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REGULARIZATION OF ILL-POSED LINEAR EQUATIONS BY THE
NON-STATIONARY AUGMENTED LAGRANGIAN METHOD

KLAUS FRICK AND OTMAR SCHERZER

Abstract. In this paper, we make a convergence rates analysis of the non-stationary Aug-

mented Lagrangian Method for the solution of linear inverse problems. The motivation for
the analysis is the fact that the Tikhonov-Morozov Method is a special instance of the Aug-

mented Lagrangian Method. In turn, the later is also equivalent to iterative Bregman distance

regularization, which received much attention in the imaging literature recently.
We base the analysis of the Augmented Lagrangian Method on convex duality arguments.

Thereby, we can reprove some of the convergence (rates) results for the Tikhonov Morozov

Method. In addition, by the novel analysis we can prove novel convergence and convergence
rates results for the dual variables of the Augmented Lagrangian methods. Reinterpretation of

the dual variables for the Tikhonov-Morozov Method gives some new convergence rates results

for the linear functionals of the regularized solutions. As a benchmark for achievable conver-
gence rates of the Augmented Lagrangian Method in the general convex context we use the

results on evaluation of unbounded operators of Groetsch [13], which is a special instance of the
Tikhonov-Morozov method. In addition we derive the flow, which interpolates the iterates of

the Augmented Lagrangian Method and show the relation to Showalter’s method.

1. Introduction

In this paper, we are concerned with solving constrained optimization problems

J(u)→ min subject to Ku = g , (1)

where J is a convex functional and K : H1 → H2 is a linear bounded operator between Hilbert
space H1 and H2. Minimizers of (1) are called J-minimizing solutions of the equation

Ku = g. (2)

Our main interests are ill–posed equations, that is, when the solution of (2) does not depend
continuously on the data g. Our analysis takes into account data perturbations in g, which are
denoted by gδ, for which we assume that we have the additional information that∥∥gδ − g∥∥ ≤ δ. (3)

The prime application of the Augmented Lagrangian Method (the ALM) is to solve constrained
optimization problems of the form (1) and reads as follows:

Algorithm 1.1 (the ALM). Let pδ0 ∈ H2 and choose a sequence {τn}n∈N of positive parameters.
For n = 1, 2, . . . compute

uδn ∈ argmin
u∈H1

(τn
2

∥∥Ku− gδ∥∥2
+ J(u)−

〈
pδn−1,Ku− gδ

〉)
and (4a)

pδn = pδn−1 + τn(gδ −Kuδn). (4b)

Historically, the ALM dates back to Hestenes [16] and Powell [25] (there called method of
multipliers). For background references on the ALM we refer to Fortin & Glowinski [10] and the
recent book by Ito & Kunisch [20]. In the context of imaging and total variation regularization
the ALM has been considered for instance in [19].

The Tikhonov-Morozov method is another examples of a regularization method for solving
constrained minimization problems. Our subjective opinion is that the Tikhonov-Morozov theory
has not been considered in the same general setting as the ALM. However the theoretical results,
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especially convergence rates, seem to go much beyond the theory of the ALM. We will show this
by a comparison of the results of the respective fields.

We follow the relevant literature of Tikhonov-Morozov regularization and work with a linear
and closed operator L : D(L) ⊂ H1 → H, whose domain of definition D(L) is a dense subset of
H1. For the comparison with the ALM we use the convex functional

J(u) =
1
2
‖Lu‖2 , (5)

and then the Tikhonov-Morozov method consists in choosing uδ0 ∈ H1 and by iteratively calculating

uδn := argmin
u∈H1

(τn
2

∥∥Ku− gδ∥∥2
+ J(u− uδn−1)

)
. (6)

It is common to differ between stationary and non-stationary methods, depending on whether the
parameters τn are chosen constant or variable.

The present paper shows that Tikhonov-Morozov regularization and the ALM, with convex
penalization functional J from (5), are equivalent. Recently, there have been several publications
revealing the equivalence relation between the ALM and iterative Bregman-Distance Regularization
(see Setzer [29] and the first authors’s thesis [11]), which consists in iterative calculation of

uδn := argmin
u∈H1

(
τn
2

∥∥Ku− gδ∥∥2
+D

K∗pδn−1
J (u, uδn−1)

)
,

where Dξ
J(u, v) denotes the Bregman-distance between u and v with respect to ξ (cf. Section 2).

Bregman Distance Regularization has been suggested in [24] and analyzed from a regularization
theoretic point of view, with the background of total variation minimization in [6]. Note, how-
ever, that general results for the ALM apply also to Bregman Distance Regularization, due to
cited equivalence relations. As a further consequence of the above discussion Tikhonov-Morozov
regularization is equivalent to Bregman distance regularization when the penalization functional
J from (5) is used. Therefore, all results in this paper, which we derive for the ALM, are equally
valid for Bregman Distance Regularization, and in particular for the Tikhonov-Morozov method.

Moreover, we show that by using Rockafeller’s duality concept [27] the dual iterates
{
pδn
}
n∈N of

the ALM can be rewritten as minimizers of a generalized iterated Tikhonov-Morozov regularization
method, the so called proximal point method. By generalized we mean that the fit-to-data term is
a general convex functional G(·, gδ) and not the square of a norm. In general the convergence rate
analysis of regularization methods with general fit-to-data terms is by far from being as complete
in comparison with quadratic regularization. The outlined relations, however, given an indication
of a convergence rates analysis of the ALM based on dual variables. In particular, as we show,
making a convergence rates analysis for the dual iterates allows for deriving convergence rates for
the primal iterates. This is the main contribution of this paper.

To summarize, we show below that the ALM is equivalent to a generalized iterative Tikhonov-
Morozov method for dual variables.

An important application of Tikhonov-Morozov regularization is the evaluation of an unbounded
operator L, which is a standard example of an ill–posed problem. In this case we have the particular
situation of above with K = Id. A typical example of an unbounded operator L is the Moore-
Penrose inverse (see [22]) of a compact linear operator. For evaluation of unbounded operators,
Morozov [21] proposed a regularization method consisting in calculating Luδα, where

uδα := argmin
(∥∥u− uδ∥∥2

+ τ−1 ‖Lu‖2
)
, (7)

for some τ > 0. This is equivalent to computing uδα = (τ + L∗L)−1uδ. The major player in the
field of analysis of regularization methods for evaluation of unbounded operators is C. W. Groetsch
(see his monograph [13]): For instance he proved optimal convergence rates up to maximal order
O(δ2/3). Faster convergence rates are possible for the iterative Tikhonov-Morozov method, which
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uses for approximation of Lu the evaluations of the iterates uδn, which are then defined as the
minimizers of the functional

u→
(∥∥u− uδ∥∥2

+ τ−1
n

∥∥Lu− Luδn−1

∥∥2
)
. (8)

Here, in contrast to the standard Morozov regularization, it has been shown that with an ap-
propriate choice of the regularization parameters, {τn}n∈N and the stopping iteration n∗, both
depending on δ, convergence rates up to order δ are possible [13].

We believe that many convergence and stability results known for Tikhonov-Morozov regular-
ization are still open for the ALM - that is, in the general convex setting. This paper makes the
attempt to point out some of the open issues which can be further considered when generalizing
variational regularization theory for unbounded operators and for the Tikhonov-Morozov method.
In this sense, the work of Groetsch [13] serves as a benchmark on achievable results in the general
setting. A novel facet of the convergence analysis is that we add (weak) convergence and rates
results for the dual variables of the ALM. Currently, in fact, convergence rates results for the
Tikhonov-Morozov method are just expressed with respect to the residuals and the iterates. In
the context of Tikhonov-Morozov method, the errors of the dual variables can be expressed as
functionals of the residuals, for which convergence rates then follow from the theory of the ALM.
It will become transparent that convergence rates of residuals, iterates, and dual variables are
strongly coupled.

Finally, we investigate asymptotic methods, which interpolate the iterates of the ALM. Since
the ALM and Bregman distance regularization are equivalent, we call the resulting continuous
regularization method Bregman distance flow (see for instance [4] for examples of such flows).
With the functional (5) this flow method resembles the Showalter method, as a method, which
interpolates the Tikhonov-Morozov method. Again, we use convex duality arguments combined
with standard results from semi-group theory for proving existence of solutions of flows.

2. Basic Definitions

The aim of this section is to summarize the basic definitions and assumptions needed to perform
a convergence analysis of the ALM. We use the following basic assumptions and notions from
convex analysis:

Assumption 2.1. (i) H1, H2, and H denote non-empty Hilbert spaces. The norms on H1, H2,
and H, respectively are not further specified, and will be always denoted by ‖·‖, since the
meaning is clear from the context.

(ii) Let J : H1 → R be a convex functional from H1 into the extended reals R = R ∪ {∞}. The
domain of J is defined by

D(J) = {u ∈ H1 : J(u) 6=∞} .

J is called proper if D(J) 6= ∅ and J(u) > −∞ for all u ∈ H1. Throughout this paper J
denotes a convex, proper and lower semi-continuous (l.s.c.) functional.

(iii) K : H1 → H2 is a linear and bounded operator.

In the course of this paper we will frequently make use of tools from convex analysis. For a
standard reference we refer to Ekeland & Temam [8].

• The subdifferential (or generalized derivative) ∂J(u) of J at u is the set of all elements
p ∈ H1 satisfying

J(v)− J(u)− 〈p, v − u〉 ≥ 0.

When the subgradient consists of a single element, here and in the following, we identify
the subgradient with the element. The domain D(∂J) of the subgradient consists of all
u ∈ H1 for which ∂J(u) 6= ∅. Finally, we define the graph of ∂J as

Gr(∂J) := {(u, p) ∈ H1 ×H1 : p ∈ ∂J(u)} .
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According to [8, Chap.1 Cor 5.1], the set Gr(∂J) is sequentially closed w.r.t. strong-weak
topology on H1×H1. That is, if the sequence {(un, vn)}n∈N of elements in Gr(∂J) satisfies
that un converges weakly to u and vn converges strongly to v, then (u, v) ∈ Gr(∂J).

• The functional J∗ : H1 → R denotes the Legendre-Fenchel transform (or the dual func-
tional) of J , which is defined by

J∗(v) := sup
u∈H1

(〈v, u〉 − J(u)). (9)

From its definition it becomes clear, that J∗ is the pointwise supremum of affine functions
and thus, according to [8, Chap I, Prop. 3.1], convex, l.s.c. and proper. Moreover, one
has [8, Chap I, Cor. 5.2.]

p ∈ ∂J(u)⇔ u ∈ ∂J∗(p). (10)

• Typically, convergence of the ALM is proven with respect to the Bregman-distance. For
u ∈ D(∂J) the Bregman distance of J between u and v w.r.t to ξ ∈ ∂J(u) is defined by

Dξ
J(v, u) = J(v)− J(u)− 〈ξ, v − u〉 .

Next, we introduce different classes of solutions for Equation (2) discussed in this paper.

Definition 2.2. (i) An element u ∈ H1 satisfying (2) is called a solution of (2).
(ii) Let u ∈ D(J) be a solution of g = Ku. Then g is called attainable.
(iii) An element u ∈ D(J) is called J-minimizing solution of (2), if u solves (1).
(iv) Let g ∈ H2 be attainable. An element p ∈ H2 is called a source element if there exists a

J-minimizing solution u of (2) such that

K∗p ∈ ∂J(u). (11)

Then, we say hat u satisfies the source condition (11).

In general, Assumption 2.1 is not enough to guarantee existence of J-minimizing solutions or
the well-posedness of the ALM. For that, one needs a coercivity condition, like the following:

Assumption 2.3. For each c ∈ R, the sub-level sets of the functional

u→ ‖Ku‖2 + J(u)

are sequentially pre-compact with respect to the weak topology on H1. That is, for every c ∈ R,
every sequence {un}n∈N contained in the sub-level set

Λ(c) =
{
u ∈ H1 : ‖Ku‖2 + J(u) ≤ c

}
has a weak convergent subsequence in H1.

In the remainder of this section we discuss the notions introduced above for the particular
example, when J is chosen as in (5), i.e. when the ALM reduces to the Tikhonov-Morozov
method.

As it is common in the theory of the Tikhonov-Morozov method [21] and the evaluation of
unbounded operators [13], let L : D(L) ⊂ H1 → H be a linear and closed operator defined on the
dense subset D(L) ⊂ H1 6= ∅. Closed means that the graph of L,

Gr(L) = {(u, v) ∈ H1 ×H : L(u) = v}

is sequentially closed in H1 × H. Since D(L) is assumed to be dense, there exists an adjoint
operator [34, Chap. VII.2]

L∗ : D(L∗) ⊂ H → H1

with domain
D(L∗) := {v ∈ H : u 7→ 〈Lu, v〉 is continuous}

satisfying
〈Lu, v〉 = 〈x, L∗v〉 for all u ∈ D(L), v ∈ D(L∗).
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In this context, the precise meaning of J : H1 → R as in (5) is as follows:

J(u) =

{
1
2 ‖Lu‖

2 if u ∈ D(L)
+∞ else.

(12)

In the following lemma we give a characterization of the subgradient, the Bregman distance, and
the domain D(∂J) of J as defined in (12).

Lemma 2.4. The functional J is proper, convex, and l.s.c. Moreover, D(∂J) = D(L∗L) and the
subgradient is given by

∂J(u) =

{
L∗Lu if u ∈ D(L∗L)
∅ else.

Proof. Since L is densely defined on a non-empty Hilbert space, J is proper. Moreover, convexity
follows from the linearity of L and the convexity of 1

2 ‖·‖
2.

We prove lower semi-continuity: Assume that
{
uδn
}
n∈N is a convergent sequence with limit u

in H1. If
{
Luδn

}
n∈N converges in H to an element v, then from the closedness of L it follows that

Lu = v. Therefore, ‖Lu‖2 = lim
∥∥Luδn∥∥ = lim infn→∞

∥∥Luδn∥∥.
If Luδn does not converge, then we differ between the case that there exists a subsequence of{
uδρ(n)

}
n∈N

such that lim infn→∞ J(uδρ(n)) = +∞ or
{
uδn
}
n∈N is bounded. In the first case it is

obvious that J(v) ≤ lim infn→∞ J(uδρ(n)) = +∞ and nothing remains to be shown.

In the second case, we can select a sub-sequence
{
Luδρ(n)

}
n∈N

which is weakly convergent to

some v ∈ H2. Since Gr(L) ⊂ H1 × H is closed and convex it is weakly closed (cf. [34, Thm.
III.3.8]) and thus uρ(n) → u implies Lu = v. Weak lower semi-continuity of the norm eventually
gives

J(u) =
1
2
‖Lu‖2 ≤ lim inf

n→∞

1
2

∥∥Luρ(n)

∥∥2
.

It remains to show that D(∂J) = D(L∗L) and ∂J(u) = L∗Lu for u ∈ D(L∗L). By verification
it follows that L∗Lu ∈ ∂J(u), whenever u ∈ D(L∗L). Next, we prove that the operator Gr(L∗L) is
maximal monotone. That is, Gr(L∗L) is not properly contained in any monotone set in H1 ×H1.
The elementary inequality

〈L∗Lu1 − L∗Lu2, u1 − u2〉 = ‖Lu1 − Lu2‖2 ≥ 0

for all ui ∈ D(L∗L) (i = 1, 2), shows that Gr(L∗L) is a monotone subset of H1 ×H1. Since D(L)
is dense by assumption, L∗L is densely defined and self-adjoint and therefore closed in H1 ×H1

([34, Cor. VII 2.13]). This, however, is already sufficient for Gr(L∗L) to be maximal monotone
(see e.g. [18, Chap.3 Thm.1.45]) The subgradient of a convex and l.s.c. functional is maximal
monotone Since ∂J is (maximal) monotone and due to the fact that

L∗Lu ⊂ ∂J(u)

this shows {L∗Lu} = ∂J(u) for all u ∈ D(L∗L). �

The next remark concerns the Bregman distance of J as in (12) as well as the interpretations
of the notions of Definition 2.2:

Remark 2.5. Let J be as in (12).
(i) For v ∈ D(L) and u ∈ D(L∗L), we have

DL∗Lu
J (v, u) =

1
2
‖L(u− v)‖2 .

(ii) An element g ∈ H2 is attainable, if K−1({g}) ∩D(L) 6= ∅.
(iii) A J-minimizing solution u satisfies the source condition (11), if u ∈ D(L∗L) and if there

exists p ∈ H2 such that
K∗p = L∗Lu.
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3. Well-posedness and the Equivalence of ALM and Bregman-distance
regularization

In this section we review results on well-definedness and monotonicity properties of the ALM
(cf. Algorithm 1.1). Proving well-definedness of the ALM reduces to proving that there exists a
minimizer in (4a). We will do this, by proving that for arbitrary q, f ∈ H2 the functional

I(u) :=
τ

2
‖Ku− f‖2 + J(u)− 〈q,Ku− f〉

=
τ

2

∥∥Ku− (f + τ−1q)
∥∥2

+ J(u)− τ−1 ‖q‖2
(13)

has a minimizer.

Theorem 3.1. Let Assumptions 2.1 and 2.3 hold. Moreover, let g ∈ H2 be attainable and gδ ∈ H2.
Then, there exists a J-minimizing solution of (2) and Algorithm 1.1 is well defined. Moreover,

K∗pδn ∈ ∂J(uδn) for all n = 1, 2, . . . (14)

Proof. Let C ⊂ H1 be a closed and convex set such D(J) ∩ C 6= ∅ and let q, f ∈ H2 and τ > 0.
We prove that the functional I has a minimizer in C. Then, application with C = H1, f = gδ and
q = pδn−1 gives well-posedness of the ALM and with f = g and C = K−1({g}) gives existence of
a J-minimizing solution.

Let {uk}k∈N be a minimizing sequence in C. Then it follows that

sup
τ

2

(∥∥Kuk − (f + τ−1q)
∥∥2

+ J(uk)
)
<∞

and consequently that uk ∈ Λ(c) for all k ∈ N and a suitably chosen c ∈ R. Then, by Assumption
2.3, we can select a weakly convergent subsequence indexed by ρ(n) and with weak limit û. Since C
is closed and convex it is weakly closed and therefore û ∈ C. Moreover, weak lower semi-continuity
of J implies weak lower semi-continuity of I and thus

I(û) ≤ lim inf
k→∞

I(uρ(k)) = inf
u∈C

I(u).

Hence, û minimizes I over C.
For proving the second assertion, from (4a) we see that the optimality condition for uδn is

K∗pδn−1 − τnK∗(Kuδn − gδ) ∈ ∂J(uδn).

By application of K∗ to both sides of (4b) it follows that

K∗pδn = K∗pδn−1 − τnK∗(Kuδn − gδ).

Combination of both inclusions shows that

K∗pδn ∈ ∂J(uδn) for all n ∈ N.

�

Remark 3.2. As we have already used in the proof above, the minimizer of (4a) is not affected
by adding constant functionals with respect to u to the objective functional. In such a way we
can formulate an equivalent minimization problems to (4a) by adding the term

−
(
J(uδn−1) +

〈
pδn−1, g

δ +Kuδn−1

〉)
.

The modified optimization problem then results in Bregman distance regularization

uδn ∈ argmin
u∈H1

(τn
2

∥∥Ku− gδ∥∥2
+ J(u)− J(uδn−1)−

〈
K∗pδn−1, u− uδn−1

〉)
= argmin

u∈H1

(
τn
2

∥∥Ku− gδ∥∥2
+D

K∗pδn−1
J (u, uδn−1)

)
,

(15)

Thus the ALM is equivalent to Bregman-distance regularization and the results for the respective
other method apply.
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We close this section with the basic observation that the residuals
∥∥Kuδn − gδ∥∥ in the ALM are

non-increasing. We also note that a uniform bound for the residuals can be given, provided that
the initial multiplier pδ0 in the ALM satisfies appropriate restrictions.

Corollary 3.3. For pδ0 ∈ H2 the iterates of the ALM satisfy∥∥Kuδn − gδ∥∥ ≤ ∥∥Kuδn−1 − gδ
∥∥ , n = 2, 3, . . . (16)

If, in addition, pδ0 satisfies
K∗pδ0 ∈ ∂J(uδ0) , (17)

then the inequality (16) also holds for n = 1.

Proof. From Theorem 3.1 we know that K∗pδn−1 ∈ ∂J(uδn−1) for all n = 2, 3, . . .. The definition
of the subgradient hence gives for all u ∈ U

J(u)− J(uδn−1) +
〈
K∗pδn−1, u

δ
n−1 − u

〉
≥ 0.

Then, by choosing u = uδn we find that
τn
2

∥∥Kuδn − gδ∥∥2

≤τn
2

∥∥Kuδn − gδ∥∥2
+ J(uδn)− J(uδn−1) +

〈
K∗pδn−1, u

δ
n−1 − uδn

〉
=
τn
2

∥∥Kuδn − gδ∥∥2
+ J(uδn)−

〈
pδn−1,Ku

δ
n − gδ

〉
− J(uδn−1) +

〈
pδn−1,Ku

δ
n−1 − gδ

〉
.

(18)

From the definition of the ALM it follows that
τn
2

∥∥Kuδn − gδ∥∥2
+ J(uδn)−

〈
pδn−1,Ku

δ
n − gδ

〉
≤τn

2

∥∥Kuδn−1 − gδ
∥∥2

+ J(uδn−1)−
〈
pδn−1,Ku

δ
n−1 − gδ

〉
.

Using this estimate together with (18) shows that
τn
2

∥∥Kuδn − gδ∥∥2 ≤ τn
2

∥∥Kuδn−1 − gδ
∥∥2
.

The proof of the second assertion uses the additional assumption on pδ0 which makes the above
proof applicable also in the case n = 1.

�

We remark that from the definition of the ALM it follows that∥∥pδn − pδn−1

∥∥
τn

=
∥∥Kuδn − gδ∥∥

and therefore the scaled difference of dual variables is decreasing.

4. Duality: ALM and the Proximal Point Method

We review a duality concept due to Rockafellar [27], which characterizes the sequence
{
pδn
}
n∈N

in the ALM by the proximal point method. This will be the key to the convergence analysis of the
ALM on the one hand (cf. Sections 5 and 6) and to the analysis of related evolution equations
(cf. Section 7) on the other hand.

To show this relation, we introduce the descent functional G : H2 ×H2 → R, defined by

G(p, g) := (J∗ ◦K∗)(p)− 〈p, g〉 . (19)

The descent functional (19) exhibits the following properties:

Lemma 4.1. For g ∈ H2 let

F (h, g) :=

{
inf {J(v) : v ∈ H1, Kv = g + h} if g + h is attainable
+∞ else.

Then
G(p, g) = F ∗(·, g)(p) ,
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where F ∗(·, g) denotes the Fenchel dual of F with respect to the first variable. In particular, if g
is attainable, G(·, g) is bounded from below.

Proof. Let g ∈ H2 and define Ag ⊂ H2 be the collection of all h ∈ H2, such that g + h is
attainable. Since J is assumed to be proper, we have that Ag 6= ∅ and from the definition of the
Legendre-Fenchel transform in (9) and the definition of F it follows

F ∗(·, g)(p) = sup
h∈H2

(〈p, h〉 − F (h, g))

= sup
h∈Ag

(〈p, h〉 − inf {J(v) : v ∈ H1, Kv = g + h})

The last term can be rewritten to

sup
h∈Ag

(〈p, h〉 − inf {J(v) : v ∈ H1, Kv = g + h}) = sup
h∈Ag

sup
Kv=g+h

(〈p, h〉 − J(v)) .

Now, taking into account that the second supremum is taken over all v that satisfy h = Kv− g it
follows that

sup
h∈Ag

sup
Kv=g+h

(〈p, h〉 − J(v)) = sup
h∈Ag

sup
Kv=g+h

(〈K∗p, v〉 − J(v))− 〈p, g〉 . (20)

Therefore, eventually, we find by using again the definition of the Legendre-Fenchel transform

F ∗(·, g)(p) = sup
v∈H1

(〈K∗p, v〉 − J(v))− 〈p, g〉

= J∗(K∗p)− 〈p, g〉
= G(p, g).

If g is attainable, there exists v0 ∈ D(J) such that Kv0 = g, and then it follows from (20) by
estimating the supremum of the functional with the evaluation at h = 0 that

G(p, g) ≥ − inf {J(v) : v ∈ H1, Kv = g} ≥ −J(v0) .

Since v0 ∈ D(J), G(·, g) is bounded from below. �

In the following, we derive an equivalent characterization for the dual variables
{
pδn
}
n∈N of the

ALM, which is independent of the primal variables of
{
uδn
}
n∈N. This observation dates back to

the work of Rockafellar in [27].

Proposition 4.2. Let gδ ∈ H2. Then, for n = 1, 2, . . .

pδn = argmin
p∈H2

(
1
2

∥∥p− pδn−1

∥∥2
+ τnG(p, gδ)

)
. (21)

Proof. From (14) we find that K∗pδn ∈ ∂J(uδn) for all n = 2, 3, . . . and thus it follows from (10)
that

uδn ∈ ∂J∗
(
K∗pδn

)
.

Then, from the definition of a subdifferential, it follows that for all ξ ∈ H1〈
uδn, ξ −K∗pδn

〉
+ J∗(K∗pδn) ≤ J∗(ξ) .

For p ∈ H2 and ξ = K∗p we then get〈
Kuδn, p− pδn

〉
=
〈
uδn,K

∗p−K∗pδn
〉
≤ J(K∗p)− J∗(K∗pδn)

which is equivalent to that Kuδn ∈ ∂ (J∗ ◦K∗) (pδn). Taking into account the definition of pδn in
the ALM, it follows that

τ−1
n (pδn−1 − pδn) ∈ ∂ (J∗ ◦K∗) (pδn)− gδ = ∂G(·, gδ)(pδn).

which is equivalent to that (21) holds. �
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We emphasize, that in the regularization community the determination of pδn is a general it-
erative Tikhonov-Morozov method, with a general fit-to-data functional G(p, gδ). In general,
convergence rates results of iterative Tikhonov-Morozov methods with general fit-to-data term
have not been subject of extensive research; In contrast to the non-iterative case, where we refer
to [7], [17], [32] or [28] for a few references concerned with this subject.

The assertion of the above theorem, though long well known, is the key tool for the present
analysis. The alternative characterization of the sequence of dual variables

{
pδn
}
n∈N of the ALM

as proximal point algorithm allows to apply the respective theory, and also at a later stage the
analysis of flows interpolating the iterates of the dual variables of the ALM (cf. Section 7). Even
more, a convergence analysis of the sequence of dual variables

{
pδn
}
n∈N opens up the tools to

study regularizing properties of the ALM, which is the subject of Sections 5 and 6 below.

5. Convergence Analysis

In this section we perform a convergence analysis of the ALM. The basis of this analysis is an
error estimate developed by Güler in [15], which is reviewed in Proposition 5.1. Eventually, using
this fundamental estimate, we are able to derive convergence rates results for the ALM. This will
be done in Section 6 below. Moreover, these estimates are optimal for the particular case of the
Tikhonov-Morozov regularization (6). Here, we state Güler’s result:

Proposition 5.1. [15, Lem. 2.2] Let gδ ∈ H2 and set

tn :=
n∑
k=1

τk . (22)

Then, for all n ∈ N and all p ∈ H2

G(pδn, g
δ)−G(p, gδ) ≤

∥∥p− pδ0∥∥2

2tn
−
∥∥p− pδn∥∥2

2tn
−
tn
∥∥pδn − pδn−1

∥∥2

2τ2
n

. (23)

As a first consequence of Proposition 5.1 we derive an upper bound for the residuals in the
ALM, i.e. for the term

∥∥Kuδn − gδ∥∥.

Corollary 5.2. Let g ∈ H2 be attainable and gδ ∈ H2 such that
∥∥g − gδ∥∥ ≤ δ. Then,

1
2

∥∥Kuδn − gδ∥∥2 ≤ G(pδ0, g)− infp∈H2 G(p, g)
tn

+
δ2

2
. (24)

Proof. Setting p = pδ0 in (23) yields

tn
2τ2
n

∥∥pδn − pδn−1

∥∥2 ≤ G(pδ0, g
δ)−G(pδn, g

δ)−
∥∥pδ0 − pδn∥∥2

2tn
. (25)

From the definition of G it follows that

G(pδ0, g
δ)−G(pδn, g

δ) = G(pδ0, g)−G(pδn, g) +
〈
pδ0 − pδn, g − gδ

〉
. (26)

Combining (26) and Young’s inequality

〈p, q〉 ≤ ‖p‖
2

2tn
+
tn
2
‖q‖2 , p, q ∈ H2

with (25) implies that
tn

2τ2
n

∥∥pδn − pδn−1

∥∥2 ≤ G(pδ0, g)−G(pδn, g) +
tn
2

∥∥g − gδ∥∥2
.

Observing that−G(pδn, g) ≤ infp∈H2 G(p, g) <∞, where the second inequality follows from Lemma
4.1. This shows

tn
2τ2
n

∥∥pδn − pδn−1

∥∥2 ≤ G(pδ0, g)− inf
p∈H2

G(p, g) +
tn
2

∥∥g − gδ∥∥2
.

Finally, it follows from (4b) that
∥∥Kuδn − gδ∥∥ = τ−1

n

∥∥pδn − pδn−1

∥∥ and the assertion follows. �
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Now we formulate the main theorem of this section, which states that the ALM constitutes a
regularization method for the ill-posed Equation (2). For given noisy data gδ we choose sequences{
uδn
}
n∈N and

{
pδn
}
n∈N generated by the ALM (cf. Algorithm 1.1) and set

Rn(gδ) := uδn and R∗n(gδ) := pδn. (27)

Theorem 5.3. Let g ∈ H2 be attainable and {gk}k∈N ⊂ H2 be such that δk := ‖gk − g‖ → 0 as
k →∞. Further, let Γ : (0,∞)×H2 → N be such that

lim
k→∞

δ2
ktΓ(δk,gk) = 0 and lim

k→∞
tΓ(δk,gk) =∞. (28)

Then, there exists a number c ∈ R such that
{
RΓ(δk,gk)(gk)

}
∈ Λ(c) for all k ∈ N. In addition,

each weak cluster point is a J-minimizing solution of (2) and

lim
k→∞

J(RΓ(δk,gk)(gk)) = J(u†) and lim
k→∞

Dξk
J (u†,RΓ(δk,gk)(gk)) = 0, (29)

where ξk = K∗R∗Γ(δk,gk)(gk) ∈ ∂J(RΓ(δk,gk)(gk)). Moreover, the residuum satisfies the rate∥∥KRΓ(δk,gk)(gk)− g
∥∥ = O(t−1/2

Γ(δk,gk)). (30)

Proof. Let gδ ∈ H2 and set δ =
∥∥g − gδ∥∥. In the first step of the proof we derive an estimate for

the sequence
{
J(uδn)

}
n∈N.

From (14) we know that K∗pδn ∈ ∂J(uδn) for every n ∈ N, and thus from the definition of the
subgradient it follows that

J(uδn) ≤ J(u†) +
〈
K∗pδn, u

δ
n − u†

〉
= J(u†) +

〈
pδn,Ku

δ
n − gδ

〉
. (31)

Using Güler’s Proposition (5.1) and (26) it follows that for all n ∈ N and p ∈ H2∥∥p− pδn∥∥2

2tn
≤
∥∥p− pδ0∥∥2

2tn
−
tn
∥∥pδn − pδn−1

∥∥2

2τ2
n

+G(p, gδ)−G(pδn, gn)

≤
∥∥p− pδ0∥∥2

2tn
−
tn
∥∥pδn − pδn−1

∥∥2

2τ2
n

+G(p, g)−G(pδn, g) +
〈
p− pδn, g − gδ

〉
.

Then, by using Young’s inequality,〈
p− pδn, g − gδ

〉
≤ 1

4tn

∥∥p− pδn∥∥2
+ tnδ

2,

it follows that∥∥p− pδn∥∥2

4tn
≤
∥∥p− pδ0∥∥2

2tn
+ tnδ

2 − tn
2τ2
n

∥∥pδn − pδn−1

∥∥2
+G(p, g)−G(pδn, g).

Skipping the non-positive term in the previous inequality and using Lemma 4.1, which states that
−G(pδn, g) ≤ − infq∈H2 G(q, g) <∞, shows that∥∥p− pδn∥∥2

4tn
≤
∥∥p− pδ0∥∥2

2tn
+ tnδ

2
n +G(p, g)− inf

q∈H2
G(q, g). (32)

Now, let ε > 0 and choose an element pε ∈ H2 such that G(pε, g) ≤ infq∈H2 G(q, g) + ε. Then we
conclude from (32) with the setting p = pε that∥∥pε − pδn∥∥

2
√
tn

≤

√
‖pε − p0‖2

2tn
+ tnδ2 + ε. (33)

Set γ := G(p0, g)− inf p̃∈H2 G(p̃, g). Then, by using Corollary 5.2, which states that∥∥Kuδn − gδ∥∥ ≤√2γ
tn

+ δ2, (34)
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we obtain the desired estimate

J(uδn) ≤ J(u†) +
(
‖pε‖+

√
2
∥∥pε − pδ0∥∥2 + 4t2nδ2 + 4tnε

)√
2γ
tn

+ δ2. (35)

Now, let Γ : (0,∞) × H2 → N be such that (28) is satisfied. For the sake of simplicity, we
abbreviate

n(k) := Γ(δk, gk), uk := Rn(k)(gk) and pk := R∗n(k)(gk)

Then, by taking into account that δk → 0 and tn(k) →∞ as k →∞ it follows from (28) and (35)
that

lim sup
k→∞

J(uk) ≤ J(u†) + 2
√

2γε.

Since ε > 0 was arbitrary, the last inequality gives that

lim sup
k→∞

J(uk) ≤ J(u†). (36)

Furthermore, we find from (34) and (28) that

‖Kuk − g‖ ≤ ‖Kuk − gk‖+ δk ≤
√

2γ
tn(k)

+ δ2
k + δk = O(t−1/2

n(k) ), (37)

which shows (30). In particular, it follows from (36) and (37) that there exists a constant c ∈ R
such that

sup
(
‖Kuk‖2 + J(uk)

)
=: c <∞

or in other words, uk ∈ Λ(c) for all k ∈ N.
Consequently, according to Assumption 2.3, the sequence {uk}k∈N has a weakly convergent

subsequence, say, with weak limit û. Using the weak lower semi-continuity of the norm ‖·‖ and
the functional J , (37) and (36) show that

‖Kû− g‖ = 0 and J(û) ≤ J(u†).

That is, û is a J-minimizing solution of (2) and therefore J(û) = J(u†). In particular, for each
subsequence of {J(uk)}k∈N there exists a further subsequence that converges to J(u†). Therefore,
the first equality in (29) already holds for the whole sequence.

Finally, we find from (14) that ξk = K∗pk ∈ ∂J(uk) and thus it follows from (35) that for all
ε > 0

0 ≤ lim inf
k→∞

Dξk
J (u†, uk)

≤ lim sup
k→∞

Dξk
J (u†, uk)

= lim sup
k→∞

(
J(u†)− J(uk)−

〈
K∗pk, u

† − uk
〉)

= lim sup
k→∞

〈pk,Kuk − g〉 ≤ 2
√

2γε.

Since ε > 0 is arbitrary, the second equality in (29) follows. �

Theorem 5.3 shows that the ALM combined with the parameter choice (28) constitutes a
regularization method for the ill-posed equation (2), that is, for a sequence of data gk converging
to g, the ALM approaches a J-minimizing solution.

In general, when for instance J is not strictly convex, there might exist multiple solutions of (1).
We note, that the convergence result in (29) is valid for every choice of a J-minimizing solution.

Furthermore, the significance of the Bregman-distance increases with stronger convexity prop-
erties of J . For example, if J is a total convex function, then convergence in the Bregman-distance
implies strong convergence (we refer to the work of Resmerita in [26]).

We recall that the Tikhonov-Morozov method (6) is a particular example of the ALM when the
convex functional J from (5) is used. In this case Theorem 5.3 combined with Remark 2.5 implies
the following corollary:
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Corollary 5.4. Let L : D(L) ⊂ H1 → H be a linear and closed operator with dense domain
D(L), and let J be as in (5). Moreover, assume that the assumptions of Theorem 5.3 are met and
for k ∈ N abbreviate uk = RΓ(δk,gk)(gk). Then,

lim
k→∞

∥∥Luk − Lu†∥∥ = 0 and ‖Kuk − g‖ = O(t−1/2
Γ(δk,gk))

for all J-minimizing solutions u† of (2).

Remark 5.5. In particular Corollary 5.4 applies to the evaluation of unbounded operators. The
corresponding convergence results can be found e.g. in Groetsch’s book [13, Thm. 3.4]

Finally, we note that key feature of the proof of Theorem 5.3 is the fact that the descent
functional G(·, g) is bounded from below, when g is attainable. This is exploited in order to
gain an upper bound for {J(uk)}k∈N which opens the possibility to apply standard compactness
arguments. However, the infimum of G(·, g) is not attained unless the source condition (11) is
satisfied, as a consequence of which we made use of the approximate minimizers pε satisfying

G(pε, g) ≤ inf
p∈H2

G(p, g) + ε, for all p ∈ H2

If the data is not attainable, the so obtained estimate (35) in the proof of Theorem 5.3 results in
an arbitrarily slow speed of convergence in (29).

6. Convergence Rates

In this section we prove a convergence rate result for the iterates of the ALM under the source
condition (11). The result reduces to a standard convergence rates result for Tikhonov-Morozov
regularization, when J is chosen according to (5).

The following (classical) result reviews that existence of a J-minimizing solution that satisfies
the source condition (11) is equivalent to the Karush-Kuhn-Tucker conditions.

Proposition 6.1 (Karush-Kuhn-Tucker). Let g ∈ H2 be attainable, u† ∈ H1 and p† ∈ H2. Then
the following two statements are equivalent

(i) u† is a J-minimizing solution of (2), p† minimizes G(·, g) and

J(u†) + J∗(K∗p†) =
〈
p†, g

〉
.

(ii) The Karush-Kuhn-Tucker conditions hold:

Ku† = g and K∗p† ∈ ∂J(u†).

Proof. [8, Chap.3 Prop.4.1] �

In the following theorem we provide qualitative error estimates for the Bregman-distance of the
iterates, for the residuals and the dual variables of the ALM.

Theorem 6.2. Let g ∈ H2 be attainable and let gδ ∈ H2 satisfy (3). Assume further, that u† is a
J-minimizing solution of (2) that satisfies the source condition (11) with source element p† ∈ H2.
Then,

∥∥Kuδn − g∥∥2 ≤
∥∥p† − pδ0∥∥2

t2n
+ δ2 and DK∗p†

J (uδn, u
†) ≤

2
∥∥p† − pδ0∥∥2 + 4δ2t2n

tn
. (38)

Moreover, there exists a constant γ = γ(pδ0, p
†) such that∥∥pδn∥∥ ≤ γ + tnδ. (39)
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Proof. From Proposition 6.1 it follows that G(p†, g) ≤ G(p, g) for all p ∈ H2. Setting p = p† in
Proposition 5.1 then gives∥∥p† − pδn∥∥2

2tn
+
tn
∥∥pδn − pδn−1

∥∥2

2τ2
n

≤
∥∥p† − pδ0∥∥2

2tn
+G(p†, gδ)−G(pδn, g

δ)

=

∥∥p† − pδ0∥∥2

2tn
+G(p†, g)−G(pδn, g) +

〈
p† − pδn, g − gδ

〉
≤
∥∥p† − pδ0∥∥2

2tn
+
〈
p† − pδn, g − gδ

〉
.

(40)

Below, we apply two times Young’s inequality, which implies that for every ζ > 0∥∥p† − pδn∥∥2

2tn
+
tn
∥∥pδn − pδn−1

∥∥2

2τ2
n

≤
∥∥p† − pδ0∥∥2

2tn
+

∥∥p† − pδn∥∥2

2ζ
+
ζδ2

2
. (41)

Setting ζ = tn in (41) and taking into account (4b) yields∥∥Kuδn − gδ∥∥2
=

∥∥pδn − pδn−1

∥∥2

τ2
n

≤
∥∥p† − pδ0∥∥2

t2n
+ δ2. (42)

The choice ζ = 2tn in (41), on the other hand, gives∥∥p† − pδn∥∥2 ≤ 2
∥∥p† − pδ0∥∥2

+ 4t2nδ
2. (43)

From (4b) it follows that J(un)− J(u†) ≤
〈
K∗pδn, un − u†

〉
and consequently, it follows that

DK∗p†

J (un, u†) = J(un)− J(u†)−
〈
K∗p†, un − u†

〉
≤
〈
pδn − p†,Kun − g

〉
.

Applying again Young’s inequality and combining the estimates (42) and (43) we find that for
η > 0 that

DK∗p†

J (un, u†) ≤
∥∥pδn − p†∥∥2

2η
+
η ‖Kun − g‖2

2

≤
∥∥pδn − p†∥∥2

2η
+ η

∥∥Kun − gδ∥∥2
+ ηδ2

≤
∥∥p† − pδ0∥∥2

(
1
η

+
η

t2n

)
+ 2δ2

(
t2n
η

+ η

)
.

The right hand side is minimized for η = tn, which finally shows the assertion. �

Theorem 6.2 can be used to prove convergence rates for the ALM.

Theorem 6.3. Assume that g ∈ H2 is attainable and assume that {gk}k∈N is a sequence in H2

such that ‖gk − g‖ =: δk → 0 as k →∞. Moreover, assume that Γ : (0,∞)×H2 → N is such that

lim
k→∞

tΓ(δk,gk) =∞.

Then, the following two conditions are equivalent:
(i) There exists a J-minimizing solution u† ∈ H1 of (2) that satisfies the source condition (11)

with a source element p† ∈ H2 and there exists C ∈ R such that

δktΓ(δk,gk) ≤ C. (44)

(ii) For k →∞ we have∥∥KRΓ(δk,gk)(gk)− g
∥∥ = O(t−1

Γ(δk,gk)) and
∥∥∥R∗Γ(δk,gk)(gk)

∥∥∥ = O(1). (45)

Additionally, if (i) or (ii) holds, it follows that

DK∗p†

J (RΓ(δk,gk)(gk), u†) = O(t−1
Γ(δk,gk)) (46)

and each weak cluster point of
{
R∗Γ(δk,gk)(gk)

}
k∈N

is a minimizer of G(·, g).
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Proof. Througout the proof we assume that
{
uδn
}
n∈N and

{
pδn
}
n∈N are two sequences generated by

the ALM w.r.t. generic data gδ ∈ H2 and we set δ =
∥∥gδ − g∥∥. Moreover, we use the abbreviations

uk = RΓ(δk,gk)(gk) and pk = R∗Γ(δk,gk)(gk).

Assume that item (i) holds. Then (45) and (46) follow from Theorem 6.2. In particular, the
sequence {pk}k∈N is bounded. We prove that each of its weak cluster points is a minimizer of
G(·; g). To this end, obserfve that the optimality condition for (21) gives

τ−1
n (pδn−1 − pδn) ∈ ∂G(·, gδ)(pn) = ∂G(·, g)(pδn)− (gδ − g).

Together with the update rule (4b) in ALM this gives

Kuδn − g ∈ ∂G(·, g)(pδn). (47)

Now choose a weakly convergent sub-sequence
{
pρ(k)

}
k∈N with limit p̂. Then we find from the

weak-strong closedness of ∂G(·, g) (cf. [8, Chap I. Cor. 5.1]) and (47) (we replace uδn by uρ(k) and
pδn by pρ(k)) that

0 = lim
k→∞

Kuρ(k) − g ∈ ∂G(·, g)(p̂).

This shows that p̂ is a minimizer of G(·, g).
Now let (ii) hold. We first note, that setting p = pδn in Proposition 5.1 yields∥∥Kuδn − gδ∥∥ = τ−1

n

∥∥pδn − pδn−1

∥∥ ≤ t−1
n

∥∥pδn − pδ0∥∥ . (48)

and therefore

tnδ = tn
∥∥g − gδ∥∥ ≤ tn(

∥∥Kuδn − gδ∥∥+
∥∥Kuδn − g∥∥) =

∥∥pδn − pδ0∥∥+ tn
∥∥Kuδn − g∥∥ . (49)

Replacing gδ by gk, δ by δk and n by Γ(δk, gk) as well as uδn by uk and pδn by pk in (49) shows
together with (45) that

δktΓ(δk,gk) ≤
∥∥pk − pδ0∥∥+ tΓ(δk,gk) ‖Kuk − g‖ = O(1).

That is, there exsist C ∈ R such that (44) holds.
Next, we find from (14) that K∗pk ∈ ∂J(uk) and thus for all u ∈ H1

J(uk) ≤ J(u) + 〈K∗pk, u− uk〉 ≤ J(u) + ‖pk‖ ‖Kuk −Ku‖ . (50)

The estimates (48) and (50) imply that uk ∈ Λ(c) for an appropriate constant c ∈ R and all k ∈ N.
Thus (with the same argumentation as in the proof of Theorem 5.3) we can select a sub-sequence
that weakly converges to a J-minimizing solution u† of (2). Denoting the subsequence again by
{uk}k∈N one finds

lim
k→∞

J(uk) = J(u†). (51)

Finally, it follows from (48) that Kuk − g → 0 strongly in H2 as k → ∞. Relation (47) and the
arguments thereafter show that each weak cluster point p† of {pk}k∈N is a minimizer of G(·, g).
This implies that

G(pk, gk)−G(p†, g) ≥ 〈pk, g − gk〉 .
Moreover, by setting p = p† in Proposition 5.1 and neglecting non-positive terms in the right hand
side of Güler’s inequality we find

G(δk, gk)−G(p†, g) ≤
∥∥p† − pk∥∥2

2tk
+
〈
p†, g − gk

〉
.

The previous two inequalities show that

lim
k→∞

J∗(K∗(pk))− 〈pk, gk〉 = lim
k→∞

G(pk, gk) = G(p†, g) = J∗(K∗p†)−
〈
p†, g

〉
. (52)

Since K∗pk ∈ ∂J(uk) it follows that J(uk) + J∗(K∗pk) = 〈uk,K∗pk〉 and thus

J(uk) + J∗(K∗pk)− 〈pk, gk〉 = 〈Kuk − gk, pk〉 .
Passing to the limit k →∞, this equality together with (51) and (52) gives

J(u†) + J∗(K∗p†) =
〈
p†, g

〉
=
〈
K∗p†, u†

〉
.
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This, however, is equivalent to K∗p† ∈ ∂J(u†), that is, u† satisfies the source condition with source
element p†. �

Theorem 6.3 states that for each parameter choice rule Γ satisfying (44), the residuals converge
with a rate of t−1

k and the sequence of dual iterates in the ALM is bounded, or in other words,
converge slower by a rate t−1

k than the residuals. In fact, it turns out that these two assertions
are equivalent.

We close this section by applying the result in Theorem 6.2 to the Tikhonov-Morozov method
(6), that is, we choose the regularization functional J as in (5). Then Theorem 6.2 reads (cf.
Remark 2.5):

Corollary 6.4. Let g ∈ H2 be attainable and let gδ ∈ H2 be such that
∥∥g − gδ∥∥ = δ. Assume

further that u† is a J-minimizing solution of (2) that satisfies the source condition (11) with source
element p† ∈ H2. Then,∥∥Kuδn − gδ∥∥2 ≤

∥∥p† − pδ0∥∥2

t2n
+ δ2 and

∥∥Luδn − Lu†∥∥2 ≤
2
∥∥p† − pδ0∥∥2 + 4δ2t2n

tn
. (53)

Moreover, there exists a constant γ = γ(pδ0, p
†) such that∥∥L∗Luδn∥∥ ≤ γ + ‖K∗‖ tnδ. (54)

It is well known that the classical iterated Tikhonov-Morozov regularization can converge with
order δ1−ε, ε > 0 under appropriate assumptions on the solution (see [13]). Such results are not
available for the general ALM, and consequently Chuck Groetsch’s benchmarks have not been
reached so far.

The convergence rates in Theorem 6.2 were already proven (under the same assumptions) by
Burger et al. in [6], however for the stationary case τn ≡ τ . Our results, in addition provide an
equivalence relation between the standard assumptions (parameter choice rule and source condi-
tion) and the boundedness of the sequence of dual iterates.

In our opinion, the speed of convergence of the dual sequence in the ALM could be the key in
order to reach the benchmark results of Chuck Groetsch in the special case of Tikhonov-Morozov
regularization. Conditions on the solutions of (2) that guarantee faster convergence of the dual
sequence of the ALM will therefore be subject of further studies.

7. Evolution Equations

In this section we study the following system of evolution equations

p′(t) = gδ −Ku(t), (55a)
K∗p(t) ∈ ∂J(u(t)), (55b)

p(0) = pδ0. (55c)

and its relation to the ALM (cf. Definition 1.1). With K = Id, equation (55), has been proposed
in [5] and finds applications for image denoising.

For the special case K = Id existence of a solution of (55) has been proven in [4] (see also [12]).
In general, for bounded linear operators K, existence of a solution of (55), as well as the relation
to the ALM has been studied in the first author’s thesis [11]. Here, we present a summary of the
most important results.

In the following we study the connection of Equation (55) and the ALM, which for the sake
of simplicity is assumed with constant stepsize τ > 0. The corresponding results for the non-
stationary case were proven in [11].

Let g, pδ0 ∈ H2 and denote by (uδn, p
δ
n) the n-th iterate of the ALM. For t ∈ [(n − 1)τ, nτ) we

define

uτ (t) = uδn (56)

pτ (t) = τ−1
(
t− (n− 1)τ)pδn + (nτ − t)pδn−1

)
. (57)
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In other words, uτ (t) and pτ (t) are the piecewise constant and piecewise affine interpolations of
the sequences

{
uδn
}
n∈N and

{
pδn
}
n∈N of the ALM.

The function pτ (t) is differentiable almost everywhere and satisfies pτ (0) = pδ0 and we find by
(4b) that for all t ∈ ((n− 1)τ, nτ)

p′τ (t) = τ−1(pδn − pδn−1) = gδ −Kun = gδ −Kuτ (t). (58)

Moreover, we find from Theorem 3.1 that

K∗pτ (nτ) = K∗pδn ∈ ∂J(un) = ∂J(uτ (t)). (59)

The considerations in (58) and (59) show, that uτ and pτ almost satisfy (55). We show that uτ
and pτ converge to solutions of (55) as τ → 0.

Due to the characterization of the sequence
{
pδn
}
n∈N by the proximal point algorithm (cf.

Proposition 4.2), we are able to apply classical results of semi-group theory in order to show
convergence of the piecewise affine functions pτ to a strong solution of

p′(t) = −∂0G(p(t), gδ) (60a)

p(0) = pδ0. (60b)

Here, ∂0G(p, g) denotes the unique element of ∂G(p, g) with minimal norm (presumably ∂G(p, g) 6=
∅). A strong solution of (60) is a absolutely continuous function p : [0,∞)→ H2 such that (60a)
is satisfied almost everywhere and that p(t)→ pδ0 as t→ 0+.

Proposition 7.1. Let gδ, pδ0 ∈ H2 and assume that pδ0 satisfies (17), i.e. there exists uδ0 ∈ H1

such that K∗pδ0 ∈ ∂J(uδ0). Then

(i) There exists a unique strong solution p : [0,∞)→ H2 of (60).
(ii) The piecewise affine interpolations pτ converge uniformly to p and

‖pτ (t)− p(t)‖ ≤ τ√
2

∥∥∂0G(pδ0, g
δ)
∥∥ . (61)

(iii) The function p is Lipschitz-continuous with Lipschitz-constant cL =
∥∥Kuδ0 − gδ∥∥.

Proof. Since K∗pδ0 ∈ ∂J(uδ0) it follows that Kuδ0 ∈ ∂(J∗ ◦ K∗)(pδ0) and thus according to the
definition of G in (19)

Kuδ0 − gδ ∈ ∂(J∗ ◦K∗)(pδ0)− gδ = ∂G(pδ0, g
δ).

In other words, pδ0 ∈ D(∂G(·, gδ)) and hence (i) follows from [3, Thm. 3.1]. Item (ii) follows from
[23, Thm. 3.20].

It remains to prove the third item. As noted above, the functions pτ (t) are differentiable for
almost all t ≥ 0 and p′τ satisfies (58). From Corollary 3.3 it follows that p′τ (t) is non-increasing and
since pδ0 satisfies (17) we find that (cf. Corollary 3.3)

‖p′τ (t)‖ ≤
∥∥Kuδ0 − gδ∥∥ = cL.

Thus, pτ (t) is Lipschitz-continuous with constant cL and it follows from (2) that for s, t ≥ 0 and
all τ > 0

‖p(s)− p(t)‖ ≤ ‖pτ (s)− p(s)‖+‖pτ (t)− p(t)‖+‖pτ (s)− pτ (t)‖ ≤
√

2τ
∥∥∂0G(pδ0, g

δ)
∥∥+cL ‖s− t‖ .

Since the equation holds for all τ > 0, the assertion follows by taking τ → 0+. �

Assertion (2) in Proposition 7.1 states that the piecewise affine interpolations pτ (t) of the
sequence

{
pδn
}
n∈N converge uniformly on [0,∞), that is

lim
τ→0+

sup
t≥0
‖pτ (t)− p(t)‖ = 0.

In the thesis [11, Cor. 3.3.6] we proved the slightly stronger result:
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Proposition 7.2. Let gδ, pδ0 ∈ H2 and assume that pδ0 satisfies (17). Moreover, let p be the unique
solution of (7.1). Then, for all T > 0

lim
τ→0+

∫ T

0

‖pτ (t)− p(t)‖2 + ‖p′τ (t)− p′(t)‖2 dt = 0.

We note that Proposition 7.2 states that the sequence of functions {t 7→ ‖pτ (t)− p(t)‖}τ≥0

converges to zero in W1,2(0, T ). This already implies uniform convergence by the continuous
embedding W1,2(0, T ) ↪→ C(0, T ) ([1, Thm. 5.4] with n = 1, m = 1 and p = 2).

By using Proposition 7.2 we can prove the main theorem of this section, which provides estimates
for the errors of the interpolates to the true solution.

Theorem 7.3. Let gδ ∈ H2 and assume that pδ0 ∈ H2 satisfies (17). Moreover, let p be the unique
solution of (7.1). Then

(i) There exists u : [0,∞)→ H1 such that u and p satisfy (55) for almost all t ≥ 0.
(ii) For all t ≥ 0 we have

D
K∗p(t)
J (uτ (t), u(t)) ≤ τ(2 +

√
2)
∥∥Kuδ0 − gδ∥∥2

. (62)

Proof. Let t > 0 and choose n ∈ N such that t ∈ ((n − 1)τ, nτ ]. With this choice it follows from
Corollary 3.3 and the subsequent remark, that∥∥Kuτ (t)− gδ

∥∥ =
∥∥Kun − gδ∥∥ ≤ ∥∥Kuδ0 − gδ∥∥

This shows that ‖Kuτ (t)‖ is uniformly bounded, let us say ‖Kuτ (t)‖ ≤ c1 for all τ > 0. Moreover,
we find from (59) and the definition of a subgradient that for all u ∈ H1

J(uτ (t)) ≤ J(u) + 〈K∗pτ (nτ), uτ (t)− u〉
= 〈pτ (nτ)− p(nτ),Kuτ (t)−Ku〉+ 〈p(nτ),Kuτ (t)−Ku〉 .

We choose u ∈ D(J). Then it follows from (61) that

J(uτ (t)) ≤ J(u) + (‖K(uτ (t))‖+ ‖Ku‖)
(
‖p(τn)‖+

τ√
2

∥∥∂0G(pδ0, g
δ)
∥∥) .

Since p(t) is Lipschitz-continuous with constant cL as in Proposition 7.1 we find that

‖p(t)− p(nτ)‖ ≤ cL(nτ − t) ≤ cLτ (63)

and consequently, for τ sufficiently small, there exists a constant c2 ∈ R such that

J(uτ (t)) ≤ J(u) + (c1 + ‖Ku‖)
(
cLτ + ‖p(t)‖+

τ√
2

∥∥∂0G(pδ0, g
δ)
∥∥) ≤ c2 <∞ .

In other words, let t > 0 arbitrary but fixed, then uτ (t) ∈ Λ(c1+c2) and therefore from Assumption
2.3 it follows that there exists a sequence τk → 0+ and an element u(t) ∈ H1 such that uτk(t) ⇀
u(t).

Now, we show that u and p solve (55). First we note that from (61) and (63) it follows that
pτ (nτ)→ p(t) as τ → 0+ (and n→∞ accordingly). Setting τ = τk it follows from the strong-weak
closedness of ∂J (cf. [8, Chap.I Cor. 5.1]) and (59) that

K∗p(t) = lim
k→∞

K∗pτk(nτk) ∈ ∂J(w -lim
k→∞

uτk(t)) = ∂J(u(t)).

Secondly, we note that Proposition (7.2) implies that for all T > 0 the sequence p′τ of derivatives
converges to p′ with respect to the strong topology of L2(0, T,H2), that is

lim
k→∞

∫ T

0

∥∥p′τk(t)− p′(t)
∥∥2 dt = 0.

It follows from [9, Chap. 1.3. Thm. 5] that we can select a subsequence indexed by ρ(k) such
that p′τρ(k)(t)→ p′(t) strongly for almost all t ∈ [0, T ]. It finally follows from (58) that

p′(t) = lim
k→∞

p′τρ(k)(t) = w -lim(g −Kuτρ(k)(t)) = gδ −Ku(t). (64)



18 KLAUS FRICK AND OTMAR SCHERZER

In order to prove (ii) we assume that u(t) and p(t) solve (55). Since ‖p′τ (t)‖ =
∥∥Kuτ (t)− gδ

∥∥
is non-increasing and uniformly bounded by

∥∥Kuδ0 − gδ∥∥, it follows from (64) that the same holds
for ‖p′(t)‖ =

∥∥Ku(t)− gδ
∥∥. Moreover, it follows from (59) that K∗pτ (nτ) ∈ ∂J(uτ (t)). The later

and the definition of the subgradient imply that

J(uτ (t))− J(u(t)) ≤ 〈K∗pτ (nτ), uτ (t)− u(t)〉 .
In summary, we find that

D
K∗p(t)
J (uτ (t), u(t)) = J(uτ (t))− J(u(t))− 〈K∗p(t), uτ (t)− u(t)〉

≤ 〈pτ (nτ)− p(t),K(uτ (t)− u(t))〉

≤ ‖pτ (nτ)− p(t)‖ (
∥∥Kuτ (t)− gδ

∥∥+
∥∥Ku(t)− gδ)

∥∥)

≤ 2 ‖pτ (nτ)− p(t)‖
∥∥Kuδ0 − gδ∥∥ .

Moreover, it follows from (61) and the Lipschitz-continuity of pτ (with constant cL =
∥∥Kuδ0 − g∥∥)

that

‖pτ (nτ)− p(t)‖ ≤ ‖pτ (nτ)− pτ (t)‖+ ‖pτ (t)− p(t)‖ ≤ τ(cL + 1/
√

2
∥∥∂0G(pδ0, g)

∥∥).

As shown in the proof of Proposition 7.1, Kuδ0−g ∈ ∂G(pδ0, g) and thus
∥∥∂0G(pδ0, g)

∥∥ ≤ ∥∥Kuδ0 − g∥∥
and the assertion follows. �

In contrast to (60), Equation (55) in general admits multiple solutions. However, solutions are
unique modulo ker(K) and are uniformly continuous with respect to the Bregman distance. These
are the assertions of the following two theorems:

Theorem 7.4. Let pδ0 satisfy (17), i.e. there exists uδ0 such that K∗pδ0 ∈ ∂J(uδ0) and assume that
p and u satisfy (55). Then, for all 0 ≤ s, t

D
K∗p(t)
J (u(s), u(t)) ≤ 2

∥∥Kuδ0 − gδ∥∥2 |s− t| .

Proof. According to (55b) we find K∗p(s) ∈ ∂J(u(s)) and therefore it follows that J(u(s)) −
J(u(t)) ≤ 〈K∗p(s), u(s)− u(t)〉. Thus, Proposition 7.1 (3) and the monotonicity of

∥∥Ku(t)− gδ
∥∥

give

D
K∗p(t)
J (u(s), u(t)) ≤ J(u(s))− J(u(t))− 〈K∗p(t), u(s)− u(t)〉

=
〈
p(s)− p(t),Ku(s)− gδ

〉
−
〈
p(s)− p(t),Ku(t)− gδ

〉
≤ ‖p(s)− p(t)‖ (

∥∥Ku(s)− gδ
∥∥+

∥∥Ku(t)− gδ
∥∥)

≤ 2
∥∥Kuδ0 − gδ∥∥2 |s− t| .

�

Theorem 7.5. Let p be the unique solution of (7.1) and assume that u1, u2 : [0,∞) → ∞ are
such that p(t) and ui(t) satisfy (55) for i = 1, 2. Then, for all t ≥ 0

Ku1(t) = Ku2(t) and J(u1(t)) = J(u2(t)). (65)

Proof. The equality Ku1(t) = Ku2(t) follows directly from (55a). Now, let t ≥ 0. Then we find
that

D
K∗p(t)
J (u1(t), u2(t)) = J(u1(t))− J(u2(t))− 〈K∗p(t), u1(t)− u2(t)〉

D
K∗p(t)
J (u2(t), u2(t)) = J(u2(t))− J(u1(t))− 〈K∗p(t), u2(t)− u1(t)〉 .

Adding these equalities gives

D
K∗p(t)
J (u1(t), u2(t)) +D

K∗p(t)
J (u2(t), u2(t)) = 0.

Since the Bregman-distance is non-negative, it follows that

0 = D
K∗p(t)
J (u1(t), u2(t)) = J(u1(t))− J(u2(t))− 〈p(t),Ku1(t)−Ku2(t)〉 .

As noted above, we have Ku1(t) = Ku2(t) and therefore J(u1(t)) = J(u2(t)). �
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Remark 7.6. (i) If the restriction of J on each of the sets u+ ker(K) is strictly convex, then it Ja
follows from Theorem 7.5, that (55) admits a unique solution (u, p). In this case, it follows
from the construction of u in the proof of Proposition 7.3 that uτ (t) ⇀ u(t) for τ → 0+.

(ii) It J is strictly convex on H1, it follows that ∂J∗ contains at most one element. This can be
seen as follows: If p0 ∈ H2 and u0 ∈ ∂J∗(p0), then

J∗(p0) = 〈u0, p0〉 − J(u0) = sup
u∈H1

〈u, p0〉 − J(u)

Since J is strictly convex, u 7→ 〈u, p0〉 − J(u) is strictly concave and hence u0 is the unique
maximum. With a slight abuse of notation, let us denote ∂J∗(p0) = ∇J∗(p0) (note, however,
that J∗ does not need to be differentiable).

Consequently it follows from (10) that K∗p ∈ ∂J(u) ⇔ u = ∇J∗(K∗p), and Equation
(55) can be rewritten as

p′(t) = gδ −∇(J∗ ◦K∗)(p(t)) and p(0) = pδ0.

and u(t) = ∇J∗(K∗p(t)). In other words, u(t) is uniquely determined by p(t).
(iii) The case where J is a convex regulariation functional with linear growth and K = Id is a

typical situation in image denoising problems and a particular instance where (i) is satisfied
but not (ii). The special example, where J is chosen to be the total variation semi-norm on
H1 = L2(Ω) was studied e.g. in [4] and [11].

Remark 7.7. For a solutions u of (55) the element u(t) at a finite time t ≥ 0 can be considered
as a regularized solution of (2). For the special case where J(u) = 1

2 ‖u‖
2, Equation (55) can be

written as
u′ +K∗Ku = K∗gδ and u(0) = uδ0

which is known as Showalter’s method (cf. [30, 31]). Equation (55) therefore can be considered as
a generalization of this method.

For the sake of lucidity, we restrict our analysis on the existence of solutions of (55) and their
basic properties (uniqueness, continuity etc.) and do not discuss their regularizing properties.
We note, that the convergence (rates) results in Sections 5 and 6 can be transferred to the time-
continuous case where the time parameter t playes the role of tn. The results were proven by
Burger et al. in [6, Thm. 5.2].

7.1. The Tikhonov-Morozov Method. In the special setting of Tikhonov-Morozov regulariza-
tion, i.e. when J is as in (5), we have ∂J(u) = L∗Lu. Therefore, Equation (55) reads as

(L∗Lu(t))′ = gδ −Ku(t) and L∗Lu(0) = pδ0 (66)

for an initial element pδ0 ∈ H2. For the special case of K = Id, Equation (66) has been studied by
Groetsch & Scherzer in [14]. Applying Theorems 7.3 to 7.5 gives the following stability estimates

Corollary 7.8. Let pδ0 ∈ ran(L∗L). Then (66) has at least on solution u : [0,∞) → H1 and for
all s, t ≥ 0 we have

‖L(uτ (t)− u(t))‖2 ≤ τ(2 +
√

2)
∥∥Ku0 − gδ

∥∥2

and
‖L(u(s)− u(t))‖2 ≤ 2 ‖Ku0 − g‖2 |s− t|

If additionally ker(L) ∩ ker(K) = {0}, then u is unique.

We close this section by an example that was studied by Groetsch & Scherzer in [14]. There,
the authors considered the problem of the stable evaluation of the derivative of a smooth function
given a noisy (non-differentiable) approximation.

Example 7.9. Let Ω ⊂ RN be a open and bounded domain with smooth boundary ∂Ω and
H1 = H2 = L2(Ω) as well as H = L2(Ω,RN ) and set L = ∇ with H1(Ω) = D(L) ⊂ L2(Ω). Then
L is linear, closed and densely defined (with respect to the L2-topology). Moreover we find from
[2, pp.63] that

D(L∗L) = D(∂J) =
{
u ∈ H2(Ω) : ∇u · ν = 0, HN−1-a.e. on ∂Ω

}
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and ∂J(u) = −∆u (ν denotes the outer unit normal vector on ∂Ω). further, we set K = Id and
pδ0 = 0 ∈ ran(L∗L). Then, the evolution equation (66) turns out to be the third order equation

d

dt
∆u(t, x) = u(t, x)− gδ(x) for all x ∈ Ω, (67)

with homogenuous Neumann boundary condition

∇u(x) · ν(x) = 0 for HN−1-a.e. s ∈ ∂Ω, (68)

and initial conditions

∆u(0, x) = 0. (69)

We show that the unique solution u of the third order equation (67) is Hölder-continuous (in time)
with exponent α = 1/2 and that the piecewise constant interpolations uτ of

{
uδn
}
n∈N approximate

u with order τ1/2.
To this end, we note that by Green’s formula∫

Ω

u(t, x)− gδ(x) dx =
∫

Ω

d

dt
∆u(t, x) dx =

d

dt

∫
∂Ω

∇u(t, x) · ν dx = 0. (70)

Hence it follows that ∫
Ω

u(s, x)− u(t, x) dx = 0 for all s, t ≥ 0 .

Consequently there exists a embedding constant C = C(Ω) such that (cf. [35, Thm.4.2.1])

‖u(s)− u(t)‖L2 ≤ C ‖∇(u(s)− u(t))‖L2(Ω,RN )

This together with Corollary 7.8 then shows that

‖u(s)− u(t)‖L2 ≤
√

2C
∥∥gδ∥∥2

L2

√
|s− t|.

In particular, the continuity of u and (70) imply∫
Ω

u(0, x) dx =
∫

Ω

lim
t→0+

u(t, x) dx = lim
t→0+

∫
Ω

u(t, x) dx =
∫

Ω

gδ(x) dx.

Since ∆u(0, x) = 0 and ∇u(0, x) · ν(x) = 0 on ∂Ω, u(0, x) is constant and the constant is given by

u(0, x) =
1

λN (Ω)

∫
Ω

gδ(x) dx =: ḡδ.

Next, we apply the error estimate in Theorem 7.3 (2) to the present example. Here, we find from
(4b) that

gδ − un = τ−1∆(uδn−1 − un).

Again, by Green’s formula one finds as in (70)

ḡδ =
∫

Ω

un(x) dx .

Consequently we find∫
Ω

uτ (t, x)− u(t, x) dx =
∫

Ω

uτ (t, x)− gδ(x) dx+
∫

Ω

gδ(x)− u(t, x) dx = 0

for all t ≥ 0. Therefore, using the embedding constant C from above and Corollary 7.8 it follows
that

‖uτ (t)− u(t)‖2L2 ≤ C ‖∇(uτ (t)− u(t))‖2L2(Ω,RN ) ≤ τC(2 +
√

2)
∫

Ω

∣∣gδ(x)− ḡδ
∣∣2 dx.



NON-STATIONARY AUGMENTED LAGRANGIAN METHOD 21

8. Conclusion

This paper is concerned with the application of the Augmented Lagrangian method (ALM) to
the solution of linear inverse problems. This means, we interpret the iterates of the ALM as
regularized solutions of the ill-posed linear equation

Ku = g

where a noisy righthand side gδ serves as an input data. We perform convergence studies for ALM
with general regularization functionals J , and prove convergence of the iterates to a J-minimizing
solution u† of the linear equation as the noise level decreases.

The motivation for this approach is due to the fact that the Tikhonov-Morozov method, which
gained much attraction in the field of stable evaluation of unbounded linear operators L, is a
special instance of the ALM for the choice

J(u) =
1
2
‖Lu‖2 .

Thus, benchmark results concerning convergence (rates) results are available, many of which were
shown by Chuck Groetsch. We refer to the excellent monograph [13] for a rich collection of these
results.

Additionally, we remark that the ALM is equivalent to Bregman distance regularization, which
attained much attention in the image processing community recently.

Unlike most of the approaches so far, we base our analysis on duality arguments from convex
analysis. In doing so, we are able to reprove convergence and convergence rates results, already
known for Bregman distance regularization, and derive convergence rates for the dual variables.
In particular, we can prove that under the standard source-condition

K∗p† ∈ ∂J(u†), for a source-element p†.

we get convergence rates (in the Bregman distance) of order O(δ). However, the benchmark
results from the iterated Tikhonov-Morozov guarantee rates up to O(δ2−ε) (under suitable source-
conditions). These benchmarks results have not been obtained for the general ALM so far.

Our analysis shows that the dual variables in the ALM stay bounded, when the source condition
is satisfied and the residual error decreases fast enough (actually these conditions are equivalent).
We believe that conditions that guarantee faster convergence rates of the dual iterates is related
to stronger source conditions, which in turn imply faster rates of the primal iterates.

Finally, we show that asymptotically the iterates of the ALM converge – when interpolated
correctly – to solutions of the evolution equation

p′ = g −Ku(t), K∗p ∈ ∂J(u) and p(0) = p0.

This equation system is a generalization of Showalter’s method for regularization.
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