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ENERGY TRAINING FOR VARIATIONAL SHAPE DETECTION

MATTHIAS FUCHS AND SAMUEL GERBER

ABSTRACT. This paper presents a novel variational formulation ipocating
statistical knowledge to detect shapes in images. We peofgoBain an energy
based on joint shape and feature statistics inferred framitig data. Variational
approaches to shape detection traditionally involve easrepnsisting of a fea-
ture term and a regularization term. The feature term fotivesletected object
to be optimal with respect to image properties such as cemipattern or edges
whereas the regularization term stabilizes the shape afifget. Our trained en-
ergy does not rely on these two separate terms, hence aheid®n-trivial task
of balancing them properly. This enables us to incorporaieemomplex image
features while still relying on a moderate number of tragrsamples. Shape de-
tection in microscope images and tracking of moving objeatsluttered back-
ground illustrate the capability of the proposed methodutmmatically adapt
itself to different image features.

1. INTRODUCTION

Variational approaches to detect shapes in images are bagedctionals which
map shape geometries to an energy that reflects how well Yiea ghape corre-
sponds to the image features. Mumford and Shah [12] propsase the mean
intensity of the region defined by the shape compared to teesity of the back-
ground as such a feature. This idea can be extended to regfigtssnogeneous
patterns as in Chan and Ve&é [1]. A second important feateréha edges in im-
ages. Kass et al.][9] proposed the Snakes approach to fitctotbe edges of an
image. Both formulations require an additional reguldi@aterm in the energy
functional to ensure that the corresponding variationablem is well-posed. This
term measures the regularity of the boundary of the deteetgdn.

These traditional methods have difficulties to correctlyedeshapes that are
partially occluded, on cluttered image background, or oages corrupted by too
much noise. A common solution to this problem is the use opstiors as in
Chen et al.[[2], Cremers et &l [4], Fang and Chan [5], Gasthadl (6], Leventon
et al. [11], Rousson and Paragiosi[14] and Tsai et’al. [16hp8prior methods
use training data to compute shape statistics. Thesetisitiefine a likelihood
functional that maps a shape to its probability w.r.t.thepshstatistics and replaces
the regularization term in the traditional variationalrfarlation. This regulariza-
tion ensures that only shapes which seem to be “reasonalille’r@spect to the
training statistics are detected.

A common property of approaches based on shape priors ithéhatequire the
choice of a weighting parameter which determines the infleef the shape statis-
tics. A high weight stabilizes the shape detection but mighter it impossible to
detect shapes which are very different from the trainingpebdbut still correct),
whereas a too low weight introduces the danger of gettinghg/mresults in case

of noisy, cluttered or occluded image data. The correctaghof the parameter is
1
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not trivial and application dependent. Multiple (possibige consuming) tests are
often necessary to validate the weighting parameter.

The cited approaches further limit themselves to the usenbf one kind of
image feature, e.g.image contrastedges. A combination of multiple features
would again require each of them to be weighted with respettiet other and thus
introduce even more parameters.

In this paper we propose an approach which does not reqarexiblicit choice
of a regularization parameter. Similar to the above workslape priors, we train
statistics on annotated data. In contrast of limiting tlaistics to shapes only, we
incorporate the corresponding image features from theitrgidata. This allows
us to learn the full-fledged segmentation energy and notandgularization term.
Furthermore, we avoid the choice of regularization paramset Our method is
capable of incorporating an arbitrary number of differeinds of image features.
The relative importance of the various features is autarabyi learned from the
training data. |.e.the trained energy gives high weightaimiinations of features
it learned to be representative for a class of objects and doeconsider features
which vary a lot across the training data. The computatieffakt to evaluate the
resulting energy for a given shape is comparable to the rdstheentioned above
and the number of required training samples is very moderate

The idea of learning an energy from multi-dimensional tragndata and leave
the work of selecting important features to the learningcpss is similar to ma-
chine learning approaches acting on raw pixel values of @daja (cf. LeCun et
al. |10, and references therein]). In comparison to thestades our approach re-
quires significantly less training because we use shapelkdge and intelligently
computed image features. Another approach related to caspvoposed by Cre-
mers et al.[[B]. There, the authors learn a kernel densitgdan shape and image
features. In contrast to our work, they focus on level setasgntations of shapes
and the intensity distribution within shapes. They alsostaer the distributions of
the shapes and the image features separately, whereasatvhéna jointly.

The outline of this paper is as follows. In the next sectionimieoduce the
shape-to-feature map which, for a given image, maps a shape to a vector of image
features determined by this shape. The shape-to-featupeisnssed to learn an
energy based on shape and image feature statistics. Fastihiésrin this paper we
concentrated on features which can be expressed as bountzgsals along the
shape outline. Sectidn 3 is dedicated to the training of anggrfor a given image,
a given set of training samples and a given shape-to-feataye \We present two
different kinds of energies which are based on estimatiegpdrameters of a nor-
mal distribution and kernel density estimation respeftivén addition, we state
the variational problem based on these energies.

The last part is devoted to experimental results. We firstiegymur method
to the detection of objects in biologic microscope imagdsesE results were ob-
tained by gradient and intensity based image featuresttegetith normal density
estimates. In a second application we tracked moving abje@ movie sequence.
In these experiments we use gradient information and iitjehistogram data of
each color channel in combination with the kernel densitgrgm We conclude
with a summary of our key contributions and an outlook onreitork.

1.1. Notation and preliminaries. In the following we always assume Q — R¢
to be a (possibly vector valued) image defined on a 2-dimaabkiomainQ C R2.
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If d = 1 thenu can be interpreted as a gray-scale image. a¢ a closed planar
curve inQ without self-intersections, i.g: St — Q, injective. We assumg to
be piecewise differentiable. We refer yaas ashape. The shape is completely
determined by @hape parameter p € R™. This is denoted by/(p). In our case
p parametrizes the medial axis of the shapes, but it might dsbee list of the
coefficients of a B-spline curve or any other kind of shapapeatrization.

Finally note that our work is presented for the planar cadg bat generalizes
to higher dimension very easily.

2. SHAPE-TO-FEATURE MAP

We call a magF,
(1) F:RT"—=R", p—F¥p),

which maps a shape parameter to a vector of features of thgeima shape-
to-feature map. l.eF depends only on the shap€p) but not onp itself. It is
important to note, though, th&tdoes depend on the imageTo simplify notation
and because we choseto be fixed throughout the paper we do not denote this
dependence.

In this paper we concentrate on a subclass of shape-taeataps, which is
characterized by a special form Bf In particular, we considef to be the com-
positionF = GoH, whereG : RK — R"andH : R™ — RK. We assume that only
H depends on the imagewhereass is independent of the image and the shape.
Each of the components;, 1 <i <k, of H should have one of the following forms:

@) Hi(p) = /a;(u)ds or Hi(p):/bi(u)-dn,
y(p) y(p)

wherea;(u) : Q — R, bj(u) : Q — R? andn denotes the outer unit normal pfp).
l.e.we assume each componentrbfo be either the integral of a scalar function
along the shape boundary or the integral of a vector fieldgiba same boundary.
This construction enables us to evaluate complex imagertesaand still give good
estimates on the complexity of an evaluatiorFdbr a given shap(p). Because
ai(u) andbj(u) depend only on the image but not on the shapg(p) we can
precompute a discretized version of them. The computafi¢h (@) then involves

¢ the computation of/(p), and
¢ the evaluation of a 1-dimensional boundary integral.

For accordingly chosen functiorg(u) it is possible to evaluate a wide range
of features such as intensity, histogram data and gradrotmation along the
shape boundary. By the use of the divergence theorem, tagrattoverb;(u)
enables us to compute the same values over the régiphC Q inside a given
shapey(p). Assume a scalar functiag(u) which we want to integrate ovér(p).
We first computeb; (u) such thatd - bj(u) = ¢j(u). This equation constitutes an
underdetermined system of partial differential equatifomdy; which is trivial to
solve for a given imaga. Then

@3) /ci(u)dx: /bi(u)-dn.
r(p) y(p)

Fora(u) = 1 orci(u) = 1 the integrals[{2) evaluate to the length of the boundary
of y(p) and its volume, respectively.
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FIGURE 1. Left: The skeleton and the maximal circles of this
cross are parametrized iy The outliney(p) is computed by
interpolating the points on the circleRight: Medial axis shape
model for a human silhouette.

The mapG is used to combine the values of the integtdid4o get more mean-
ingful features. In our examples the functi@normalizes the integrals along the
boundaryy(p) and the regiori (p) w.r.t.the length ofy(p) and area of (p), re-
spectively. It is further possible to write the simplified Mtord-Shah functional
[12,[1] and the Snake§l[9] functional in the foffn= G o H with H being an ex-
pression of integrals as ifl(2).

2.1. Shape representation. The shape model we use is based on the idea of pa-
rameterizing a shape by constructing a discrete approomat its medial axis

as proposed by Joshi et dll [8]. In our case, a shape paramgiarametrizes

a tree-like skeleton consisting of nodes, edges connettimghodes, and circles

at the nodes. These circles are supposed to be maximalscwitlein the shape,
i.e.they touch the shape in at least two points. In more ldéta components gb
determine

e the position and rotation of the skeleton,
e the lengths and the angles of the edges of the skeleton, and
e the radii of maximal circles centered at the nodes of theet&gl

From this data we compute points on the maximal circles atetpolate them
tangentially with a B-spline curve. Two different implentations of this idea
(corresponding to the two applications in this paper) dusstilated in Figuréll.
Note that the skeleton does not necessarily correspondeteetti medial axis of
the resulting shape. Still, the underlying idea of the mleakés results in a much
more natural interpretation of the different componenta ehape parameter than
itis e.g.the case for a vector of B-spline coefficients.

Because we will explicitly refer to the position and rotatiof shapes later on,
we decide that the first three componentpaletermine these properties, i.e.

4) p=( ptp%p® , Pt pMT.
—— N——

position, rotation skeleton, radii

3. ENERGY TRAINING

The main contribution of this paper is the computation of mergyE for given
training shape parameteps, ..., pn and a shape-to-feature mepIn this section
we will introduce the variational form of the shape detetfwoblem based on this
energy and explain two different ways to train energies dbasenormal density
estimation and kernel density estimation.
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The energyE : R™ — [0,c0) maps an unseen shape parameten a non-
negative value which determines how wglp) fits on the image considering shape
and image properties learned from the training shapes. |SalaksE(p) corre-
spond to a good match. Hence, the shape detection probleimyi# shape can be
written as

(5) p = argmin,.p E(p),

whereD C R™. The domainD constrains the above variational problem. In all
applications we chosb such that only shapes on the image donfaiare consid-
ered. We further can adapt such that shapes close to training shapes or already
detected shapes on the same image are not considered imih@zation problem.

In the following we explain two different approaches to cangE. As men-
tioned before we assumeto be a fixed image. Furthermorpy,..., py are the
parameters of manually determined training shapes onrttsige. This means that
we expect the shapagp:),...,y(pn) to match objects om. Finally letF be a
feature map fou. Then, for a given shape paramepemwe define itshape-feature
vector q(p) by setting

(6) ap) = (p*,....pP™Fu(p).....Fa(p) " € RM,

whereM := m+n— 3. In other wordsg(p) consists of the features for the shape
determined byp and the shape parametgrexcluding position and rotation. We
further denote the shape-feature vectors of the trainitg glaasq := q(pi), 1 <
i <N.

In this paper we consider energies of the form

(7 E(p) = —logf(q(p)),

wheref is a probability density o™ and depends on the training dga. . ., px.
This formulation translates the energy learning into a igrestimation problem.
For our experiments we consider a parametric and a non-gaianapproach to
estimate the densitf(q).

It is worth noting that both versions are invariant to saglif single components
of the shape-feature vector. This is important as any depeeion scale would
implicitly introduce a regularization parameter which iaetly what we want to
avoid.

3.1. Normal density estimation. In this section we assunteto be normally dis-
tributed with density function

(8) f(q) = (2m) M2 det(s) Y2 g 2@ 1= ok

with 4 € RM andX a symmetric and positive definitd x M-matrix. Assuming
the shape-feature vectors of the training data to be inakgely and identically
distributed w.r.tf we compute maximum-likelihood estimators of the paranseter
Y andz:

) p=

(10) 5=
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By (@) the energ)E of a given shape parametpiis then

(11) E(p) O (a(p) — )" = (a(p) — 1)

There exist several interpretations of the above expnesgtor one, it equals the
Mahalanobis distance betweenand u w.r.t.the covarianc&. Also, it can be
interpreted as the squared norm of the coefficientg wir.t.the principal compo-
nent analysis of the training shape-feature vectors. laighér important to note
that [I1) withu andZ as in [9) and[{T0) is invariant under linear transformatiobn o
g. In particular, rescaling single components of the shapéufe vector does not
changekE.

3.2. Kernel density estimation. The parametric approach in Sectfonl3.1 puts lim-
itations on the range of probability densities we are ablestomate properly and
therefore on the type of shape distributions we can suadéssfetect. We use a
kernel density estimator with a Gaussian kernel yieldirgdénsity function:

N
(12) f(q) = (2m)~M2detz) 2% Zje—%m—qul(q—qi).

|=
This leaves the problem of selecting an appropriate keridthywa task which is
also known as bandwidth or window width selectibnl [15]. Was approaches have
been proposed and there is no single optimal solution intipeacFor our experi-
ments we set the variance to the diagonal mdirix diag(o?, ..., 05) € RM*M,
We chose the diagonal entries 0o be the average of the squared pairwise dis-
tances of the corresponding components of the trainingesfegiure vectors and
then scaled the whole matrix by a constant O:

N N
2 2a

- k _ gk)2

Since we have a small number of training samples wersetl0 to avoid a highly
peaked energy at the training locations. The resultingggrierof a shape param-
eterpis then

N
(14) E(p) O —log Zbe—(Q(p)—qi)TZ*l(Q(p)—qi),
i=

Due to the specific choice of the covariance makiin ([I3), the energy{14) is
invariant to scaling of the individual components of thepsiéeature vector. The
energy as formulated ifi.{l14) allows to model complex ensrgiethe cost of in-
creased computational effort (for large amounts of trgmiata) as well as the
problem of selecting an appropriate kernel width.

4, RESULTS

We applied the proposed method to two kinds of image data. fif$teappli-
cation is concerned with the detection of shapes in micqpsdémage data. We
manually annotated some of the objects on a given image aodhatically de-
tected the remaining ones by minimizing the energy learneah the annotated
data. In the second application, we annotated the shape afkingg human on a
couple of consecutive frames of a movie and tracked the samain silhouette in
the subsequent frames. In the first example we used an enesgd bn the normal
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FIGURE 2. Microscope image (512 512 pixels) of yeast cells.
Left: Manually annotated cellsRight: The training shapes and
the detected cells.

distribution estimation as detailed in Sectfon] 3.1, wheieahe tracking example
we used kernel density estimation (Secfiad 3.2).

4.1. Shape detection in microscope images. This section is concerned with the
detection of similar objects in gray-scale microscope iesad he data in Figuid 2
involves two major challenges. The cells on the image fornugehcluster and
it is difficult to separate them with traditional methods. dddition, the shadow-
like features on each cell cause extra edge informatioreicdiis which can not be
removed by smoothing. The objects in Figlre 3 are more gisatlapart from each
other, but the quality of their appearance varies more thahe first examples.

We computed the same feature map for both images. First, wetked the
images with a 2-pixel-wide Gaussian kernel, denoting tiselteasu,. Then we
definedF by

fy(p) |Oug | ds
Jy(puds
(15) F(D)=| fypu’ds
§r(p) udx
r(p) U” X

Here, ¢, dsand ¢, dx denote the integrals ove(p) andl" (p) normalized by
the length ofy(p) and the area df (p) respectively. In a nutshell, we compute the
normalized values of the absolute values of the image gneledong the bound-
ary and the normalized values of the intensities and theit firoment along the
boundary and inside the shape. Note that aflin (3) the latterirtegrals can
be transformed into a boundary integral of a vector field.sTdiso holds for the
computation of the area &f(p).

We computed the training shape-feature vectars..,qy from the manually
annotated object®y = 31 andN = 75 in Figurd2 and Figurld 3, respectively. From
these training sets we estimate@ndz as in [9) and[{Tl0) to define the enerfyl(11).
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FIGURE 3. Microscope image (15361686 pixels) of a parame-
cium with cilia (a type of cell organelles).eft: Manually anno-
tated cilia.Right: The training shapes and the detected cilia.

The solution of [[b) was done iteratively. We chose the probifdmainD such
that only shapes on the imageare considered and further removed all parameters
from D which corresponded to shapes which overlap with the trgislmapes. By
"overlapping shapes” we mean shapes whose common areavis styme thresh-
old (50 common pixels in Figuld 2 and 150 pixels in Fiddre 3).

To find multiple shapes in the image we used Algorifhn} 4.1.inmpée words,
the algorithm generates random shapes and tries to impheveurrent detection
result p1,..., pm by successively replacing previously detected shapes neitin
ones.

Algorithm 1 Detection of multiple shapes

chooseM random shape paramet€s, ..., pu)
G:=E(p),1<i<M
repeat
choose a random shape paramegter
if E(p') < ¢ for some 1< i < M then
if y(p') does not overlap with any of the shapég;),...,y(pm) then
pi := p andc :=E(p')
ese if y(p') overlaps withy(pi,),...,y(pi) and E(p’) < min(ci,,...G)
then
pi, 1= p’ andg;, := E(p’)
choosep;,, ... pi, randomly
G, =E(p;),2<j<Kk
end if
end if
until (p1,..., pm) Stop improving significantly

In the algorithm, by the random choice of a shape paranpeter mean selecting
p € D as follows:



ENERGY TRAINING FOR VARIATIONAL SHAPE DETECTION 9

e The position(pt, p?) and the rotationp® are uniformly sampled on the
image domairQ) and in the interval—r, 11}, respectively.

e We compute the meap,y and the covariance matrixy, of the com-
ponents(p?,...,pM), 1 <i <N, of the training data. Then we sample
(p,..., p™) from the multivariate normal distribution with meamg and
variance24:u.

The result of the above selection is acceptep ¢ D. Otherwise a new candidate
pis sampled.

We choseM larger than the expected number of shapes in the image. After
stopping the algorithm we manually estimated a threslegld- O such that the
shapesy(p;) with E(p;) < cp, 1 <i < M, represented usable results. In many
applications, the manual selectionafdoes not really pose a problem, because it
is doneafter the algorithm is run. l.e.changes @f can be visualized in real-time.
Furthermore, techniques to estimatefrom the distribution of the final energies
G, 1<i <M, could be employed.

We chose this approach because it effectively demonstizesapability of the
E to detect shapes from learned shape and image features.ticGaigerithms
or the combination of genetic and gradient based approacig® significantly
speed up the minimization process.

For this work we did not do any further investigations on raléive stopping
criteria for the algorithm but ran it until the result stoge improve. An analysis
of how the number of random samples, i.e.the number of itersit compares to
the quality of the result requires a meaningful way to measoe usefulness of a
detection result and is beyond the scope of this work.

4.2. Tracking. The tracking example uses frames 33 through 100 fronwtik-
ing straight sequenﬂa We annotated the walking person from frame 33 to frame
78. The task is to track the target person through the renminames. To avoid
the technicalities of handling multiple shape-to-featmmaps we define the image
u as the horizontal concatenation of the 125 frames into desingage. In this
example we are dealing with color images and refer witto the j channel ofu.

Note that the method is not specifically tuned for trackinguses only statisti-
cal knowledge from the training shapes. The silhouette ®pirson to be tracked
varies significantly over one walking cycle.

We defined the shape-to-feature nigjp) for u as the values of the normalized
K-bin histograms over the shape boundgfp) and the are& (p) inside the shape
w.r.t.intensity and gradient magnitude for each chanmélu. Formally, we denote
for a setA, a functionv: A— R and 1< k<K

ha(v, k) = value of thek-th bin of the normalized

(o) K-bin histogram ofv overA.

Then we set
V(p)(u ) fori=4(3k+j—4)+

17) F(p) = V(p)(\DUo| k) fori = 43K+ j—4) +
hr(p) (U!,K) fori = 4(3k+ | —4) +
hr(p (10U |, k) fori=4(3k+j—4) +

lhttp://www.nada.kth.se/ hedvig/data.html
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FIGURE 4. Top: 6 frames with manually annotated shapes from
the training set. Bottom: Detected shapes in 6 of the tracked
frames.

for l<k<K,1<j<3and 1<i<12K. Here,us; denotes the image after
convolution with a 2-pixel-wide Gaussian kernel. In our esiments we se = 5.

We then defined the ener@yas in [1#) using the shape-feature vectrs. ., gss
of the annotated shapes in the frames 33 through 78. Forttiang we proceeded
as in AlgorithnZ.2.

Algorithm 2 Tracking

po = shape parameters of the last annotated frame
for i = 1 to number of unseen framds
pi = pi_1 shifted to the next frame
c=E(p)
for number of sampledo
choosep’ randomly at locatiorp;_; shifted to next frame
if E(p) <cthen

pi=p
c=E(p)
end if
end for
end for

In the algorithm, the random selection of the sanmglan thei-th frame is done
as follows:

e We setp’ to pi_; and then offset the position @f by the frame width to
move it to the next frame. We did not sample the rotational mament but
kept it fixed during training and tracking.

e The remaining components pfwere chosen as in Sectibnk.1, i.e.we sam-
pled them from thé Lia:m, Z4:v )-normal distribution, whereyy andZam
are the mean and the covariance of the upper components trathimg
shape parameters.
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FIGURE 5. Tracked shape with a Diplodocus occluding the track-
ing target. The visible parts of the human are accuratelgated.

Figurel4 shows 6 of the 36 manually annotated frames fronréngiig set and
6 frames with tracked shapes. The proposed method is ablerform tracking
with a small amount of training data (36 samples).

In Figure[® we manually overlaid an image of a dinosaur on thenés of
the movie sequence. We trained the energy as before on thieadriraining set
(frames 33 through 78 without the added dinosaur) and tlaeked in the images
with the dinosaur. This demonstrates the robustness of ibyoped method to
occlusions.

5. CONCLUSION AND FUTURE DIRECTIONS

We suggest a novel variational formulation to shape detediased on training
a task-specific segmentation energy. The underlying madtieah model of our
method is very general and can be easily used for a wide raihgpplications.
The proposed energy learns the significant shape and imatyede from training
shapes and is able to distinguish them from non-relevatiries: This is illustrated
in two different applications.

A major advantage over existing approaches is the absengeegfularization
term. This avoids the often difficult task of choosing theimpt regularization for
a given application.

On the other hand, because we incorporate shape priors lgrmhra meaning-
ful selection of image features, our approach requiresfs fraining samples than
methods solely relying on learning pixel valugsi[13] andttianing is computa-
tionally cheap.

In future we would like to investigate different energiesglearning a kernel
based on positive and negative training samples is comzideA Bayesian ap-
proach to the parametric density estimation could helpgaiié difficulties due to
small training sets (over fitting). For the nonparametriprapch, techniques such
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as adaptive kernel density estimation or projection ptdensity estimation could
further improve results [7]. Furthermore, the developnarefficient algorithms
to minimize the learned energy is subject of ongoing researc
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