptation based on the properties of the dual function
is taken from [6].



The main concept of this paper of using a dual variable to provide a guess on
the smoothness of the regularized image is introduced in Section 2. For further
improving this smoothed image by enhancing the edges, we propose to subse-
quently apply anisotropic total variation regularization with an anisotropy that
is estimated from the same dual variable that has determined the isotropic reg-
ularization parameter (see Section 3). A complete description of the algorithm
can be found in Section 4. Finally, we apply this method in Section 5 to two test
examples that show its suitability for adaptive noise removal.

2 Parameter Adaptation via Dual Variables

Consider the dual formulation of T (·; α), which consists in solving the con-
strained minimization problem

J (V ) :=

∫

Ω

(

div V (x) + f(x)
)2

dx → min ,

|V (x)| ≤ α(x) almost everywhere on Ω ,

V (x) · ν(x) = 0 almost everywhere on ∂Ω ,

(3)

over the space of vector valued essentially bounded functions L∞(Ω; IRn). In (3),
ν denotes the outward normal to the domain Ω, and the equation V · ν = 0
is understood in a distributional sense. Also, the divergence of an essentially
bounded function is defined distributionally. To be precise, the functions V and
div V satisfy the equation

∫

Ω

∇φ(x) · V (x) dx = −

∫

Ω

φ(x) div V (x) dx

for every φ ∈ C1(IRn).
Minimization of Tα is equivalent to solving the dual problem (3) in the sense

that a function Vα ∈ L∞(Ω; IRn) solves (3), if and only if uα := f + div Vα

minimizes Tα. We refer to [4], which treats the dual formulation of total varia-
tion regularization, and to [7] for a detailed introduction to infinite dimensional
convex analysis.

We now examine the dual variable V more closely. Formally, the optimality
condition for a minimizer uα of the functional T reads as

uα(x) − f(x) ∋ div

(

α(x)
∇uα(x)

|∇uα(x)|

)

for almost every x ∈ Ω .

Since uα − f = div Vα, one sees that the dual minimizer Vα introduced above
in fact coincides with the direction of the gradient of uα, multiplied by α(x). In
particular, for almost every x ∈ Ω, we either have that |Vα(x)| = α(x) or the
gradient of uα at x is zero, that is, uα is approximately constant near x.

Even more, the local behaviour of Vα is strongly related to a certain kind of
regularity of the regularized function uα: Large variations of Vα/α on the unit



sphere imply equally large variations of the direction of the gradient of uα. In
other words, variations of Vα/α imply small oscillations of uα. The method we
propose in the following takes advantage of these properties of Vα and uα and
exploits their relation.

Let r > 0 be some fixed parameter. We define the r-local mean of a vector
valued, essentially bounded function W ∈ L∞(Ω; IRn) at x ∈ Ω by

Mr(x; W )(x) := −

∫

Br(x)∩Ω

W (y) dy :=
1

Ln
(

Br(x) ∩ Ω
)

∫

Br(x)∩Ω

W (y) dy .

Here, Ln denotes the n-dimensional Lebesgue measure. In addition, we define
the r-local variation of W by

Σr(x; W )(x) :=
∣

∣W (x) − Mr(x; W )
∣

∣ . (4)

The definition of Σr directly implies that

∣

∣Σr(x; W )
∣

∣ ≤ 2 ess sup
{

|W (y)| : y ∈ Br(x) ∩ Ω
}

for almost every x ∈ Ω.
Applying the above inequality to the scaled solution

Wα(x) := Vα(x)/α(x)

of (3), one immediately sees that

0 ≤
∣

∣Σr(x; Wα)
∣

∣ ≤ 2 max
{

|Vα(y)|/α(y) : y ∈ Br(x) ∩ Ω
}

≤ 2 .

Moreover, the actual size of the value Σr(x; Wα) provides an indication of the
oscillation of the function uα near x: If Σr(x; Wα) is close to zero, then the
gradient ∇uα points in roughly the same direction on the whole set Br(x).
Conversely, a value above one implies that the orientation of ∇uα(x) vastly
differs from the majority of directions present in Br(x). See Figure 1 for an
example of a smoothed image with corresponding local variation of the dual
variable Vα.

In this manner, the function Σr(x; Wα) can serve as a local criterion for the
smoothness of the regularized function uα. If the finally desired smoothness is
not yet reached, that is, if Σr(x; Wα) is too large, it is necessary to increase the
local regularization parameter α(x). Conversely, if the function uα appears too
smooth, that is, Σr(x; Wα) is close to zero, then α(x) is decreased and a new
tentative solution uα is computed. This process of computing Σr(x; Wα) and
updating α is repeated until the update of uα becomes small enough.

In order to reach a uniform smoothness of the regularized image uα over its
whole domain, we propose to prescribe some target smoothness 0 < θ < 1. Then
one can compute a suitable update α̃ of α setting

α̃(x) = α(x)
(

θ + Σr(x; Wα)/2
)s

(5)



Fig. 1. Smoothed image (left) and corresponding function Σr (right). Bright pixel
values indicate a higher value of Σr.

for some parameter s > 0 determining the size of the update. Iteration of this
update will lead to a uniform smoothness Σr(x; Wα) ≈ 2(1 − θ). The choice
of the target smoothness should reflect the properties of the image one wants
to recover: A large parameter (θ ≥ 0.7) means that only the structures about
the size of r are of interest. Small values (θ ≈ 0.55) put more emphasis on the
structures of size smaller than r (see also Figure 4).

In order to avoid too rapid changes of the parameter α(x), it is necessary
smooth the update α̃ computed by means of (5). Also from a theoretical point
of view, this smoothing procedure is required for obtaining a continuous regu-
larization function α. We propose to simply replace the update α̃(x) by its local
mean value Mr(x; α̃). In this way, the average smoothness in the balls Br(x) will
be almost independent of x.

3 Edge Enhancement by Anisotropy

Having determined the size of the local regularization parameter α(x) by means
of the scaled dual variable Wα, it is in addition possible to use the distribution
of the values of Wα on the unit sphere for sharpening edges and, in particular,
thin ridges, which usually tend to get oversmoothed. To that end, instead of
applying isotropic regularization, we introduce an anisotropy the direction of
which is determined by the local covariance of Wα.

For R > 0 we define the IRn×n-valued function CovR(x; W ), the covariance
of W on BR(x) ∩ Ω, by defining its (i, j)-th component as

Cov
(i,j)
R (x; W ) := −

∫

BR(x)∩Ω

(

W (i)(y) − M
(i)
R (x; W )

)(

W (j)(y) − M
(j)
R (x; W )

)

dy .

(6)
Again using the property that Wα is proportional to ∇uα, one sees that the prin-
cipal component of CovR(x; Wα) indicates, up to sign, the prevailing direction
of ∇uα near x.



This dominant direction can be pronounced further by replacing the isotropic
bound |Vα(x)| ≤ α(x) in (3) by an anisotropic one defined by CovR(x; Wα). This
is achieved by minimizing J (V ) respecting the constraints V · ν = 0 on ∂Ω and

c(x)V (x)t CovR(x; Wα)V (x) ≤ 1 on Ω . (7)

Here, the scalar valued function c : Ω → IR>0 has to be chosen in such a way
that a similar amount of smoothing is reached as for isotropic regularization
with parameter α(x).

For determining a suitable size for c, note that the amount of smoothing
induced by the bound (7) can be estimated by the determinant of the matrix
c(x)CovR(x; Wα), which, for consistency with the constraint |V (x)| ≤ α(x),
should equal α(x)−2n. Thus one obtains for the function c the value

c(x) = α(x)−2 det
(

CovR(x; Wα)
)−1/n

.

We therefore propose an edge enhancement via solving the minimization
problem

J (V ) =

∫

Ω

(

div V (x) + f(x)
)2

dx → min ,

V (x)tA(x)V (x) ≤ 1 almost everywhere on Ω ,

V (x) · ν(x) = 0 almost everywhere on ∂Ω .

(8)

Here
A(x) = α(x)−2 det

(

CovR(x; Wα)
)−1/n

CovR(x; Wα) ,

and Wα = Vα/α, where Vα is the solution of (3). Denoting the solution of (8) by
VA and defining uA := f +div VA, we obtain an enhanced version of the isotropic
total variation minimizer uα.

4 Summary of the Algorithm

We now summarize the method developed in the previous sections for adaptive
denoising of a noisy image f ∈ L2(Ω).

Algorithm 1. Set k = 1, choose some initial regularization function α1 : Ω →
IR>0, a smoothness parameter 0 < θ < 1, some r > 0, R > 0, s > 0, and ε > 0.

1. Compute

Vk := argmin
{

J (V ) : |V (x)| ≤ αk(x) on Ω, V · ν = 0 on ∂Ω
}

.

2. Define Wk := Vk/αk and compute Σr(x; Wk) (see (4)).
3. If ‖Vk − Vk−1‖ < ε go to 5.
4. Compute

α̂k+1(x) := αk(x)
(

θ + Σr(x; Wα)/2
)s

and
αk+1(x) := Mr(x; α̂k+1) ,

increase k by one, and go to 1.



5. Compute CovR(x; Wk) (see (6)) and

A(x) := α(x)−2 det
(

CovR(x; Wk)
)−1/n

CovR(x; Wk) .

6. Compute

VA := arg min
{

J (V ) : V (x)tA(x)V (x) ≤ 1 on Ω, V · ν = 0 on ∂Ω
}

.

Define the regularized function uA := f + div VA.

In steps 1–4, only the regularization function α is determined. For this, it is
not necessary to compute the minimizers of J precisely. Instead, a reasonable
approximation of a minimizer is sufficient to provide a good update of α, at
least during the first iterations. In particular if an iterative method is used for
the minimization of J , the computation time can be improved by stopping the
iteration well before convergence is reached.

In the numerical examples below, the functions Vk and VA were computed
by alternating between gradient descent steps for the minimization of J and
projections of V on the sets

{

V : |V (x)| ≤ αk(x)
}

and
{

V : V (x)tA(x)V (x) ≤

1
}

, respectively. The function Vk−1 was used as initial guess for the computation
of Vk.

5 Examples

The algorithm presented in Section 4 is tested by means of two images. The first,
synthetic image shows a collection of ellipses and rectangles of different size and
intensity (see Figure 2, upper left). These clean data were distorted by normally
distributed random noise. In order to illustrate the capability of the algorithm
for dealing with varying noise level, the standard deviation of the random noise
was chosen to increase towards the right bottom of the image from about 10%
of the maximal intensities to 150% (see Figure 2, lower left).

The original image only consisting of simple geometric forms without any tex-
ture, it should be perfectly suited for total variation regularization. The changing
noise level within the distorted data, however, makes a uniform parameter choice
almost impossible: If the regularization parameter is chosen too small, then the
noise on the right hand side of the data is barely removed. In particular, the right
hand edges of the lower ellipses can hardly be recovered. On the other hand, a too
large regularization parameter leads to the disappearance of the small circle at
the left hand side of the image (see Figure 2, middle column). Only a very small
range of parameters removes the noise reasonably well while still preserving the
small scale structure—and even then the contrast deteriorates.

Figure 2, upper right, shows the smoothed image obtained with Algorithm 1.
Since the original image is very smooth, the smoothness parameter was chosen
rather large as θ = 0.85. The variance Σr was evaluated on balls with a radius of
3 pixels, the complete image measuring 256× 256 pixels. The lower right image
in Figure 2 shows the distribution of the finally chosen regularization function α.



Fig. 2. Left column: original and noisy image; the noise level increases to the right
bottom of the image. Middle column: denoising without parameter adaptation; either
small details are lost or the smoothing effects are partially insufficient. Right column,
upper row: denoised image for smoothness parameter θ = 0.85. Right column, lower
row: logarithm of the finally chosen regularization function α; the minima and maxima
of α differ by a factor of 12.

As expected, it increases to the right bottom, where more noise is present. Over
the whole image, the maxima and minima of α differ by a factor of 12.

One can see in the resulting image that the noise is efficiently removed. Also,
the shape of the two lower ellipses is reconstructed in a reasonable way, consid-
ering that rather more noise than signal is present in these regions. Moreover,
the small circle on the left is clearly visible, though some contrast was lost.

As a second test example, we consider the photographer image. In a first ex-
periment we add different levels of random noise (see Figure 3). The outcome of
the adaptive Algorithm 1 (right column) is compared with the solution of stan-
dard total variation regularization with constant parameter choice independent
of the noise level (middle column). The smoothness parameter for the adaptive
algorithm was chosen as θ = 0.60; the regularization parameter for the standard
algorithm was selected in such a way that the results for moderate noise level
(third row) are comparable.

The results show that, as expected, a constant regularization parameter only
yields good results for a very specific noise level. For stronger noise, almost no
smoothing is obtained, whereas the image is oversmoothed in case it is already
quite clean. In contrast, the adaptive algorithm yields comparable results for
different noise levels, and is also able to treat noise-free images (first row).



Fig. 3. Left column: image with Gaussian noise; the noise level increases with each
row (σ = 0, 30, 50, 100). Middle column: total variation denoised image with constant
parameter choice. The regularization parameter is kept the same for all images. Right
column: denoised images with adaptive parameter choice for a smoothness parameter
θ = 0.60.

In order to illustrate the effect of the smoothness parameter, we apply Algo-
rithm 1 to the noise-free photographer image and vary θ (see Figure 4). For a
value of θ = 0.55 mainly the grass and details of the camera are smoothed. As



Fig. 4. Influence of the smoothness parameter θ. First row: original image and
smoothed images with θ = 0.55 and θ = 0.60. Second row: smoothed images with
θ = 0.65, θ = 0.70, and θ = 0.80.

θ increases, more and more details are lost until only the large scale structures
in the image remain. Thus, the smoothness parameter works in some sense like
the regularization parameter of standard total variation regularization.

There is, however, a notable difference. In the standard method, the time
when structures in the image disappear depends on their scale, which is basically
the ratio between contrast, that is, the difference of the intensities of the structure
and the background, and the perimeter of the structure. As opposed to this, the
model presented here puts much less emphasis on the contrast. Low contrast
but distinct parts of the image tend to disappear much later than with uniform
regularization. Compare for instance the rightmost building in the images of
Figure 4 with the outcome of the standard method (Figure 3, first row, middle
image).

Finally, Table 1 compares the performance of our algorithm with uniform
total variation regularization and the adaptive method from [11]. The regular-
ization parameter for the comparison was chosen in such a way that the norm
of the residual equals the norm of the noise. At small noise levels, the texture
enhancing method [11] and even uniform regularization perform better. On the
other hand, our algorithm provides good results if much noise is present. Note
moreover that the here proposed method does not require a guess on the noise
level, whereas the other methods do.



Table 1. Comparison between standard TV regularization, the method proposed
in [11], and our method for different smoothness parameters. The table provides signal
to noise ratios for the photographer image with various levels of Gaussian noise added
(σ = 20, 30, 40, 50).

original uniform TV adaptive ([11]) θ = 0.55 θ = 0.60 θ = 0.65

9.47 14.63 15.63 15.30 14.73 13.71
6.31 12.13 13.35 13.28 13.46 12.84
3.86 10.05 11.59 11.47 12.45 12.18
1.93 8.38 10.11 10.00 11.54 11.51

6 Conclusion

We have introduced an algorithm for the local adaptation of the regularization
parameter in total variation regularization applied to the task of image denoising.
The main idea of the method is to base the parameter choice on the smoothness
of the output image, which is measured in terms of the variation of the direction
of its gradient. This variation can be obtained when employing a dual method for
the actual minimization of the total variation regularization functional. Start-
ing from an initial guess of the regularization function, the proposed algorithm
consecutively computes the corresponding minimizer of the total variation func-
tional and updates the regularization function depending on the smoothness of
the update. The iteration stops when the update is sufficiently small.

As a post-processing step, we propose to apply an anisotropic regularization
method intended to sharpen edges. Again, the regularization is determined by
the dual variable. This anisotropic regularization step reduces the contrast loss
due to isotropic smoothing and, in particular, is suited for the enhancement of
ridges.

The examples presented in Section 5 indicate the suitability of the proposed
method for denoising images with unknown, varying noise levels. In particular,
they show its ability to provide an estimate for the amount of smoothing required
to obtain a certain smoothness of the output.
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