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Abstract. This work is concerned with the detection of geometries in 2D image
data using statistical a-priori knowledge. We consider a Riemannian manifold of
parametric shapes and a set of known training shapes in this metric space. From
this data we compute a mean shape and the principal directions of the variances
on the manifold. We use these results to regularize an edge-based segmentation
functional and propose a simple Monte Carlo optimization technique which adapts
itself to the statistical data. This technique is applied to the automatic detection of
cells in biologic image data.
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1 INTRODUCTION

The idea of deriving statistical knowledge from training data and deploying this
information for detecting objects in image data has been considered in [1, 2, 3, 4, 5].
In these works the authors use either level set and or parametric representations
of shapes and combine their statistics with various segmentation techniques such
as geodesic active contours [6] and Mumford-Shah segmentation [7]. We are con-
cerned with the extension of this idea to more general shape spaces. This leads to
the statistical analysis on Riemannian manifolds and the derivation of statistically
motivated segmentation techniques. We finally present an example which illustrates
that the knowledge obtained from training data not only defines a suitable regular-
ization term for the segmentation energy but can also be intelligently incorporated
in algorithms used to minimize the regularization functional.
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Figure 1: An element of the shape space M . The shape parameter p ∈M (dark blue skeleton and
light blue atoms) is mapped to the shape ψ(p) (red curve).

2 SHAPE MODEL

In this work the term shape space refers to a finite-dimensional parameter mani-
fold M . Each shape parameter p ∈ M defines the shape ψ(p), which is a piecewise
smooth curve without selfintersections.

The actual shape model we consider in applications is based on the medial axis
representation and was developed in [8]. There the medial axis transform of shapes
is parameterized instead of the actual boundary curve. In the special application
presented in this paper we consider the shape space M = R

2 × R
2
+ × (S1 × R +).

A shape parameter p ∈ M consists of a position, two positive radii and a vector
(represented in polar coordinates). This data is mapped to the dark blue skeleton of
the shape and the light blue atoms in Figure 1 on the left. The corresponding shape
ψ(p) is the red outline on right which interpolates the red points on the atoms. The
skeleton can be interpreted as an approximation of the medial axis of the red shape.
The atoms are the maximal circles inside the shape, centered at the vertices of the
skeleton. This concept can be extended to more complex skeletons and a larger
number of atoms.

Obviously M is the direct product of Riemannian manifolds. On R
2 we assume

the Euclidean metric, on S1 the metric induced by the embedding of S1 into R
2 and

on R + the unique (up to scalar multiplication) metric on R + which is invariant
with respect to multiplication. From the metrics on each of its factors we derive the
canonical product metric on M and denote it as 〈 · , · 〉. That is, the inner product
of two tangent vectors V,W ∈ TpM , p ∈M , is given by 〈V,W 〉p.

For p ∈ M , this metric defines a chart, which maps a neighborhood p ∈ V⊆M

to the tangent space TpM : For q ∈ V let V ∈ TpM be such, that the geodesic γ
defined by γ(0) = p and γ̇(0) = V satisfies γ(1) = q. We call V the logarithm of q
in p, denoted as Logp(q) = V . The inverse of Logp is called the exponential map in
p, denoted as Expp. For more details we refer e.g. to [9].

3 SHAPE STATISTICS

This section is devoted to the statistical analysis of data p1, . . . , pS on a shape
manifold M . The basic idea of this analysis goes back to the Principal Geodesic
Analysis (PGA) on manifolds proposed in [10]. This work generalizes the idea of
the Principal Component Analysis (PCA) on vector spaces. The PCA of a given set
of data points in a vector space V is an orthonormal basis of V such that the first
basis vector points into the direction of the largest variance of the data, the second
one into the direction of the second-largest variance and so on. Thus, the PCA can
also be interpreted as sequence of orthogonal linear subspaces Vn ⊆V given by the
linear hull of the n-th basis vector. On manifolds the concept of linear subspaces is
replaced by geodesic submanifolds. These are submanifolds of the manifold M such
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Figure 2: Left: The training data (red) on the shape manifold M and their logarithms on TµM .
On TµM the principal components V1 and V2 of the projected training data are computed (blue).
Right: The approximated principal geodesics are obtained by mapping V1 and V2 back to M by
the exponential map.

that geodesics in the submanifolds are also geodesic in M . In [10] the mean and
principal geodesic submanifolds are defined intrinsically. Here, we proceed directly
with the definition of the approximated PGA:

Definition 3.1. Assume M and data points p1, . . . , pS ∈ M as above and p ∈M

(sufficiently close to the data points). We define the approximated mean µ of
p1, . . . , pS as

µ := Expp

( 1

S

S
∑

s=1

Logp(ps)
)

. (1)

Let E1, . . . , EN be an orthonormal basis of TµM , Logµ(ps) = wi
sEi, 1 ≤ s ≤ S, and

Σ =
1

S

S
∑

s=1

wsw
t
s ∈ S(N) . (2)

We call (µ, Σ) the approximated Principal Geodesic Analysis (approximated PGA)
of the data p1, . . . , pS with respect to the basis E1, . . . , EN .

In other words, the approximated PGA is obtained by projecting the data points
onto the tangent space using the logarithmic map and then performing a PCA on the
tangent space. An illustrative interpretation of this procedure is given in Figure 2.

4 SEGMENTATION FUNCTIONAL AND REGULARIZATION

4.1 The Mahalanobis distance on M

For a given a vector µ ∈ R
N and a symmetric and positive definite matrix

Σ ∈ S(N) the Mahalanobis distance dΣ(x, y) of two points x, y ∈ R
N is defined by

d2
Σ(x, y) = (x− y)tΣ−1(x− y). Usually µ and Σ correspond to the mean and the

covariance of normally distributed data on R
N .

Our goal is the extension of the above definition to Riemannian manifolds. We
assume a fixed µ ∈ M , a fixed orthonormal basis E1, . . . , EN of TµM with respect
to the metric 〈 · , · 〉µ and a symmetric, positive definite matrix Σ ∈ S(N). This
matrix defines an inner product 〈 · , · 〉Σ on TµM by 〈viEi, w

iEi〉Σ = vtΣ−1w for two
tangent vectors viEi and wiEi in TµM .

Denote the set of all points in M which can be reached by a uniquely determined
geodesic starting in µ as U. As in [11] we transport the frame E1, . . . , EN to any
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point of p ∈ U along the corresponding geodesic. Thus, we have frames En(p),
1 ≤ n ≤ N , p ∈ U. Then we define the Mahalanobis metric 〈 · , · 〉p,µ,Σ with respect
to µ and Σ by

〈

viEi(p), w
i(p)Ei(p)

〉

p,µ,Σ
= vtΣ−1w , (3)

for two tangent vectors viEi(p) and wiEi(p) in TpM .
The Mahalanobis distance dM,µ,Σ from p to q on U with respect to µ and Σ is

given by

dM,µ,Σ(p, q) = inf
γ:[0,1]→U

γ(0)=p
γ(1)=q

∫ 1

0

〈γ̇, γ̇〉
1

2

p,µ,Σ dt , (4)

where γ is a piecewise differentiable curve. Note that the Mahalanobis distance on
manifolds depends not only on Σ but also on the mean µ. This is not the case in
the vector space setting.

4.2 The Regularization Functional

For an edge based segmentation of a 2D image u : R
2 ⊇ Ω → R we consider the

following segmentation energy

Iα(p) = −

∫

γ

∣

∣∇u
(

ψ(p)(τ)
)
∣

∣dτ + αd2
M,µ,Σ(µ, p) , (5)

which maps a shape parameter p on the sum of the gradient of u along the shape
boundary (Snakes energy, [12]) and the Mahalanobis distance from p to µ. Here
α > 0 is the regularization parameter. The parameters µ and Σ are determined by
performing an approximated PGA on manually segmented training data as described
in the previous section. To detect the shape ψ(p) on u we minimize (5) over U. In
case U = M the existence of a minimizer of Iα has been proven [11].

5 IMPLEMENTATION AND RESULTS

To detect multiple shapes (of the same type) in image data we generalize (5) to

(p1, . . . , pR) 7→

R
∑

r=1

Iα(pr) . (6)

for a fixed number R of shapes. The idea is to minimize (6) subject to the constraint
that the shapes ψ(pr), 1 ≤ r ≤ R, do not overlap each other. We applied this idea to
the detection of cells in microscope images as in Figure 3. The approximated PGA
for the regularization term in Iα was computed from the 18 training shapes in the
upper left image. For the minimization we used the following heuristic algorithm:

1. Initialize a vector c1 = . . . = cR = C for some C > 0 and a vector of shape
parameters (p1, . . . , pR) ∈MR.

2. Choose a random shape p′ ∈ BC := {p ∈M : dM,µ,Σ(µ, p) ≤ C}. If Iα(p′) < cr
for an index 1 ≤ r ≤ R and ψ(p′) does not overlap with any of the shapes
ψ(p1), . . . , ψ(pR), replace pr by p′ and set cr = Iα(p′). If it overlaps with the
shapes ψ(pr1

), . . . , ψ(prk
) and Iα(p′) < min(cr1

, . . . crk
), then replace pr1

by p′

and set cr1
= Iα(p′) and cr2

= . . . = crk
= C, respectively. Repeat this step.
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Figure 3: Upper left image: Expert segmentation of 18 cells. Upper right and lower row: Automatic
detection of cells.

In simple words, we generate random shape parameters and try to improve the
current segmentation by replacing one of the shapes defined by (p1, . . . , pR) by the
newly generated parameters. This gradually improves the segmentation of the result.
This algorithm is far from being efficient and in fact does not necessarily lead to the
best result, but it is able to demonstrate two important issues:

1. We do not have to evaluate the gradient of Iα in this example. Moreover the
danger of being trapped at local minima is much smaller than with gradient
descent techniques. This means that we are able to detect different cells even if
they are clustered as in our examples. An active contour algorithm [6] can not
handle this situation, since features inside the clusters have to be considered
for a correct segmentation.

2. The first property is a characteristic of Monte Carlo optimization techniques
in general. However, it is impossible to randomly sample the entire shape
space M . One has to agree on some subset of “probable” or “meaningful”
shapes. In our case this selection is canonically given by choosing shapes close
to the mean shape and varying them according to the training data. In other
words, by choosing shapes in BC we generate only shapes, which we expect to
actually appear in the image data, as candidates for a correct segmentation.
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Schnörr. Diffusion snakes: Introducing statistical shape knowledge into the
mumford-shah functional. Int. J. Comp. Vis., 50(3):295–313, 2002.

[2] Yunmei Chen, Hemant D. Tagare, Sheshadri Thiruvenkadam, Feng Huang,
David Wilson, Kaundinya S. Gopinath, Richard W. Briggs, and Edward A.
Geiser. Using prior shapes in geometric active contours in a variational frame-
work. Int. J. Comp. Vis., 50(3):315–328, 2002.

[3] Micheal E. Leventon, W. Eric L. Grimson, and Olivier Faugeras. Statistical
shape influence in geodesic active contours. In IEEE Conference on Computer
Vision and Pattern Recognition, volume 1, pages 316–323, June 2001.

[4] Mikael Rousson and Nikos Paragios. Shape priors for level set representations.
In Anders Heyden, Gunnar Sparr, Mads Nielsen, and Peter Johansen, editors,
Computer Vision - ECCV 2002 : 7th European Conference on Computer Vi-
sion, Copenhagen, Denmark, May 28-31, 2002. Proceedings, Part II, volume
2351 of Lect. Notes Comp. Sci., pages 78–92. Springer, 2002.

[5] Andy Tsai, Anthony Yezzi, Clare Tempany, Dewey Tucker, Ayres Fan,
W. Eric L. Grimson, and Alan Willsky. A shape-based approach to the segmen-
tation of medical imagery using level sets. IEEE Trans. Med. Imag., 22(2):137–
154, 2003.

[6] Vicent Caselles, Ron Kimmel, and Guillermo Sapiro. Geodesic active contours.
Int. J. Comp. Vis., 22(1):61–79, 1997.

[7] David Mumford and Jayant Shah. Optimal approximations by piecewise smooth
functions and associated variational problems. Comm. Pur. Appl. Math.,
42(4):577–684, 1989.

[8] Sarang Joshi, Stephen Pizer, P. Thomas Fletcher, Paul Yushkevich, Andrew
Thall, and J. S. Marron. Multiscale deformable model segmentation and sta-
tistical shape analysis using medial descriptions. IEEE Trans. Med. Imag.,
21(5):538–550, 2002.

[9] William M. Boothby. An Introduction to Differentiable Manifolds and Rieman-
nian Geometry, volume 63 of Pure and Applied Mathematics. Academic Press,
New York, 1975.

[10] P. Thomas Fletcher, Conglin Lu, and Sarang Joshi. Statistics of shape via
principal geodesic analysis on lie groups. In Computer Vision and Pattern
Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on,
volume 1, pages 95–101, 2003.

[11] Matthias Fuchs and Otmar Scherzer. Regularized reconstruction of shapes with
statistical a priori knowledge. Technical Report 51, FSP 092, May 2007.

[12] Micheal Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes active contour
models. Int. J. Comp. Vis., 1(4):321–331, 1988.


