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DETECTING INTERFACES IN A PARABOLIC-ELLIPTIC
PROBLEM FROM SURFACE MEASUREMENTS

FLORIAN FRÜHAUF†, BASTIAN GEBAUER‡, OTMAR SCHERZER†

Abstract. Assuming that the heat capacity of a body is negligible outside certain inclusions the
heat equation degenerates to a parabolic-elliptic interface problem. In this work we aim to detect
these interfaces from thermal measurements on the surface of the body.

We deduce an equivalent variational formulation for the parabolic-elliptic problem and give a
new proof of the unique solvability based on Lions’ projection lemma. For the case that the heat
conductivity is higher inside the inclusions, we develop an adaptation of the Factorization Method
to this time-dependent problem. In particular this shows that the locations of the interfaces are
uniquely determined by boundary measurements. The method also yields to a numerical algorithm
to recover the inclusions and thus the interfaces.

We demonstrate how measurement data can be simulated numerically by a coupling of a finite
element method with a boundary element method and finally we present some numerical results for
the inverse problem.
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1. Introduction. We consider the heat equation in a domain B ⊂ R
n

∂t(c(x)u(x, t)) −∇ · (κ(x)∇u(x, t)) = 0 in B×]0, T [,(1.1)

with (spatially dependent) heat capacity c and conductivity κ. The special case we
are studying here is that the heat capacity c(x) is bounded from below inside an
inclusion Ω ⊂ B, and negligibly small on the outside Q := B \ Ω (cf. figure 1.1 for a
sketch of the geometry). Throughout this work Ω is allowed to be disconnected, thus
the case of multiple inclusions is covered as well.

If we assume for simplicity that c(x) = χΩ(x) is the characteristic function of Ω, then
the evolution equation (1.1) can be rewritten as a parabolic-elliptic equation

∂tu(x, t) −∇ · (κ(x)∇u(x, t)) = 0 in Ω×]0, T [,(1.2)

∇ · (κ(x)∇u(x, t)) = 0 in Q×]0, T [,(1.3)

together with appropriate interface conditions on ∂Ω.

For the case B = R
2 and κ = 1 this problem also arises in the study of two-dimensional

eddy currents and was studied by MacCamy and Suri in [23] and by Costabel, Ervin
and Stephan in [9]. In both papers boundary integral operators are used to replace
the Laplace equation in the exterior of Ω by a non-local boundary condition for the
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2 F. FRÜHAUF, B. GEBAUER AND O. SCHERZER
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Fig. 1.1. Sketch of geometry

parabolic equation inside Ω. This problem is then solved by a Galerkin method. In [8]
Costabel uses boundary integral operators also to solve the resulting interior problem.

In this work we study the problem for general κ ∈ L∞
+ (B) in a bounded domain B

with given Neumann boundary values on ∂B. By considering equation (1.1) in the
sense of distributions we deduce (1.2), (1.3) together with natural interface conditions
(that would otherwise have to be postulated). Moreover, we prove that the weak
formulation in appropriate Sobolev spaces is equivalent to (1.1). We show existence
of a unique solution using Lions’ projection lemma, cf. Section 2.

In Section 3 we study the inverse problem of locating the interface ∂Ω resp. the
inclusion Ω from surface measurements on ∂B. If the conductivity is larger inside Ω
than in the exterior Q, we show that the points belonging to Ω can be characterized
using a variant of the so-called Factorization Method introduced by Kirsch in [16],
generalized by Brühl and Hanke in [6, 5] and since then adapted to various stationary
and time-harmonic problems, cf. [1, 2, 7, 15, 17, 18, 19] for more recent contributions.
To our knowledge this is the first successful extension of this method to a time-
dependent problem.

In Section 4 we show how the direct problem can be solved numerically with a coupling
of finite element methods and boundary element methods similar to [23]. Using sim-
ulated measurements we demonstrate the numerical realization of the Factorization
Method following the ideas of Brühl and Hanke in [6, 5].

2. The direct problem.

2.1. A parabolic-elliptic problem. Let T > 0 and Ω, B ⊂ R
n, n ≥ 2, be

bounded domains with smooth boundaries, Ω ⊂ B and connected complement Q :=
B \ Ω.

In this section we study the parabolic-elliptic problem

∂t(χΩ(x)u(x, t)) −∇ · (κ(x)∇u(x, t)) = 0 in B×]0, T [,(2.1)

with κ ∈ L∞
+ (B), where we denote by L∞

+ the space of L∞-functions with positive
essential infima, and χΩ is the characteristic function of Ω.
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A standard way to treat an equation like (2.1) is to multiply both sides with a test
function followed by a formal partial integration. Assuming additional (also formal)
boundary and initial conditions this leads to a variational formulation, which is math-
ematically meaningful in some Sobolev spaces (thus no longer formal). Instead of
equation (2.1) one would then study this variational formulation, the so-called weak
form of the equation.

In this work we proceed in a slightly different way. We start by noting that the left-
hand side of (2.1) does have a mathematical meaning for every u ∈ L2(0, T,H1(B))
if the derivatives are interpreted in the sense of (scalar-valued) distributions.

We denote by D(B×]0, T [) the space of infinitely often differentiable functions with
support in B×]0, T [ and by D′(B×]0, T [) its dual space, i. e. the space of distribu-
tions on B×]0, T [. By the definition of distributional derivatives, equation (2.1) is
equivalent to

−

∫ T

0

∫

Ω

u(x, t)∂tϕ(x, t) dxdt−

∫ T

0

∫

B

κ(x)∇u(x, t) · ∇ϕ(x, t) dxdt = 0(2.2)

for all ϕ ∈ D(B×]0, T [).

We will show in this section that equation (2.1) (together with appropriate boundary
and initial conditions) has a unique solution in L2(0, T,H1(B)). In Theorem 2.6 we
give an equivalent variational formulation in Sobolev spaces, using the time-derivative
in the sense of vector-valued distributions (which we denote by u′). This variational
formulation is the same that one would have obtained as the weak generalization of
(2.1) using the above mentioned formal arguments.

We denote by ν the exterior normal on ∂B resp. the exterior normal on ∂Ω and by
D(Q×]0, T [) the restrictions of functions from D(Rn×]0, T [) to Q×]0, T [. Analogous
notations are used for Ω and B and D(B×[0, T [) is the space of restrictions of functions
from D(Rn×]−∞, T [) to B×]0, T [.

We use the anisotropic Sobolev spaces from [22]. For r, s ≥ 0 we write

Hr,s(X ) := L2(0, T,Hr(X )) ∩Hs(0, T, L2(X )) for X ∈ {B,Ω, Q, ∂B, ∂Ω},

and for s < 1
2 and X ∈ {∂B, ∂Ω}

H−r,−s(X ) := (Hr,s(X ))
′
.

The inner product on a real Hilbert space H is denoted by (·, ·) and the dual pairing
on H ′ ×H by 〈·, ·〉. They are related by the isometry ιH : H → H ′ that ”identifies
H with its dual”, i. e. 〈ιHu, ·〉 := (u, ·) for all u ∈ H. Throughout this work we
rigorously distinguish between the dual operator (denoted by A′) and the adjoint
operator (denoted by A∗) of an operator A ∈ L(H1,H2) between real Hilbert spaces
H1, H2. They satisfy the identity A∗ = ι−1

H1
A′ιH2

, cf. figure 2.1.

We summarize some known properties of the Dirichlet and Neumann traces for so-
lutions of the Laplace resp. heat equation. On the boundary ∂Ω we use the super-
script −, when the trace is taken from inside the inclusion Ω, and the superscript +

when it is taken from the outside.
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Fig. 2.1. Relation between dual and adjoint operator

Theorem 2.1.

(a) The trace mapping

v 7→ v|∂B resp. v 7→ v+|∂Ω, v ∈ D(Q×]0, T [),

can be extended to a continuous mapping from H1,0(Q) to H
1

2
,0(∂B) resp. to

H
1

2
,0(∂Ω), that has a continuous right inverse.

The same holds for H1,0(Ω) → H
1

2
,0(∂Ω), v 7→ v−|∂Ω.

(b) The Neumann traces κ∂νv|∂B and κ∂νv
+|∂Ω are defined for every v ∈ H1,0(Q)

that solves

∇ · (κ∇v) = 0 in Q×]0, T [(2.3)

by setting

〈κ∂νv|∂B, f〉 :=

∫ T

0

∫

Q

κ∇v · ∇vf dxdt,

〈κ∂νv
+|∂Ω, φ〉 := −

∫ T

0

∫

Q

κ∇v · ∇vφ dxdt

for every function f on ∂B and every function φ on ∂Ω that have extensions
vf , vφ ∈ D(Q×]0, T [) with vf |∂B = f , vf |∂Ω = 0 resp. vφ|∂B = 0, vφ|∂Ω = φ.
The Neumann traces can be extended to continuous mappings from the subspace
of solutions of equation (2.3) (equipped with the H1,0(Q)-norm) to H− 1

2
,0(∂B)

resp. H− 1

2
,0(∂Ω).

(c) The Neumann trace κ∂νv
−|∂Ω is defined for every v ∈ H1,0(Ω) that solves

∂tv −∇ · (κ∇v) = 0 in Ω×]0, T [(2.4)

by setting

〈κ∂νv
−|∂Ω, φ〉 :=

∫ T

0

∫

Ω

κ∇v · ∇vφ dxdt−

∫ T

0

∫

Ω

v ∂tvφ dxdt

for every function φ on ∂Ω that has an extensions vφ ∈ D(Ω×]0, T [) with vφ|∂Ω =
φ.
The Neumann trace can be extended to a continuous mapping from the subspace
of solutions of (2.4) (equipped with the H1,0(Ω)-norm) to H− 1

2
,− 1

4 (∂Ω).

Proof. (a), (b) immediately follow from the classical trace theorems on H1. For (c)
we refer to [8].
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Denoting

[v]∂Ω := v+|∂Ω − v−|∂Ω and [κ∂νv]∂Ω := κ∂νv
+|∂Ω − κ∂νv

−|∂Ω

we can write (2.1) as a diffraction problem:

Lemma 2.2. u ∈ H1,0(B) solves (2.1) if and only if u ∈ H1,0(B \ ∂Ω) solves

∂tu−∇ · (κ∇u) = 0 in Ω×]0, T [(2.5)

∇ · (κ∇u) = 0 in Q×]0, T [(2.6)

[κ∂νu]∂Ω = 0(2.7)

[u]∂Ω = 0(2.8)

In particular equations (2.6) and (2.7) imply that κ∂νu
−|∂Ω can be extended by con-

tinuity to H− 1

2
,0(∂Ω).

Proof. Like in the stationary case we have u ∈ H1,0(B) if and only if u ∈ H1,0(B\∂Ω)
and u satisfies (2.8). The rest immediately follows from the definition of distributional
derivatives and the Neumann traces.

The next lemma shows uniqueness for the diffraction problem with Neumann bound-
ary condition and an initial condition on Ω. With respect to the Gelfand triple
H1(Ω) →֒ L2(Ω) →֒ H1(Ω)′ we denote by

W := W (0, T,H1(Ω),H1(Ω)′),

the space of functions u ∈ L2(0, T,H1(Ω)) with vector-valued distributional time
derivative u′ ∈ L2(0, T,H1(Ω)′). From [10, Chp. XVIII], it follows that

W ⊂ C0([0, T ], L2(Ω)).

Lemma 2.3. Let u ∈ H1,0(B \ ∂Ω) solve (2.5), (2.6) and

[κ∂νu]∂Ω = ψ ∈ H− 1

2
,0(∂Ω)(2.9)

[u]∂Ω = f ∈ H
1

2
,0(∂Ω)(2.10)

κ∂νu|∂B = g ∈ H− 1

2
,0(∂B)(2.11)

Then u|Ω ∈W and u is uniquely determined by ψ, f , g and the initial condition

u(x, 0) = 0 on Ω.(2.12)

Proof. Again (2.9) implies that the Neumann trace κ∂νu
−|∂Ω can be extended by

continuity to H− 1

2
,0(∂Ω).

Thus we can define w ∈ L2(0, T,H1(Ω)′) by setting for every t ∈]0, T [ and v ∈ H1(Ω)

〈w(t), v〉 :=
〈

κ∂νu
−(t)|∂Ω, v

−|∂Ω

〉

−

∫

Ω

κ∇u(t) · ∇v dx.
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We have

∫

Ω

(

−

∫ T

0

u ∂tϕdt

)

v dx

=

∫ T

0

〈κ∂νu
−|∂Ω, v

−|∂Ω〉ϕdt−

∫ T

0

∫

Ω

κ∇u · ∇v dxϕdt

=

〈

∫ T

0

wϕdt, v

〉

for all v(x)ϕ(t) ∈ D(Ω×]0, T [) and thus by continuous extension for all vϕ ∈ H1(Ω)⊗
D(]0, T [). Thus in the sense of vector-valued distributions

w = (u|Ω)′ with respect to H1(Ω) →֒ L2(Ω) →֒ H1(Ω)′

and hence u|Ω ∈W ⊂ C0([0, T ], L2(Ω)).

To show uniqueness let f = 0, ψ = 0, g = 0 and (2.12). Since Green’s formula holds
for functions in W we have

1

2

∫

Ω

|u(T )|2 dx =

∫ T

0

〈u′(t), u(t)〉dt

=

∫ T

0

〈κ∂νu
−|∂Ω, u

−|∂Ω〉dt−

∫ T

0

∫

Ω

κ|∇u|2 dxdt

= −

∫ T

0

∫

B

κ|∇u|2 dxdt.

This implies that u(x, t) = c(t) where c ∈ C0([0, T ],R) solves c′ = 0 and c(0) = 0.
Thus u = 0.

To show existence of a solution we proceed analogously to [8, Lemma 2.3] by using
Lions’ projection lemma:

Lemma 2.4. Lions’ projection lemma

Assume that H is a Hilbert space and Φ is a subspace of H. Moreover let a : H×Φ →
R be a bilinear form satisfying the following properties:

a) For every ϕ ∈ Φ, the linear form u 7→ a(u, ϕ) is continuous on H.

b) There exists α > 0 such that a(ϕ,ϕ) ≥ α ‖ϕ‖
2
H for all ϕ ∈ Φ.

Then for each continuous linear form l ∈ H ′, there exists u0 ∈ H such that

a(u0, ϕ) = 〈l, ϕ〉 for all ϕ ∈ Φ and ‖u0‖H ≤
1

α
‖l‖H′ .

Proof. The lemma is proven in [20]. We repeat the proof for the sake of completeness:

From assumption a) and the Riesz representation theorem it follows that for every
ϕ ∈ Φ there exists Kϕ ∈ H with

(u,Kϕ) = a(u, ϕ) for all u ∈ H.
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This defines a linear (possibly unbounded) operator K : Φ → V := K(Φ) ⊆ H. From
assumption b) it follows that K is injective and thus possesses an inverse R0 : V → Φ.
Again using assumption b) we have

‖R0v‖
2
≤

1

α
a(R0v,R0v) =

1

α
(R0v, v) ≤

1

α
‖R0v‖ ‖v‖ ,

which yields ‖R0v‖ ≤ 1
α ‖v‖. Thus R0 can be extended by continuity to the closure

V of V . If we denote this extension by R0 then we have R0 : V → Φ.

Φ is a closed subspace of the Hilbert space H and thus also a Hilbert space. Using
the Riesz representation theorem on Φ we obtain a ξl ∈ Φ with

l(ϕ) = (ξl, ϕ) for all ϕ ∈ Φ.

Finally let P : H → V be the orthogonal projection onto V then u0 := P ∗R0
∗
ξl has

the desired properties.

We prove existence of a solution of the parabolic-elliptic diffraction problem (2.5),
(2.6), (2.9)–(2.12) under the additional assumption that g and ψ have vanishing inte-
gral mean. For X ∈ {∂B, ∂Ω} we define

H
− 1

2

⋄ (X ) := {g ∈ H− 1

2 (X ) : 〈g,1X 〉 = 0} and H
− 1

2
,0

⋄ (X ) := L2(0, T,H
− 1

2

⋄ (X )).

Again they are Hilbert spaces because they are closed subspaces of H− 1

2 (X ) resp.

H− 1

2
,0(X ).

Lemma 2.5. For every

g ∈ H
− 1

2
,0

⋄ (∂B), f ∈ H
1

2
,0(∂Ω) and ψ ∈ H

− 1

2
,0

⋄ (∂Ω),

there exists u ∈ H1,0(B \ ∂Ω) that solves (2.5), (2.6), (2.9)–(2.12).

u depends continuously on g, f and ψ and it fulfills
∫

Ω

u(x, t) dx = 0 for t ∈ [0, T ] a. e.

Proof. Let γ−∂Ω : H
1

2 (∂Ω) → H1(Q) be a lifting operator, i. e. a continuous right

inverse of the trace operator ·|∂Ω with (γ−∂Ωh)|∂B = 0 for all h ∈ H
1

2 (∂Ω) and set
uf = γ−∂Ωf ∈ H1,0(Q).

We define the spaces

H1
2
(B) :=

{

v ∈ H1(B) :

∫

Ω

v dx = 0

}

, H := L2(0, T,H1
2
(B)),

Φ :=

{

ϕ ∈ D([0, T [×B) :

∫

Ω

ϕdx = 0

}

,

and set for all v ∈ H and ϕ ∈ Φ

a(v, ϕ) :=

∫ T

0

∫

B

κ∇v · ∇ϕdxdt−

∫ T

0

∫

Ω

v ∂tϕdxdt,

〈l, v〉 := −

∫ T

0

∫

Q

κ∇uf · ∇v dxdt+

∫ T

0

〈g, v|∂B〉dt−

∫ T

0

〈ψ, v|∂Ω〉dt.
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Since H is a closed subspace of H1,0(B), it is a Hilbert space. Φ ⊂ H and for every
ϕ ∈ Φ, the linear form v → a(v, ϕ) is continuous on H.

Poincaré’s inequality yields that
(∫

B
|∇v|2 dx

)1/2
is an equivalent norm on H1

2
(B),

thus there exists α > 0 such that for all ϕ ∈ Φ

a(ϕ,ϕ) =

∫ T

0

∫

B

κ|∇ϕ(x, t)|2 dxdt+
1

2

∫

Ω

|ϕ(0, x)|2 dx

≥

∫ T

0

∫

B

κ|∇ϕ|2 dxdt ≥ α ‖ϕ‖
2
H .

Moreover the continuity of the trace and lifting operators yields the existence of a
constant C that does not depend on g, f and ψ such that for all v ∈ H

〈l, v〉 ≤ C
(

‖g‖
H−

1

2
,0(∂B)

+ ‖f‖
H

1

2
,0(∂Ω)

+ ‖ψ‖
H−

1

2
,0(∂Ω)

)

‖v‖H1,0(B)

= C

(

‖g‖
H

−
1

2
,0

⋄ (∂B)
+ ‖f‖

H
1

2
,0(∂Ω)

+ ‖ψ‖
H

−
1

2
,0

⋄ (∂Ω)

)

‖v‖H

and thus l ∈ H ′ with ‖l‖H′ ≤ C

(

‖g‖
H

−
1

2
,0

⋄ (∂B)
+ ‖f‖

H
1

2
,0(∂Ω)

+ ‖ψ‖
H

−
1

2
,0

⋄ (∂Ω)

)

.

Now Lemma 2.4 gives existence of ũ ∈ H that solves

∫ T

0

∫

B

κ∇ũ · ∇ϕdxdt−

∫ T

0

∫

Ω

ũ ∂tϕdxdt

= −

∫ T

0

∫

Q

κ∇uf · ∇ϕdxdt+

∫ T

0

〈g, ϕ|∂B〉dt−

∫ T

0

〈ψ,ϕ|∂Ω〉dt

(2.13)

for all ϕ ∈ Φ and ũ depends continuously on l (and therefore on g, f and ψ).

We define u ∈ H1,0(B \∂Ω) by setting u|Ω := ũ|Ω and u|Q := ũ|Q +uf . Then u solves
(2.10) and there exist constants C ′, C ′′ > 0 such that

‖u‖H1,0(B\∂Ω) ≤ C ′
(

‖ũ|Ω‖H1,0(Ω) + ‖ũ|Q‖H1,0(Q) + ‖uf‖H1,0(Q)

)

≤ C ′′
(

‖ũ‖H + ‖uf‖H1,0(Q)

)

,

thus u depends continuously on g, f and ψ.

Since
∫

Ω
ũ(x, t) dx = 0 for t ∈ [0, T ] a. e. the left side of (2.13) vanishes for all ϕ(x, t) =

c(t) ∈ D([0, T [×B). Due to our additional assumptions on g and ψ also the right side
of (2.13) vanishes for those ϕ. Thus (2.13) holds for all ϕ ∈ Φ and for all ϕ(x, t) = c(t),
which shows that (2.13) holds for all ϕ ∈ D([0, T [×B) and we immediately obtain that
u solves (2.5), (2.6), (2.9) and (2.11).

From Lemma 2.3 it follows that ũ|Ω = u|Ω ∈W and thus Green’s formula holds. We
obtain that for every ϕ ∈ D([0, T [×B) with support in [0, T [×Ω

−

∫

Ω

u(0)ϕ(0) dx

=

∫ T

0

∫

Ω

u ∂tϕdxdt+

∫ T

0

〈u′, ϕ〉dt
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=

∫ T

0

∫

Ω

ũ ∂tϕdxdt+

∫ T

0

〈κ∂νu
−|∂Ω, ϕ|∂Ω〉dt−

∫ T

0

∫

Ω

κ∇u · ∇ϕdxdt

=

∫ T

0

∫

B

κ∇ũ · ∇ϕdxdt−

∫ T

0

∫

Ω

κ∇u · ∇ϕdxdt

= 0,

where we used that the right side of (2.13) vanishes for suppϕ ∈ [0, T [×Ω. As D(Ω)
is dense in L2(Ω) this yields that u|Ω(0) = 0.

We summarize the results of this section and give a useful variational formulation in
Sobolev spaces:

Theorem 2.6. Let g ∈ H
− 1

2
,0

⋄ (∂B), f ∈ H
1

2
,0(∂Ω), ψ ∈ H

− 1

2
,0

⋄ (∂Ω) and let uf ∈
H1,0(B \ ∂Ω) be such that uf |∂B = 0, uf |∂Ω = f and uf |Ω = 0.

For u ∈ H1,0(B \ ∂Ω) the following three problems are equivalent and possess the
same unique solution. The solution depends continuously on g, f and ψ and it fulfills
∫

Ω
u(x, t) dx = 0 for t ∈ [0, T ] a. e.

(a) u solves

∂tu−∇ · (κ∇u) = 0 in Ω×]0, T [,(2.14)

∇ · (κ∇u) = 0 in Q×]0, T [,(2.15)

[κ∂νu]∂Ω = ψ,(2.16)

[u]∂Ω = f,(2.17)

κ∂νu|∂B = g,(2.18)

u(x, 0) = 0 in Ω.(2.19)

(b) u|Ω ∈W , u(x, 0) = 0 in Ω and ũ := u− uf solves

∫ T

0

〈(ũ|Ω)′, v|Ω〉dt+

∫ T

0

∫

B

κ∇ũ · ∇v dxdt

=

∫ T

0

〈g, v|∂B〉dt−

∫ T

0

〈ψ, v|∂Ω〉dt−

∫ T

0

∫

Q

κ∇uf · ∇v dxdt

(2.20)

for all v ∈ H1,0(B).
(c) ũ := u− uf solves

∫ T

0

∫

B

κ∇ũ · ∇v dxdt−

∫ T

0

〈(v|Ω)′, ũ|Ω〉dt

=

∫ T

0

〈g, v|∂B〉dt−

∫ T

0

〈ψ, v|∂Ω〉dt−

∫ T

0

∫

Q

κ∇uf∇v dxdt

for all v ∈ H1,0(B) with v|Ω ∈W and v(x, T ) = 0 on Ω.

Proof. We showed the unique solvability of the equations in (a) and the properties
of the solution in Lemma 2.3 and Lemma 2.5. Thus it only remains to prove the
equivalence of (a), (b) and (c).

(a) ⇒ (b): Note that ũ ∈ H1,0(B), κ∂νu
−|∂Ω ∈ H− 1

2
,0(∂Ω) and by Lemma 2.3

ũ|Ω = u|Ω ∈W .
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It suffices to show (2.20) for v ∈ D(]0, T [×B). (2.14) and (2.15) imply that

0 =

∫ T

0

〈(ũ|Ω)′, v|Ω〉dt−

∫ T

0

〈∇ · (κ∇u|Ω) , v|Ω〉dt

=

∫ T

0

〈(ũ|Ω)′, v|Ω〉dt−

∫ T

0

〈κ ∂νu
−|∂Ω, v|∂Ω〉dt+

∫ T

0

∫

Ω

κ∇u · ∇v dxdt

and

0 =

∫ T

0

〈∇ · (κ∇u|Q) , v|Q〉dt

= −

∫ T

0

〈κ ∂νu
+|∂Ω, v|∂Ω〉dt+

∫ T

0

〈κ ∂νu|∂B , v|∂B〉dt

−

∫ T

0

∫

Q

κ∇u · ∇v dxdt.

Subtracting these two equations and using (2.16) and (2.18) gives

0 =

∫ T

0

〈(ũ|Ω)′, v|Ω〉dt+

∫ T

0

〈ψ, v|∂Ω〉dt−

∫ T

0

〈g, v|∂B〉dt

+

∫ T

0

∫

Ω

κ∇u · ∇v dxdt+

∫ T

0

∫

Q

κ∇u · ∇v dxdt.

Now (2.20) follows from

∫ T

0

∫

Ω

κ∇u · ∇v dxdt+

∫ T

0

∫

Q

κ∇u · ∇v dxdt

=

∫ T

0

∫

B

κ∇ũ · ∇v dxdt+

∫ T

0

∫

Q

κ∇uf · ∇v dxdt.

(b) ⇒ (c): Follows from Green’s formula on W .
(c) ⇒ (a): was shown in the proof of Lemma 2.5.

2.2. Boundary measurements and a reference problem. We assume that
the inclusion does not only have a higher heat capacity but also a higher conductivity
κ than the background. For simplicity we fix κ = 1 on Q and therefore require that
κ|Ω − 1 ∈ L∞

+ (Ω).

We introduce the measurement operator

Λ1 : g 7→ u1|∂B , where u1 solves (2.1) with ∂νu1|∂B = g, u1|Ω = 0 at t = 0.

Using the results from Section 2.1 we know that Λ1 is a continuous linear operator

from H
− 1

2
,0

⋄ (∂B) to H
1

2
,0(∂B).

To locate the inclusion Ω we compare Λ1 with boundary measurements of a domain
without inclusions, i. e. with the measurement operator

Λ0 : g 7→ u0|∂B , where ∆u0 = 0 on B×]0, T [ and ∂νu0|∂B = g.

Lax-Milgram’s theorem shows that u0 is uniquely determined up to addition of a
spatially constant function u(x, t) = c(t) ∈ L2(0, T,R) and that Λ0 is a continuous
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H
− 1

2
,0

⋄ (∂B) H
1

2
,0

⋄ (∂B)

H
1

2
,0

⋄ (∂Ω) H
− 1

2
,0

⋄ (∂Ω)

HHHHjL′

-Λ0−Λ1

-
F0−F1

����*
L

Fig. 3.1. Factorization of Λ0 − Λ1

linear operator from H
− 1

2
,0

⋄ (∂B) to H
1

2
,0

⋄ (∂B) := L2(0, T,H
1

2

⋄ (∂B)), where the quo-

tient space H
1

2

⋄ (∂B) := H
1

2 (∂B)/R can be identified with the dual space of H
− 1

2

⋄ (∂B)

and H
1

2
,0

⋄ (∂B) with the dual space of H
− 1

2
,0

⋄ (∂B).

Analogously we define quotient spaces on B, Q and ∂Ω and note that in the case

that ∂Ω is disconnected the quotient space H
1

2

⋄ (∂Ω) is still obtained by factoring
out the one-dimensional space of functions that are constant on ∂Ω, and not the
multidimensional space of functions that are constant on each connected component.

Mathematically the elements of the quotient spaces Hr,0
⋄ , r ≥ 0, are equivalence

classes, i. e. all functions that differ only by a spatially constant function are called
equivalent and combined into one class. For the sake of readability we write an
equivalence class as a function and keep in mind that it is a representant of its class.

We also note that the space H
− 1

2
,0

⋄ , which we defined earlier, is not a quotient space.

Without changing notation we use the canonical epimorphism to restrict Λ1 to the
spaces of the reference problem. Thus we will investigate the inverse problem of
locating the inclusion Ω from knowledge of

Λ0, Λ1 : H
− 1

2
,0

⋄ (∂B) → H
1

2
,0

⋄ (∂B).

3. The inverse Problem. We use the Factorization Method to reconstruct Ω
from the boundary measurements. To this end we show that the difference of the
measurement operators Λ0 − Λ1 can be factorized into the product

Λ0 − Λ1 = L(F0 − F1)L
′,(3.1)

cf. figure 3.1, where the operator L corresponds to virtual measurements on the com-
plement Q of the inclusion, and its range contains all information about Q and thus
about the location of Ω.

Unlike previously known applications of the Factorization Method the explicit time-
dependence of the problem prevents us from calculating R(L) from the boundary
measurements, but using a new approach we can show that the knowledge of Λ0 −Λ1

still suffices to determine Ω.

3.1. Factorization of the boundary measurements. We define a virtual
measurement operator that corresponds to inducing a heat flux on the inclusion’s
boundary

L : H
− 1

2
,0

⋄ (∂Ω) → H
1

2
,0

⋄ (∂B), Lψ := v|∂B ,
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where v ∈ H1,0
⋄ (Q) solves

∆v = 0 in Q×]0, T [, ∂νv =

{

−ψ on ∂Ω,
0 on ∂B.

(3.2)

We also need the two auxiliary operators

F0 : H
1

2
,0(∂Ω) → H− 1

2
,0(∂Ω), F0φ := ∂νv

+
0 |∂Ω,

F1 : H
1

2
,0(∂Ω) → H− 1

2
,0(∂Ω), F1φ := ∂νv

+
1 |∂Ω,

where v0, v1 ∈ H1,0(B \ ∂Ω) solve

∆v0 = 0 in (Q ∪ Ω)×]0, T [, [∂νv0]∂Ω = 0,
∂νv0|∂B = 0, [v0]∂Ω = φ,

(3.3)

and

∆v1 = 0 in Q×]0, T [, [κ∂νv1]∂Ω = 0,
∂tv1 −∇ · (κ∇v1) = 0 in Ω×]0, T [, [v1]∂Ω = φ,

v1(x, 0) = 0 in Ω, ∂νv1|∂B = 0.
(3.4)

Note that F0 is well defined even though (3.3) determines v0 only up to addition of a

spatially constant function. Since the ranges of F0 and F1 are contained in H
− 1

2
,0

⋄ (∂Ω)
and their kernels contain L2(0, T,R), we will consider them as operators from

H
1

2
,0

⋄ (∂Ω) into H
− 1

2
,0

⋄ (∂Ω).

Theorem 3.1. The difference of the boundary measurements can be factorized into

Λ0 − Λ1 = L(F0 − F1)L
′.

The operators L and L′ are injective.

Proof. For given g ∈ H
− 1

2
,0

⋄ (∂B) let w ∈ H1,0
⋄ (Q) solve

∆w = 0 in Q×]0, T [, with ∂νw =

{

0 on ∂Ω,
g on ∂B.

Let ψ ∈ H
− 1

2
,0

⋄ (∂Ω) and v ∈ H1,0
⋄ (Q) be the solution of (3.2) in the definition of Lψ.

Then

〈ψ,L′g〉 = 〈g, Lψ〉 = 〈∂νw|∂B , v|∂B〉 =

∫ T

0

∫

Q

∇w · ∇v dxdt

=
〈

−∂νv
+|∂Ω, w

+|∂Ω

〉

=
〈

ψ,w+|∂Ω

〉

,

thus L′g = w+|∂Ω.

Now let v0, v1 ∈ H1,0(B \ ∂Ω) be the solutions of (3.3) resp. (3.4) from the definition
of F0w

+|∂Ω resp. F1w
+|∂Ω. We define u0, u1 ∈ H1,0(B \ ∂Ω) by setting ui|Ω := −vi|Ω

and ui|Q := w − vi|Q, i = 0, 1. Then u0, u1 ∈ H1,0(B) and solve the equations in the
definitions of Λ0g and Λ1g. Thus

(Λ0 − Λ1)g = (u0 − u1)|∂B = −(v0 − v1)|∂B .
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Since ∆(v1 − v0) = 0 in Q×]0, T [ and ∂ν(v1 − v0)|∂B = 0 we also have

L(∂ν(v+
0 − v+

1 )|∂Ω) = −(v0 − v1)|∂B ,

and thus

(Λ0 − Λ1)g = L(∂ν(v+
0 − v+

1 )|∂Ω) = L(F0 − F1)w
+|∂Ω = L(F0 − F1)L

′g.

To show injectivity of L′ let L′g = 0 with some g ∈ H
− 1

2
,0

⋄ (∂B). Then we obtain from
the above characterization of L′ a solution w ∈ H1,0(Q) of

∆w = 0 in Q×]0, T [, w+|∂Ω = 0 and ∂νw =

{

0 on ∂Ω,
g on ∂B.

We set w to zero on Ω×]0, T [ and denote this continuation by w̃ ∈ H1,0(B \ ∂Ω).
Then we have

∆w̃ = 0 in (B \ ∂Ω)×]0, T [, [w̃]∂Ω = 0, [κ∂νw̃]∂Ω = 0,

and thus w̃ ∈ H1,0(B) and ∆w̃ = 0 in B×]0, T [. Hence w̃(·, t) is analytic for t ∈]0, T [
a. e. Since w̃ disappears on Ω and B is connected, we obtain that w = w̃ = 0 in Q, so
that g = 0. Thus L′ is injective.

The injectivity of L follows from the same arguments, when the function from the
definition of L is set to zero in (Rn \ B)×]0, T [. Since Q is connected, also R

n \ Ω is
connected.

The injectivity of L and L′ yields that they have dense ranges. The operator F0 −F1

satisfies a coerciveness condition, to show this we introduce the operators λ1 and λ,
that correspond to measurements on the inclusion resp. on its complement.

λ1 : H
− 1

2
,0

⋄ (∂Ω) → H
1

2
,0(∂Ω), λ1ψ := u−1 |∂Ω,

λ : H
− 1

2
,0

⋄ (∂Ω) → H
1

2
,0

⋄ (∂Ω), λψ := u+|∂Ω,

where u1 ∈W solves

∂tu1 −∇ · (κ∇u1) = 0 in Ω×]0, T [, κ∂νu
−
1 |∂Ω = ψ, u1(x, 0) = 0 on Ω,(3.5)

and u ∈ H1,0
⋄ (Q) solves

∆u = 0 in Q×]0, T [, ∂νu =

{

−ψ on ∂Ω,
0 on ∂B.

The unique solvability of (3.5) is shown in [8, Cor. 3.17] for general ψ ∈ H− 1

2
,− 1

4 (∂Ω).
In our case it can also be proven analogously to Lemma 2.3 and Lemma 2.5.

Again we use the canonical epimorphism to restrict λ1 to the same spaces as λ, i. e.
from now on we consider it as an operator

λ1 : H
− 1

2
,0

⋄ (∂Ω) → H
1

2
,0

⋄ (∂Ω).
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Lemma 3.2.

(a) For every ψ ∈ H
− 1

2
,0

⋄ (∂Ω) we have the identity

〈ψ, λ1ψ〉 =

∫ T

0

〈(u1|Ω)′, u1|Ω〉dt+

∫ T

0

∫

Ω

κ|∇u1|
2 dxdt,

where u1 ∈W is the solution of (3.5) in the definition of λ1.

(b) λ1 is coercive with respect to H− 1

2
,− 1

4 (∂Ω), i. e. there exists c > 0 such that

〈ψ, λ1ψ〉 ≥ c ‖ψ‖
2

H−
1

2
,− 1

4 (∂Ω)
for all ψ ∈ H

− 1

2
,0

⋄ (∂Ω).(3.6)

Proof. By setting it to zero on Q every solution u1 ∈ W of (3.5) can be extended to
a solution of the equations (2.14), (2.15) and (2.19) in Theorem 2.6(a), with

[κ∂νu1]∂Ω = −ψ, [u1]∂Ω = −λ1ψ and κ∂νu1|∂B = 0.

It follows that
∫

Ω

u1(x, t) dx = 0 for t ∈ [0, T ] a. e.(3.7)

and with uf ∈ H1,0(B \ ∂Ω) such that uf |∂B = 0, uf |∂Ω = −λ1ψ and uf |Ω = 0 we
obtain from the variational formulation for ũ := u1 − uf in Theorem 2.6(b)

∫ T

0

〈(ũ|Ω)′, ũ|Ω〉dt+

∫ T

0

∫

B

κ|∇ũ|2 dxdt =

∫ T

0

〈ψ, ũ|∂Ω〉dt−

∫ T

0

∫

Q

κ∇uf · ∇ũ dxdt.

Using ũ|∂Ω = λ1ψ, uf |Ω = 0 and u1|Q = 0 we conclude that

〈ψ, λ1ψ〉 =

∫ T

0

〈(u1|Ω)′, u1|Ω〉dt+

∫ T

0

∫

Ω

κ|∇u1|
2 dxdt,

and thus (a) holds.

Because of (3.7) Poincaré’s inequality yields the existence of a c′ > 0 such that

〈ψ, λ1ψ〉 ≥ c′ ‖u1‖
2
H1,0(Ω) ,

and so assertion (b) follows from the continuity of the Neumann trace in Theo-
rem 2.1(c).

Lemma 3.3. There exists c′ > 0 such that

〈(F0 − F1)φ, φ〉 ≥ c′ ‖F1φ‖
2

H−
1

2
,− 1

4 (∂Ω)
.

and F1 is bijective with F−1
1 = −λ− λ1.

Proof. For given φ ∈ H
1

2
,0(∂Ω) let v0, v1 ∈ H1,0(B \ ∂Ω) be the solutions of (3.3) and

(3.4) in the definition of F0 and F1 and let vφ ∈ H1,0(B \∂Ω) be such that v+
φ |∂Ω = φ,

vφ|∂B = 0 and vφ|Ω = 0.
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Then ṽi := vi − vφ, i = 0, 1, solve

∫ T

0

∫

B

∇ṽ0 · ∇w dxdt = −

∫ T

0

∫

Q

∇vφ · ∇w dxdt,

∫ T

0

〈(ṽ1|Ω)′, w|Ω〉dt+

∫ T

0

∫

B

κ∇ṽ1 · ∇w dxdt = −

∫ T

0

∫

Q

∇vφ · ∇w dxdt

for all w ∈ H1,0(B) (cf. Theorem 2.6 for the second equation). From Lax-Milgram’s
theorem it follows that for t ∈]0, T [ a. e. ṽ0(·, t) minimizes the functional

w 7→
1

2

∫

B

|∇w(x)|2 dx+

∫

Q

∇vφ(x, t) · ∇w(x) dx

in H1(B), so that

∫ T

0

∫

B

|∇ṽ0|
2 dxdt

= −2

(

−
1

2

∫ T

0

∫

B

|∇ṽ0|
2 dxdt+

∫ T

0

∫

Q

∇vφ · ∇ṽ0 dxdt

)

≥ −2

(

1

2

∫ T

0

∫

B

|∇ṽ1|
2 dxdt+

∫ T

0

∫

Q

∇vφ · ∇ṽ1 dxdt

)

= −

∫ T

0

∫

B

|∇ṽ1|
2 dxdt+ 2

∫ T

0

∫

B

κ|∇ṽ1|
2 dxdt+ 2

∫ T

0

〈(ṽ1|Ω)′, ṽ1|Ω〉 dt

and thus

〈(F0 − F1)φ, φ〉

=
〈

∂νv
+
0 , φ

〉

−
〈

∂νv
+
1 , φ

〉

=

∫ T

0

∫

Q

∇v1 · ∇vφ dxdt−

∫ T

0

∫

Q

∇v0 · ∇vφ dxdt

=

∫ T

0

∫

Q

∇vφ · ∇ṽ1 dxdt−

∫ T

0

∫

Q

∇vφ · ∇ṽ0 dxdt

=

∫ T

0

∫

B

|∇ṽ0|
2 dxdt−

∫ T

0

∫

B

κ|∇ṽ1|
2 dxdt−

∫ T

0

〈(ṽ1|Ω)′, ṽ1|Ω〉 dt

≥

∫ T

0

∫

Ω

(κ− 1)|∇ṽ1|
2 dxdt+

∫ T

0

〈(ṽ1|Ω)′, ṽ1|Ω〉 dt.

Using κ|Ω − 1 ∈ L∞
+ (Ω),

∫ T

0
〈(ṽ1|Ω)′, ṽ1|Ω〉 dt ≥ 0, ṽ1|Ω = v1|Ω and Lemma 3.2(a) we

conclude that there exists cκ > 0 such that

〈(F0 − F1)φ, φ〉 ≥ cκ

(

∫ T

0

∫

Ω

κ|∇ṽ1|
2 +

∫ T

0

〈(ṽ1|Ω)′, ṽ1|Ω〉 dt

)

= cκ
〈(

κ∂ν ṽ
−
1 |∂Ω

)

, λ1

(

κ∂ν ṽ
−
1 |∂Ω

)〉

= cκ
〈(

∂νv
+
1 |∂Ω

)

, λ1

(

∂νv
+
1 |∂Ω

)〉

= cκ 〈F1φ, λ1F1φ〉 ,

and so the first assertion follows from Lemma 3.2(b). To show surjectivity of F1 let

ψ ∈ H
− 1

2
,0

⋄ (∂Ω) and denote by u ∈ H1,0(Q), u1 ∈W the functions from the definition
of λψ and λ1ψ.
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Define v1 ∈ H1,0(B \ ∂Ω) by setting v1 := −u on Q and v1 := u1 on Ω. Then v1
solves the equations in the definition of F1 with [v1]∂Ω = (−λ−λ1)ψ (up to a spatially
constant function) and thus F1(−λ− λ1)ψ = ∂νu

+
1 |∂Ω = ψ.

It remains to show injectivity of F1. To this end let F1φ = 0 and v1 ∈ H1,0(B\∂Ω) be
the function from the definition of F1. Then v1 solves the Laplace equation on Q and
the heat equation on Ω each with zero Neumann boundary values. Thus it vanishes
on Ω and is spatially constant on Q, which implies that φ ∈ L2(0, T,R).

3.2. Range characterization. Lemma 3.3 implies that the symmetric part of
F0−F1 is positive and thus also the symmetric part of Λ0−Λ1 is positive. Identifying
Hilbert spaces with their duals these operators have positive square roots, and their
ranges can be related. The key to provide this relation is the following lemma, that has
been used by Brühl to extend the Factorization Method to the case of non-constant
conductivities in EIT [4, Satz 4.9]. We state it in the form as it is called the ”14th
important property of Banach spaces” in [3] and give an elementary proof for the sake
of completeness:

Lemma 3.4. Let X,Y be two Banach spaces, let A ∈ L(X;Y ) and x′ ∈ X ′. Then

x′ ∈ R(A′) if and only if ∃C > 0 : |〈x′, x〉| ≤ C ‖Ax‖ ∀x ∈ X.

Proof. If x′ ∈ R(A′) then there exists y′ ∈ Y ′ such that x′ = A′y′. Thus

|〈x′, x〉| = |〈y′, Ax〉| ≤ ‖y′‖ ‖Ax‖ ∀x ∈ X,

and the assertion holds with C = ‖y′‖.

Now let x′ ∈ X ′ such that there exists C > 0 with |〈x′, x〉| ≤ C ‖Ax‖ for all x ∈ X.
Define

f(z) := 〈x′, x〉 for every z = Ax ∈ R(A).

Then f is a well-defined, continuous linear functional, with ‖f(z)‖ ≤ C ‖z‖. Using
the Hahn-Banach theorem there exists y′ ∈ Y ′ with y′|R(A) = f . For all x ∈ X we
have

〈A′y′, x〉 = 〈y′, Ax〉 = f(A(x)) = 〈x′, x〉

and thus x′ = A′y′ ∈ R(A′).

We will make use of the following simple corollary:

Corollary 3.5. Let Hi, i = 1, 2, be Hilbert spaces with norms ‖·‖i, X be a third
Hilbert space and Ai ∈ L(X,Hi).

If ‖A1x‖1 ≤ ‖A2x‖2 for all x ∈ X then R(A∗
1) ⊆ R(A∗

2).

Proof. Since A′
iιH1

= ιXA
∗
i , i = 1, 2, y ∈ R(A∗

1) implies ιXy ∈ R(A′
1). Using Lemma

3.4 there exists C > 0 such that

|〈ιXy, x〉| ≤ C ‖A1x‖1 ≤ C ‖A2x‖2 ∀x ∈ X.

and thus ιXy ∈ R(A′
2), which implies y ∈ R(A∗

2).
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Note that in particular A∗
1A1 = A∗

2A2 implies R(A∗
1) = R(A∗

2) (cf. [11]). Following
the argumentation in [12] we can use Corollary 3.5 to characterize the range of the
virtual measurement operator L by reformulating the symmetric part of (3.1) using
adjoint operators.

We set

Λ := Λ0 −
1
2 (Λ1 + Λ′

1), Λ̃ = Λι
H

1/2,0
⋄ (∂B)

,

F := F0 −
1
2 (F1 + F ′

1), F̃ = ι−1

H
1/2,0
⋄ (∂Ω)

F.

Lemma 3.6. Λ̃ and F̃ are self-adjoint and positive operators and their square roots
satisfy

R(Λ̃1/2) = R(Lι
H

1/2,0
⋄ (∂Ω)

F̃ 1/2).

Proof. By construction Λ̃ and F̃ are self-adjoint and positive. From Theorem 3.1 it
follows that

Λ̃1/2Λ̃1/2 = Λ̃ = Lι
H

1/2,0
⋄ (∂Ω)

F̃L′ι
H

1/2,0
⋄ (∂B)

=
(

Lι
H

1/2,0
⋄ (∂Ω)

)

F̃
(

Lι
H

1/2,0
⋄ (∂Ω)

)∗

=
(

Lι
H

1/2,0
⋄ (∂Ω)

)

F̃ 1/2F̃ 1/2
(

Lι
H

1/2,0
⋄ (∂Ω)

)∗

.

The assertion now follows from Corollary 3.5.

If F was coercive with respect to the space H
− 1

2
,0

⋄ (∂Ω) we would obtain surjectivity of
F̃ 1/2 and thus the range characterization R(Λ̃1/2) = R(L) that was used in previous
applications of the Factorization Method. In our situation we only have the weaker
coercivity condition from Lemma 3.3. The next theorem shows that this weaker
condition is still enough to guarantee that R(F̃ 1/2) contains all functions of a certain
time regularity, which turns out to be sufficient for the method to work.

Theorem 3.7.

R(Λ̃1/2) ⊆ R(L) = L
(

H
− 1

2
,0

⋄ (∂Ω)
)

(3.8)

R(Λ̃1/2) ⊇ L
(

H
1

4 (0, T,H
− 1

2

⋄ (∂Ω))
)

.(3.9)

Proof. Equation (3.8) immediately follows from Lemma 3.6.

Denote by j : H
− 1

2
,0

⋄ (∂Ω) →֒ H− 1

2
,− 1

4 (∂Ω) the imbedding operator. Using Lemma 3.3

we have for all φ ∈ H
1

2
,0

⋄ (∂Ω)

∥

∥

∥
F̃ 1/2φ

∥

∥

∥

2

H
1

2
,0

⋄ (∂Ω)
= (F̃ φ, φ)

H
1

2
,0

⋄ (∂Ω)
≥ c′ ‖jF1φ‖

2

H−
1

2
,− 1

4 (∂Ω)
.

Since F ∗
1 j

∗ = ι−1

H
1/2,0
⋄ (∂Ω)

F ′
1j

′ιH−1/2,−1/4(∂Ω) we obtain from Corollary 3.5

R
(

F̃ 1/2
)

⊇ R(F ∗
1 j

∗) = R
(

ι−1

H
1/2,0
⋄ (∂Ω)

F ′
1j

′
)

,
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and from Lemma 3.6

R(Λ̃1/2) = R(Lι
H

1/2,0
⋄ (∂Ω)

F̃ 1/2) ⊇ R(LF ′
1j

′).

Using Lemma 3.4 it is easily seen that

R(j′) = H
1

2
, 1

4

⋄ (∂Ω) := (H
1

2
, 1

4 (∂Ω) + L2(0, T,R))/L2(0, T,R) ⊂ H
1

2
,0

⋄ (∂Ω).

(Note that by this definition H
1

2
, 1

4

⋄ (∂Ω) is isomorphic to H
1

2
, 1

4 (∂Ω)/H
1

4 (0, T,R).)

Using Lemma 3.3 we have (F ′
1)

−1 = −λ′ − λ′1. Since λ = λ′ and R(λ′1) ⊆ H
1

2
, 1

4

⋄ (∂Ω)
(cf. [8]) it only remains to show that

λ
(

H
1

4 (0, T,H
− 1

2

⋄ (∂Ω))
)

⊆ H
1

2
, 1

4

⋄ (∂Ω).(3.10)

To this end denote by λ : H
− 1

2

⋄ (∂Ω) → H
1

2

⋄ (∂Ω), ψ 7→ u+|∂Ω, where u ∈ H1
⋄ (Q) solves

∆u = 0 in Q, ∂νu =

{

−ψ on ∂Ω,
0 on ∂B.

Then for every ψ ∈ H1(0, T,H
− 1

2

⋄ (∂Ω)) and ϕ ∈ D(]0, T [)

∫ T

0

(−1)(λψ)ϕ′ dt = λ

(

∫ T

0

(−1)ψϕ′(t) dt

)

= λ

(

∫ T

0

ψ′ϕ(t) dt

)

=

∫ T

0

(λψ′)ϕdt ∈ H
1

2

⋄ (∂Ω)

Thus λψ ∈ H1(0, T,H
1

2

⋄ (∂Ω)) with (λψ)′ = λ(ψ′), which shows that λ is not only

a continuous operator from L2(0, T,H
− 1

2

⋄ (∂Ω)) to L2(0, T,H
1

2

⋄ (∂Ω)) but also from

H1(0, T,H
− 1

2

⋄ (∂Ω)) to H1(0, T,H
1

2

⋄ (∂Ω)).

By interpolation (cf. [21]) λ is a continuous operator from

H
1

4 (0, T,H
− 1

2

⋄ (∂Ω)) → H
1

4 (0, T,H
1

2

⋄ (∂Ω)) ⊂ H
1

2
, 1

4

⋄ (∂Ω).

Thus (3.10) holds and the assertion follows.

3.3. Characterization of the inclusion. The composition of time integration

and the (compact) imbedding H
1

2

⋄ (∂B) →֒ L2
⋄(∂B) := L2(∂B)/R defines the operator

I : H
1

2
,0

⋄ (∂B) → L2
⋄(∂B), u 7→

∫ T

0

u(·, t) dt.

Identifying L2
⋄(∂B) with its dual we have

IΛ̃I∗ = IΛI ′,(3.11)

where I ′ : L2
⋄(∂B) → H

− 1

2
,0

⋄ (∂B) is given by

I ′v = w, with w(·, t) = v(·) for t ∈ [0, T ] a. e.
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The operator IΛI ′ corresponds to measurements of applying temporal constant (and
spatially square integrable) heat fluxes to a body and measuring time integrals of the
resulting temperature on the boundary.

We use the same dipole functions as Brühl and Hanke used in [13] for the implemen-
tation of the Factorization Method in EIT. For a direction d ∈ R

n, |d| = 1 and a point
z ∈ B let

Dz,d(x) :=
(z − x) · d

|z − x|n
.

Then Dz,d(x) is analytic and ∆Dz,d(x) = 0 in R
n \ {z}. Moreover using a ball Bǫ(z)

centered at z with such small radius ǫ > 0 such that Bǫ(z) ⊂ B
∫

∂B

∂νDz,d(x) dx =

∫

∂Bǫ(z)

∂νDz,d(x) dx = 0

so in particular ∂νDz,d ∈ H
− 1

2

⋄ (∂B) and there exists vz,d ∈ H1(B) that solves

∆vz,d = 0 in B and ∂νvz,d = −∂νDz,d on ∂B.

Now Hz,d := Dz,d + vz,d is harmonic (and thus analytic) in B \ {z} with ∂νHz,d|∂B =
0 but Hz,d /∈ L2(B \ {z}). The inclusion can now be characterized by the traces

hz,d := Hz,d|∂B ∈ H
1

2

⋄ (∂B) (again we use the same notation for the equivalence class
of functions that are identical up to addition of constant functions as we used for the
original function).

Theorem 3.8. For every d ∈ R
n, |d| = 1 and z ∈ B

z ∈ Ω if and only if hz,d ∈ R
(

(IΛI ′)1/2
)

.

Proof. From Corollary 3.5 and (3.11) it follows that R
(

(IΛI ′)1/2
)

= R(IΛ̃1/2) and
consequently from Theorem 3.7 we obtain

R
(

(IΛI ′)1/2
)

⊆ IL
(

H
− 1

2
,0

⋄ (∂Ω)
)

R
(

(IΛI ′)1/2
)

⊇ IL
(

H
1

4 (0, T,H
−1/2
⋄ (∂Ω))

)

.

First let z ∈ Ω, then we define w ∈ H1,0
⋄ (Q) by w(x, t) := Hz,d(x)/T for t ∈ [0, T ] a. e.

Then −∂νw
+|∂Ω ∈ H

1

4 (0, T,H
−1/2
⋄ (∂Ω)) and w solves equation (3.2) in the definition

of L, so

hz,d = Iw|∂B = IL(−∂νw
+|∂Ω)

∈ IL
(

H
1

4 (0, T,H
−1/2
⋄ (∂Ω))

)

⊆ R
(

(IΛI ′)1/2
)

.

To show the converse let hz,d ∈ R
(

(IΛI ′)1/2
)

⊆ IL(H
− 1

2
,0

⋄ (∂Ω)). Then hz,d coincides
with the integral of the trace of a solution of the Laplace equation on Q with vanishing
Neumann boundary values. Taking the integral of that solution we have that hz,d =
w|∂B , with some

w ∈ H1
⋄ (Q), that solves ∆w = 0 on Q, ∂νw = 0 on ∂B.
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As Hz,d and w are both harmonic on Q\{z} with the same Cauchy data on ∂B, they
coincide near ∂B and thus by analytic continuation on Q \ {z}. If z /∈ Ω this leads to
the contradiction that w ∈ L2

⋄(Q \ {z}) but Hz,d /∈ L2
⋄(Q \ {z}).

By construction IΛI ′ is a compact and self-adjoint operator and from the factorization
and the positiveness of F it follows that it is positive. Since IΛI ′g = 0 implies that
〈FL′I ′g, L′I ′g〉 = 0 and thus L′I ′g = 0, we also obtain injectivity of IΛI ′ from
the injectivity of L′ and I ′. Hence there exists an orthonormal basis (vk)k∈N of
eigenfunctions with associated positive eigenvalues (λk)k∈N . Following [13] we use
this spectral decomposition to reformulate Theorem 3.8 with the Picard criterion:

Corollary 3.9. For every d ∈ R
n, |d| = 1 and z ∈ B

z ∈ Ω if and only if
∑

k∈N

1

λk

(
∫

∂B

hz,dvk dx

)2

<∞.

We remark that the results of this subsection remain valid with identical proofs when
I is replaced by

IS : H
1

2
,0

⋄ (∂B) → L2
⋄(S), u 7→

∫ T

0

u|S(·, t) dt,

where S is a relatively open subset of the boundary ∂B. Thus Ω is uniquely determined
by ISΛI ′S , i. e. by measurements of applying (temporal constant) heat fluxes on a part
of the boundary and measuring (time integrals of) the resulting temperature on the
same part, cf. e. g. [14, 24, 25] for corresponding results in impedance tomography
and the effect of partial boundary data on numerical reconstructions.

4. Numerics.

4.1. The direct problem. In this section we show how the direct problem can
be solved numerically with a coupling of a finite element method and a boundary
element method similar to [9]. We start by reformulating the direct problem.

4.1.1. Reformulation of the direct problem. Recall that λ was defined by

λ : H
− 1

2
,0

⋄ (∂Ω) → H
1

2
,0

⋄ (∂Ω), λψ := η+|∂Ω ,

where η ∈ H1,0
⋄ (Q) solves

∆η = 0 in Q, ∂νη =

{

−ψ on ∂Ω ,
0 on ∂B .

We use the same notation for the time-independent Neumann-Dirichlet-operator

λ : H
− 1

2

⋄ (∂Ω) → H
1

2

⋄ (∂Ω).

Note that λ is linear, continuous and coercive, i.e. 〈ψ, λψ〉 ≥ c‖ψ‖2

H
−

1

2
⋄ (∂Ω)

.

For the rest of this section we assume that g ∈ H
− 1

2
,0

⋄ (∂B) and ξ = ξ(g) ∈ H1,0
⋄ (Q)

solves

∆ξ = 0 in Q, ∂νξ =

{

0 on ∂Ω ,
g on ∂B .
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Theorem 4.1. If u ∈ H1,0(B) solves (2.5)–(2.8), (2.11) and (2.12) then v := u|Ω
and φ := −κ∂νu

−|∂Ω satisfy

∂tv −∇ · (κ∇v) = 0 in Ω×]0, T [,(4.1)

v−|∂Ω − λφ = ξ+|∂Ω in H
1

2
,0

⋄ (∂Ω),(4.2)

v(x, 0) = 0 in Ω .(4.3)

On the other hand if (v, φ) ∈ H1,0(Ω) ×H
− 1

2
,0

⋄ (∂Ω) solves (4.1)–(4.3) and

κ∂νv
−|∂Ω = −φ,(4.4)

then there exists u ∈ H1,0(B) that solves (2.5)–(2.8), (2.11), (2.12) and v = u|Ω.
Moreover u|Q ∈ H1,0(Q) is the representant of ξ + η ∈ H1,0

⋄ (Q) with
∫

∂Ω
u+|∂Ω ds =

∫

∂Ω
u−|∂Ω ds, where η is as in the definition of λφ.

Proof. The proof immediately follows from the definition of ξ and λ.

Theorem 4.2. The following problems are equivalent:

(a) (u, φ) ∈ H1,0(Ω) ×H
− 1

2
,0

⋄ (∂Ω) solves (4.1)–(4.4).

(b) (u, φ) ∈W ×H
− 1

2
,0

⋄ (∂Ω), u(x, 0) = 0 in Ω and (u, φ) solves

∫ T

0

〈u′, v〉dt+

∫ T

0

∫

Ω

κ∇u · ∇v dxdt+

∫ T

0

〈φ, v−|∂Ω〉dt

−

∫ T

0

〈ψ̃, λφ〉dt+

∫ T

0

〈ψ̃, u−|∂Ω〉dt =

∫ T

0

〈ψ̃, ξ+|∂Ω〉dt(4.5)

for all v ∈ H1,0(Ω) and for all ψ̃ ∈ H
− 1

2
,0

⋄ (∂Ω).

(c) (u, φ) ∈W ×H
− 1

2
,0

⋄ (∂Ω), u(x, 0) = 0 in Ω and (u, φ) solves

〈u′(t), v〉 +

∫

Ω

κ∇u(t) · ∇v dx+ 〈φ(t), v−|∂Ω〉 − 〈ψ̃, λφ(t)〉 + 〈ψ̃, u(t)−|∂Ω〉

= 〈ψ̃, ξ(t)+|∂Ω〉(4.6)

for t ∈ [0, T ] a.e. and for all v ∈ H1(Ω) and for all ψ̃ ∈ H
− 1

2

⋄ (∂Ω).

Proof. (a)⇔(b) can be shown analogously to the proof of Theorem 2.6.

To show (b)⇔(c), note that (4.6) is fulfilled for t ∈ [0, T ] a. e. if and only if it is
fulfilled in the sense of L2([0, T ]). The equivalence then follows from the fact that

L2([0, T ])⊗H1(Ω), resp. L2([0, T ])⊗H
− 1

2

⋄ (∂Ω) are dense inH1,0(Ω), resp. H
− 1

2
,0

⋄ (∂Ω).

4.1.2. Implementation and convergence analysis of the reformulated
problem. Let {Hh, h > 0} and {Bh, h > 0}, be families of finite dimensional sub-

spaces of H1(Ω) and H
− 1

2

⋄ (∂Ω), respectively. Accordingly the family of L2-projections
Ph : H1(Ω) → Hh is defined by

∫

Ω
Phvwh dx =

∫

Ω
vwh dx for all wh ∈ Hh. We assume

that Ph satisfies the following estimate: There exists a constant γ > 0, independent
of h, such that

sup
v∈H1(Ω)

‖Phv‖H1(Ω)

‖v‖H1(Ω)
≤ γ for all h > 0 .(4.7)
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For example let T be a regular triangulation of Ω with generic mesh spacing h and
Hh be a space of piecewise linear polynomials on T . Then following [23] the operator
Ph fulfills (4.7).

We consider the following Galerkin scheme:

Find uh : [0, T ] → Hh, φh : [0, T ] → Bh such that

〈u′h, vh〉 +

∫

Ω

κ∇uh · ∇vh dx+ 〈φh, v
−
h |∂Ω〉

−〈ψh, λφh〉 + 〈ψh, u
−
h |∂Ω〉 = 〈ψh, ξ

+|∂Ω〉
(4.8)

for all (vh, ψh) ∈ Hh ×Bh, t ∈ [0, T ] a.e. and uh(0) = 0.

Lemma 4.3. For every h > 0 the Galerkin scheme (4.8) has a unique solution in
HT

h ×BT
h , where

HT
h :=

{

u ∈ L2(0, T,Hh) : u′ ∈ L2(0, T,Hh), u(x, 0) = 0
}

⊂W,

BT
h := L2(0, T,Bh) ⊂ H

− 1

2
,0

⋄ (∂Ω).

Proof. Let (wk)nh

k=1 be a basis of Hh which is orthonormal with respect to the
L2(Ω) scalar product and (ψj)

mh
j=1 be a basis of Bh. Moreover if we write uh(x, t) =

∑nh

k=1 αk(t)wk(x) and φh(x, t) =
∑mh

j=1 βj(t)ψj(x), then (4.8) is equivalent to

∂tα(t) +Kα(t) +Bβ(t) = 0 , α(0) = 0 ,(4.9)

and

Dβ(t) −BTα(t) = d(t) .(4.10)

where α = (α1, . . . , αnh
)T and β = (β1, . . . , βmh

)T . Since λ is linear and coercive we
can solve (4.10) for β in terms of α and substitute into (4.9) to obtain a system of
ODEs for α. According to standard existence theory for ODEs, there exists a unique
absolutely continuous solution α.

Lemma 4.4. Assume that (wh, ζh) ∈ HT
h × BT

h , ζ ∈ H
− 1

2
,0

⋄ (∂Ω), w ∈ W with
w(x, 0) = 0 in Ω. Moreover assume that the following equation is fulfilled

〈w′
h, vh〉 +

∫

Ω

κ∇wh · ∇vh dx+ 〈ζh, v
−
h |∂Ω〉 − 〈ψh, λζh〉 + 〈ψh, w

−
h |∂Ω〉

= 〈w′, vh〉 +

∫

Ω

κ∇w · ∇vh dx+ 〈ζ, v−h |∂Ω〉 − 〈ψh, λζ〉 + 〈ψh, w
−|∂Ω〉(4.11)

for t ∈ [0, T ] a.e. and for all (vh, ψh) ∈ Hh×Bh. Then there exists c > 0 independent
of h such that

‖wh‖W + ‖ζh‖
H

−
1

2
,0

⋄ (∂Ω)
≤ c

(

‖w‖W + ‖ζ‖
H

−
1

2
,0

⋄ (∂Ω)

)
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Proof.

1. We use (vh, ψh) = (wh,−ζh) in (4.11) and obtain for t ∈ [0, T ] a.e.

〈w′
h, wh〉 +

∫

Ω

κ|∇wh|
2 dx+ 〈ζh, λζh〉

= 〈w′, wh〉 +

∫

Ω

κ∇w · ∇wh dx+ 〈ζ, w−
h |∂Ω〉 + 〈ζh, λζ〉 − 〈ζh, w

−|∂Ω〉

≤ c1

(

‖w′‖H1(Ω)′ + ‖w‖H1(Ω) + ‖ζ‖
H

−
1

2
⋄ (∂Ω)

)

‖wh‖H1(Ω)

+c2

(

‖ζ‖
H

−
1

2
⋄ (∂Ω)

+ ‖w‖H1(Ω)

)

‖ζh‖
H

−
1

2
⋄ (∂Ω)

,

where ci, i = 1, . . . , 8 are not depending on h. Note that ‖ζ‖
H−

1

2 (∂Ω)
=

‖ζ‖
H

−
1

2
⋄ (∂Ω)

and ‖ζh‖
H−

1

2 (∂Ω)
= ‖ζh‖

H
−

1

2
⋄ (∂Ω)

. Now we integrate the left and

the right hand side of this inequality from 0 to t and get for t ∈ [0, T ] a.e.

1

2
‖wh(t)‖2

L2(Ω) +

∫ t

0

∫

Ω

κ|∇wh|
2 dxdt+

∫ t

0

〈ζh, λζh〉dt

≤ c3

(

‖w‖W + ‖ζ‖
H

−
1

2
,0

⋄ (∂Ω)

)(

‖wh‖H1,0(Ω) + ‖ζh‖
H

−
1

2
,0

⋄ (∂Ω)

)

.(4.12)

Again integrating both sides of this inequality from 0 to T yields

‖wh‖
2
L2(0,T,L2(Ω))

≤ c4

(

‖w‖W + ‖ζ‖
H

−
1

2
,0

⋄ (∂Ω)

)(

‖wh‖H1,0(Ω) + ‖ζh‖
H

−
1

2
,0

⋄ (∂Ω)

)

.(4.13)

2. Since λ is coercive, using (4.12) and (4.13) we get

‖wh‖
2
H1,0(Ω) + ‖ζh‖

2

H
−

1

2
,0

⋄ (∂Ω)

≤ c5

(

‖w‖W + ‖ζ‖
H

−
1

2
,0

⋄ (∂Ω)

)(

‖wh‖H1,0(Ω) + ‖ζh‖
H

−
1

2
,0

⋄ (∂Ω)

)

.

Therefore we have

‖wh‖H1,0(Ω) + ‖ζh‖
H

−
1

2
,0

⋄ (∂Ω)
≤ c6

(

‖w‖W + ‖ζ‖
H

−
1

2
,0

⋄ (∂Ω)

)

.(4.14)

3. Since w′
h ∈ Hh for t ∈ [0, T ] a.e., using the L2-projection Ph we have for

t ∈ [0, T ] a.e.

‖w′
h‖H1(Ω)′ = sup

w∈H1(Ω)

〈w′
h, w〉

‖w‖H1(Ω)
= sup

w∈H1(Ω)

〈w′
h, Phw〉

‖w‖H1(Ω)
.(4.15)

Now we use (vh, ψh) = (Phw, 0) in (4.11) and obtain for t ∈ [0, T ] a.e.

〈w′
h, Phw〉 = −

∫

Ω

κ∇wh · ∇Phw dx− 〈ζh, Phw
−|∂Ω〉 + 〈w′, Phw〉

+

∫

Ω

κ∇w · ∇Phw dx+ 〈ζ, Phw
−|∂Ω〉
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≤ c7‖Phw‖H1(Ω)

(

‖wh‖H1(Ω) + ‖ζh‖
H

−
1

2
⋄ (∂Ω)

+‖w‖W + ‖ζ‖
H

−
1

2
⋄ (∂Ω)

)

.

Squaring and then integrating (4.15) from 0 to T and combining it with the
inequality above, (4.7) and (4.14), we obtain

‖w′
h‖L2(0,T,H1(Ω)′) ≤ c8

(

‖w‖W + ‖ζ‖
H

−
1

2
,0

⋄ (∂Ω)

)

.

In particular Lemma 4.4 holds for (uh, φh) and (u, φ).

We proof a variant of Céa’s Lemma for this time-dependent problem.

Theorem 4.5. Assume that (u, φ) and (uh, φh) are solutions of (4.5) with u(x, 0) = 0
and of the Galerkin scheme, respectively. Then there exists c > 0 such that

‖u− uh‖W + ‖φ− φh‖
H

−
1

2
,0

⋄ (∂Ω)

≤ c inf

{

‖u− zh‖W + ‖φ− χh‖
H

−
1

2
,0

⋄ (∂Ω)
: zh ∈ HT

h , χh ∈ BT
h

}

.

Proof. (u, φ) and (uh, φh) obviously satisfy (4.11).
Let (zh, χh) ∈ HT

h × BT
h we set (e1, e2) := (uh, φh) − (zh, χh) and (ǫ1, ǫ2) := (u, φ) −

(zh, χh). Then (4.11) yields

〈e′1, vh〉 +

∫

Ω

κ∇e1 · ∇vh dx+ 〈e2, v
−
h |∂Ω〉 − 〈ψh, λe2〉 + 〈ψh, e

−
1 |∂Ω〉

= 〈ǫ′1, vh〉 +

∫

Ω

κ∇ǫ1 · ∇vh dx+ 〈ǫ2, v
−
h |∂Ω〉 − 〈ψh, λǫ2〉 + 〈ψh, ǫ

−
1 |∂Ω〉

for all (vh, ψh) ∈ Hh ×Bh and for t ∈ [0, T ] a.e.. Lemma 4.4 shows that

‖e1‖W + ‖e2‖
H

−
1

2
,0

⋄ (∂Ω)
≤ c1

(

‖ǫ1‖W + ‖ǫ2‖
H

−
1

2
,0

⋄ (∂Ω)

)

.

Hence

‖(uh, φh) − (u, φ)‖
W×H

−
1

2
,0

⋄ (∂Ω)

≤ c2 inf

{

‖(u, φ) − (zh, χh)‖
W×H

−
1

2
,0

⋄ (∂Ω)
: zh ∈ HT

h , χh ∈ BT
h

}

which is the desired estimate.

For our numerical examples we choose the same subspaces as in [9] and [23], i.e. Hh

consists of continuous functions, which are piecewise linear on a finite element grid
and Bh consists of piecewise constant functions. (4.9), (4.10) are solved numerically
by a Crank-Nicolson method, i.e. we solve in each time-step the linear system of
equations
[

I + ∆t
2 K

∆t
2 B

− 1
2B

T 1
2D

] [

α(t+ ∆t)
β(t+ ∆t)

]

=

[

I − ∆t
2 K −∆t

2 B
1
2B

T − 1
2D

] [

α(t)
β(t)

]

+

[

0
d(t)

]

,

with α(0) = 0 and β(0) = D−1d(0).

For the calculation of ξ and λ we use a boundary element method.
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Fig. 4.1. Left: The exact eigenvalues λ̃k from A. Right: Exact (·) and perturbed (◦) averaged
eigenvalues.

4.2. Implementation of the inverse problem. In this subsection we demon-
strate how the factorization method can be used to solve the inverse problem, i.e. to
locate the inclusion Ω from the knowledge of IΛI ′. We assume that we are given a fi-
nite dimensional approximation of IΛI ′, thus a matrix A ∈ R

m×m. Let (vk)k∈N, resp.
(ṽk)m

k=1 be the eigenfunctions of IΛI ′, resp. A with associated eigenvalues (λk)k∈N,

resp. (λ̃k)k∈N. Since IΛI ′ is self-adjoint and positive the matrix A is symmetric and
positive, too.

According to Corollary 3.9 a point z ∈ B belongs to the inclusion Ω if and only if the
infinite series

∑

k∈N

(hz,d, vk)
2
L2(∂B)

λk

converges. For the numerical realization we have to decide about the convergence of
this series from the knowledge of the finite sum

m
∑

k=1

(hz,d, ṽk)
2
L2(∂B)

λ̃k

.

For that we carry forward the ideas from [4]. Numerical examples show, that the
nominator and the denominator of the above series decay more or less exponentially
and that every two eigenvalues have approximately the same value, c.f. left picture
of figure 4.1. Motivated by the examples and the method from [4] we compare the

slopes of the least squares fitting straight lines of h1(k) = log

(

√

λ̃2k−1λ̃2k

)

and of

h2(k) = log

(

1

2

(

(hz,d, ṽ2k−1)
2
L2(∂B) + (hz,d, ṽ2k)

2
L2(∂B)

)

)

, k = 1, . . . , r .

We mark a sampling point z as inside the inclusion, if h1 decays slower than h2. On
the right side of figure 4.2 the algorithm is demonstrated for two test points. If we
apply this method to a large number of points, the black area on the left side of figure
4.2 illustrates the reconstruction of the inclusion (dashed curve).

The number of the eigenvalues and Fourier coefficients which are used in the re-
construction procedure depends on the quality of the data. If A is known up to a
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Fig. 4.2. Least squares fitting straight lines of h2(k) for a point inside (△) and outside (▽)
the inclusion compared with the least squares fitting straight line of h1(k) (·).

perturbation of δ > 0 (with respect to the spectral norm), then we trust in those
eigenvalues which are larger than δ. On the left side of figure 4.1, δ corresponds to
the computational accuracy. The right side of figure 4.1 shows the effect of a relative
noise of 0.1% on the eigenvalues, thus δ = 0.1% · λ̃1. The first three averaged pairs
of the perturbed eigenvalues have nearly the exact values and they show the same
exponential decay rates.

4.3. Numerical examples. To test this reconstruction algorithm we simulate
the direct problem to produce the data. For this purpose we calculate the Dirichlet
boundary data fk = IΛI ′gk, where (gk)m

k=1 are orthogonal input patterns. In the
first examples this data was used for inversion. In the final example these data was
perturbed with noise.

We restrict us to the case where κ(x) = 2 for x ∈ Ω and B is the unit disc in R
2. For

this case the function hz,d is known explicitly

hz,d(x) =
1

π

(z − x) · d

|z − x|2
.

First we aim to reconstruct a single circle in the interior of B. The result is shown in
the left picture of figure 4.2. The location of Ω is detected but the size is underesti-
mated.

In the second example four inclusions of different size should be located. In figure 4.3
we demonstrate the possibility of the method to reconstruct non connected inclusions.
The position and the different size of each is detected.

Our next example is to detect a non convex moon like inclusion, c.f. figure 4.4. The
top left picture shows the reconstruction with exact data. The shape of the moon is
recovered but the size is underestimated. Next we show the influence of noise to the
reconstructions. By adding 0.05%, 0.1%, resp., 1% noise the position of the inclusion
is found, but the quality decreases with increasing noise level, c.f. the top right and
bottom pictures in figure 4.4.

The last example shows the reconstruction of a single circle by partial boundary
measurements (cf. our remark at the end of section 3). The location of the inclusion
is detected and the shape next to the measuring boundary is recovered, see figure 4.5.
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Fig. 4.3. Reconstruction of four inclusions (dashed curves).
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Fig. 4.4. Reconstruction of a non convex inclusion (dashed curve), top left: with exact data,
and with perturbed data, top right: 0.05% noise, bottom left: 0.1% noise, bottom right: 1% noise.
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Fig. 4.5. Reconstruction of an inclusion (dashed curve) by using partial boundary measurements
(bold boundary).
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