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Abstract

We investigate the applicability of integral invariants as geometrical
shape descriptors in the context of ill-posed inverse problems. We propose
the use of a Tikhonov functional, where the penalty term is based on the
difference of integral invariants. As a case example, we consider the prob-
lem of inverting the Radon transform of an object with only limited data
available. We approximate the ill-posed non-linear operator equation by
a minimisation problem involving a Tikhonov functional and show exis-
tence of minimisers of the functional. Because of its non-differentiability,
we derive for the numerical minimisation smooth approximations, which
converge in the sense of Γ-limits.

1 Introduction

A typical task in object recognition is to segment an object in an image. In some
cases, however, the image is not directly accessible, but only a transformed ver-
sion of the image, e.g. its Radon transform which may occur if the object is
inspected with a tomograph. Thus, the information of interest — the objects
within the image — has to be reconstructed from the given data set. In mathe-
matical terms, this task can be formulated as the inverse problem of solving an
operator equation of the form

F [Ω] = y,

where F describes the action of the tomograph on the object Ω and y denotes
the available data.

The previous operator equation is a typical example of an ill-posed problem:
the solution does not depend continuously on the data y. In addition, to ensure
that biological harm caused by the radiation is reduced to a minimum, it might
be advisable to perform the scan only for a limited number of directions. Then,
it is well known from theory that the recorded data is insufficient for a unique
reconstruction of the object, unless ample prior information is available. In order
to stabilise the reconstruction process, the original operator equation has to be
modified. A common approach is the reformulation of the operator equation
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as a functional with a fit-to-data term and a regularisation term. The fit-
to-data term ensures that the solution closely matches the given data, and the
additionally introduced regularisation term incorporates some knowledge on the
solution while at the same time enforcing well-posedness.

Typically, the a priori knowledge can be formulated as a regularity constraint
on the solution. As an example, for segmenting an object in a given image, often
a Tikhonov like functional is used, where the squared norm of the gradient of
the boundary curve ensures the regularity of the object to be segmented. In the
field of shape recovery, additionally, the a priori information may often include
geometrical information about the object. Thus the regularisation term has to
be constructed in such a way that the geometry of the solution is close to the
geometry of the prior.

At this point, naturally, the question arises how to describe the geometry of
an object in a mathematical terminology. A classical approach uses the curva-
ture of the boundary curve of the object to define feature points, as geometrical
features like protrusions, corners or inflection points can all be characterised
by their curvature. All invariants, however, that are based on differentiation
— thus, in particular curvature — suffer from an inherent sensitivity regarding
noise. As a remedy, it has been suggested to replace differentiation by integra-
tion in such a way that the ensuing integral invariants still carry geometrical
information about the object [4, 16, 17, 19]. These invariants have proven to be
successful for object classification [16] and geometry processing [13].

This article intends to show that integral invariants can also be used for the
solution of inverse problems in the context of shape recovery. To that end we
propose to use a penalty term which includes the L2-norm of the difference be-
tween the invariant of the object and the invariant of a prior. Since this penalty
term is geometry based, it is expected that this procedure yields more accurate
reconstructions than simpler methods based on a metric between the objects
themselves, e.g. the area of the set symmetric difference or the Hausdorff dis-
tance. Indeed, the performed numerical study, which uses the Radon transform
as a paradigm of an inverse problem, supports these expectations. To highlight
the applicability of our method to severely ill-posed problems, we have limited
the number of directions in which the Radon transform was computed to four,
leading to a high number of possible solutions.

In Section 2 we briefly recall the notion of shapes and introduce the concept
of integral invariants as robust geometry based shape descriptors. Section 3 is
devoted to the theoretical background of inverting the Radon transform of an
object. First we introduce the problem in a strict mathematical manner, which
also includes a reformulation of the problem originally posed on a class of objects
as a non-linear operator equation on a Hilbert space. The resulting operator be-
ing non-differentiable, we derive a smooth approximation, which is later used in
the numerical implementation. In Section 4, we perform a case study using syn-
thetic data and compare the proposed method with a Kaczmarz method using
the prior as an initial guess. Both approaches turn out to be capable of recon-
structing the rough shape of the object, but the Kaczmarz method introduces
artificial perturbations of the object’s boundary where Tikhonov regularisation
with integral invariants does not.
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2 Regularisation with Integral Invariants

Suppose we have an operator F : X → Y , which maps a shape x to some given
data y, i.e.,

F [x] = y. (1)

We assume that the data set y is available through some measurement setup and
the underlying physical principle is described by the operator F . We focus on
the inverse problem of finding a suitable shape x matching the data y. The first
question arising at this point is the well-posedness of the problem. The failure
of well-posedness may be due to various reasons, e.g. discontinuity of the inverse
operator. In this article we mainly consider one specific type of ill-posedness
in the area of inverse problems: multiple solutions because of incomplete or
insufficient data.

Assuming that the available data y is insufficient to solve the equation (1)
uniquely, we have to regularise the original operator equation. In shape opti-
misation and reconstruction a common approach to stabilising the process of
solving (1) is to use a prior incorporating some knowledge of the solution. The
prior can be seen as a reference model that covers the essential information
about the object. A typical choice is some representative of the shape, gener-
ated from a set of training data using statistical methods. In that context the
possible variations of the shapes are explained in terms of statistics, e.g. using a
principal component analysis where the shapes are points on a possible infinite
dimensional manifold [5, 7, 21](see also [18]). In contrast, we propose to use in-
tegral invariants to explain and handle the variability of a shape. This concept
has been applied successfully to segmentation with priors [17], but not yet for
more general inverse and ill-posed problems.

In the following we will briefly introduce the concept of shapes and integral
invariants.

2.1 Shapes

We consider a shape as a characteristic function of a given simply connected
and bounded set Ω ⊂ R2. In addition, we restrict ourselves to objects that are
star-shaped with respect to the origin and therefore can be represented by a
non-negative radial function.

Definition 1. Let γ ∈ L2(S1,R+) :=
{
γ ∈ L2(S1,R) : γ ≥ 0

}
. The set

Ωγ :=
{
tτ ∈ R2 : τ ∈ S1, 0 ≤ t ≤ γ(τ)

}
(2)

is called the domain generated by the non-negative radial function γ. �

Notice that the assumption γ ∈ L2(S1,R+) is necessary (and sufficient) to guar-
antee that the object Ωγ has a finite area. Indeed, a short calculation reveals
that

L2(Ωγ) =
1

2

∫
S1
γ2(τ) dH1(τ) =

1

2
‖γ‖2L2 <∞,

where L2 and H1 denote the Lebesgue and the Hausdorff measure, respectively.
An intuitive definition of shapes was given by Kendall [14, p. 2]: a shape is

“what is left when the differences which can be attributed to translations, rota-
tions, and dilatations have been quotiented out.” In contrast, by our definition
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the shape changes if one applies a rigid body motion. Hence, it would be more
common to use the notion of objects rather than that of shapes. But at least
we have retained some invariance with respect to rotations (cf. Definition 2):
a rotation of Ωγ simply corresponds to a shift of the argument of the radial
function γ.

2.2 Integral Invariants

We now briefly repeat the concept of integral invariants and introduce the cir-
cular integral invariant, which has proven to be useful in applications. A reader
interested in this topic may find useful background information in the articles
of Manay et al. [16] or in [3, 4].

The basic idea of integral invariants is closely related to that of differential
invariants, but with an emphasis on stability with respect to noise. In contrast
to differential invariants (cf. [1]), which are based on derivatives, the key to
noise insensitivity of integral invariants is the replacement of differentiation
by integration. Apart from that, the main features of differential invariants
should be retained, e.g. a possible geometrical interpretation or invariance with
respect to some group operation. In case of the curvature of the boundary
curve of a sufficiently regular object — the most common representative of
differential invariants — we have an obvious geometrical interpretation and also
invariance with respect to rigid body motions. More precisely, invariance holds
if understood in the following sense:

Definition 2. A mapping I : L2(S1,R+) → L1(S1,R+) is invariant with re-
spect to the group of rotations SO(2) if

I[γ](τ) = I[γ ◦ h](hτ) for all h ∈ SO(2). (3)

�

In [19] it has been shown that the area of the intersection of an object with a
ball centred at its boundary is closely related to the curvature of the boundary
of the object. This provides a motivation for the following definition of the
circular integral invariant first introduced by Manay et al. [16].

Definition 3. Let R > 0 and define BR(x) := {y ∈ R2 : ‖x − y‖2 < R}. The
operator IR : L2(S1,R+)→ L1(S1,R+) defined by

IR[γ](τ) := L2
(
Ωγ ∩BR

(
γ(τ)τ

))
, (4)

where Ωγ denotes the domain generated by the radial function γ (see Definition
1), is called the circular integral invariant (cf. Figure 1). �

Theorem 4. The circular integral invariant of Definition 3 is continuous.

Proof. Assume that γk converges to γ in L2(S1,R+). Then we obtain for almost
every τ ∈ S1 that γk(τ)→ γ(τ). As a consequence, we see that for almost every
τ ∈ S1 we have that χBR(γk(τ)τ) → χBR(γ(τ)τ) pointwise almost everywhere.
In addition, we know that χΩγk

converges pointwise almost everywhere to χΩγ

and, consequently, for almost every τ ∈ S1,

χΩγk
χBR(γk(τ)τ) → χΩγχBR(γ(τ)τ) pointwise a.e.
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Figure 1: Visualisation of the definition of the circular integral invariant.

Applying Lebesgue’s Theorem of Dominated Convergence twice, we see that∫
S1

∣∣IR[γ](τ)− IR[γk](τ)
∣∣ dH1(τ) =∫

S1

∣∣∣∫
R2

χΩγ∩BR(γ(τ)τ)(x) dL2(x)−
∫
R2

χΩγk∩BR(γk(τ)τ)(x) dL2(x)
∣∣∣ dH1(τ)→ 0,

which concludes the proof. �

A more detailed discussion of the circular integral invariant is presented in [4].
In addition, one can find there an explicit formula in terms of the radial function
(cf. [4, Lemma 4.2]). The same formula is used for the implementation of the
invariant in the numerical examples below. Also, the Radon transform of a
star-shaped object, the stable approximate inversion of which is considered in
our case example, is rewritten in terms of the radial function. This enables us
to work within the functional analytic setting of the Hilbert space L2(S1,R).

3 Example: Shape Reconstruction based on the
Radon Transform

In this section we consider the problem of reconstructing an object from a given
data set that represents the Radon transform of the object in some predefined
directions. More mathematically, this task can be formulated as an inverse
problem as follows: Find an object Ω such that its Radon transform Rσi for
finitely many given directions σi, i = 1, . . . , n, matches the data yi. I.e., find a
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solution of
Rσi [Ω] = yi, i = 1, . . . , n. (5)

Since we are given only finitely many directions, the problem of solving (5)
is ill-posed, and therefore we have to apply some regularisation incorporating
a priori information about the geometry of the objects to be reconstructed.
In the following we show how information based on integral invariants can be
used in a Tikhonov like regularisation method on the set of all non-negative
radial functions generating star-shaped objects. In particular, we end up with
a shape optimisation problem, where the admissible shapes are restricted to
those that can be represented by a non-negative radial function. Similar inverse
problems for star-shaped objects have been considered by Hettlich and Rundell
(cf. [9–11]) using different approaches to stabilise the inversion, among them it-
erative schemes and also Tikhonov regularisation. In contrast to their proposed
methods including only smoothness assumptions, we explicitly incorporate ad-
ditional geometric information by means of the circular integral invariant.

3.1 The Optimisation Problem

We now reformulate the geometrical definition of the standard Radon transform
in terms of the generating radial function. For that purpose we introduce an
operator Rσi that first maps the radial function γ to the object it generates,
and afterwards applies to this object the standard Radon transform restricted
to a specific direction σi ∈ S1.

Definition 5. Let σi ∈ S1 and define the operatorRσi : L2(S1,R+)→ L1(R,R)
by

Rσi [γ](α) :=

∫
R
χΩγ (ασ⊥i + tσi) dL1(t). (6)

�

Notice that the geometrical interpretation of Rσi [γ] and the standard Radon
transform of Ωγ coincide. The major difference is the non-linearity of Rσi with
respect to the radial function γ.

Lemma 6. The operator Rσi of Definition 5 is continuous.

We now define the Tikhonov regularisation of (5) in a precise mathematical
manner.

Definition 7. Let β, µ > 0 and γref ∈ L2(S1,R+). In addition, denote by
I : L2(S1,R+) → L1(S1,R+) the circular integral invariant defined by (4). For
σi ∈ S1 and fi ∈ L2(R,R), i = 1, . . . , n, define

Dσi [γ] :=
1

2
‖Rσi [γ]− fi‖2L2 and P[γ] :=

1

2

(
‖I[γ]− I[γref]‖2L2 + µ‖γ′‖2L2

)
,

and the functional F : L2(S1,R)→ R ∪
{

+∞
}

by

F [γ] :=


n∑
i=1

Dσi [γ] + βP[γ] if γ ∈ H1(S1,R+),

+∞ else.

(7)

�
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The operatorRσi is defined for a function depending on values on S1. Therefore,
its evaluation at a specific point α should be written as an integral over a subset
of S1 as well. A simple parameter transform yields the following reformulation
of the operator.

Lemma 8. Let σi ∈ S1. Denote by H1(x) the Heaviside function defined by
H1(x) = 0 for x < 1 and H1(x) = 1 for x ≥ 1, and define the half-sphere

S1
σi,α :=

{
τ ∈ S1 : sign(〈τ, σ⊥i 〉) = sign(α)

}
.

The operator Rσi of Definition 5 can be written as

Rσi [γ](α) =


∫
S1σi,α

H1

(
γ(τ)〈τ, σ⊥i 〉

α

)
|α|

〈τ, σ⊥i 〉2
dH1(τ), α 6= 0,

γ(σi) + γ(−σi), α = 0.

(8)

Proof. Let α ∈ R \
{

0
}

and σi ∈ S1 fixed. Define fσi,α : S1
σi,α → R by

fσi,α(τ) :=
〈τ, σi〉
〈τ, σ⊥i 〉

α.

That is, fσi,α maps a direction τ ∈ S1
σi,α to the line parallel to σi with offset α

(see Figure 2). A short calculation shows that ‖Dfσi,α(τ)‖ = |α|/〈τ, σ⊥i 〉2 and,
as a consequence, we obtain∫

S1σi,α
H1

(
γ(τ)〈τ, σ⊥i 〉

α

)
|α|

〈τ, σ⊥i 〉2
dH1(τ)

=

∫
R

(∫
f−1
σi,α

(t)∩S1σi,α
H1

(
γ(τ)〈τ, σ⊥i 〉

α

)
dH0(τ)

)
dH1(t)

=

∫
R
H1

(
γ
(
f−1
σi,α(t)

)
〈f−1
σi,α(t), σ⊥i 〉

α

)
dL1(t).

Thus, the assertion follows from the fact that (see Figure 2){
t ∈ R : γ

(
f−1
σi,α(t)

)
〈f−1
σi,α(t), σ⊥i 〉/α ≥ 1

}
=
{
t ∈ R : ασ⊥i + tσi ∈ Ωγ

}
. �

The optimality condition for (7) involves the derivative of the functional
Rσi , which, however, is not differentiable, because the integrand is the shifted
Heaviside function H1. For the numerical implementation of the minimizing
procedure we replace the original functional F by a differentiable version Fε
based on a smoothed approximation of Rσi .

Definition 9. Let 0 < ε < 1 and σi ∈ S1 be fixed. Define the operator
Rσi,ε : L2(S1,R+)→ L1(R,R+) by

Rσi,ε[γ](α) :=


∫
S1σi,α

H1,ε

(
γ(τ)〈τ, σ⊥i 〉

α

)
|α|

〈τ, σ⊥i 〉2
dH1(τ), α 6= 0,

γ(σi) + γ(−σi), α = 0.

(9)

Here, H1,ε denotes the mollification of the shifted Heaviside function. �
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σi

σ⊥iΩγ

γ

S1
σi,α

τ
fσi,α(τ)

α

ασi + tσ⊥i

Figure 2: Sketch of the parameter transform fσi,α.

Definition 10. Let β, µ > 0 and γref ∈ L2(S1,R+). In addition, denote by
I : L2(S1,R+) → L2(S1,R+) the circular integral invariant defined by (4). For
σi ∈ S1, fi ∈ L2(R,R), i = 1, . . . , n, and 0 < ε < 1 define

Dσi,ε[γ] :=
1

2
‖Rσi,ε[γ]− fi‖2L2 and P[γ] :=

1

2

(
‖I[γ]− I[γref]‖2L2 + µ‖γ′‖2L2

)
,

and the functional Fε : L2(S,R)→ R ∪
{

+∞
}

by

Fε[γ] :=


n∑
i=1

Dσi,ε[γ] + βP[γ] if γ ∈ H1(S1,R+),

+∞ else.

(10)

�

The existence of minimisers of the functional F and its approximation Fε is
guaranteed by the following theorem.

Theorem 11. The functionals F and Fε of Definitions 7 and 10 are lower
semi-continuous and coercive.

Proof. We only show the lower semi-continuity and the coercivity of Fε, the
proof for F being analogous.

Theorem 6.49 in [6] implies continuity of the mapping γ 7→ Rσi,ε[γ](α) for
every α ∈ R. As a consequence, applying Fatou’s Lemma, we obtain lower
semi-continuity of Rσi,ε. Proposition 10.7 in [20] shows lower semi-continuity
of the smoothing term, and continuity of the integral invariant (see Theorem 4)
in particular implies lower semi-continuity.
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It remains to show that the functional Fε is coercive. In the following we
show that every level set of Fε is bounded in H1(S1,R), and therefore, by the
Rellich–Kondrašov Theorem (see [20, p. 258]), pre-compact in L2(S1,R). Let
therefore t > 1 and γ ∈ L2(S1,R) such that Fε[γ] ≤ t. Then in particular we
know that γ ∈ H1(S1,R) ⊂ W 1,1(S1,R). By Theorem 18.17 in [12] we obtain
for ϕ1, ϕ2 ∈ [0, 2π[

|γ(ϕ1)− γ(ϕ2)| ≤
∣∣∣∣∫ ϕ2

ϕ1

γ′(ϕ) dL1(ϕ)

∣∣∣∣ ≤ ∫
S1
|γ′(τ)| dH1(τ) = ‖γ′‖L1(S1,R)

and, in particular,

|max
τ∈S1

γ(τ)− min
τ∈S1

γ(τ)| ≤ ‖γ′‖L1(S1,R) ≤
√

2π ‖γ′‖L2(S1,R) ≤ 2

√
πt

βµ
. (11)

Let now 1 ≤ i ≤ n be fixed. Because fi ∈ L2(R,R), there exists some r̃ > 0
such that (∫

|x|>r̃
f2
i (x) dL1(x)

)1/2

<
√

2− 1. (12)

Let r := max
{
r̃,
√
t
}

. Now we show that

min
τ∈S1

γ(τ) ≤ (2r + 1)(1 + ε) and max
τ∈S1

γ(τ) ≤ (2r + 1)(1 + ε) + 2

√
πt

βµ
. (13)

Assume to the contrary that

min
{
γ(τ) : τ ∈ S1

}
> (2r + 1)(1 + ε). (14)

Observe that for 0 < ε < 1 we have

H1

( t

1 + ε

)
≤ H1,ε(t) and thus |Rσi,ε[γ](α)| ≥

∣∣∣Rσi[ γ

1 + ε

]
(α)
∣∣∣.

A simple geometrical argument (see Figure 3) shows∣∣∣Rσi[ γ

1 + ε

]
(α)
∣∣∣ ≥ 2r for r < α < r + 1. (15)

Define A := (r, r + 1). Because t > 1, and by (12) and (15), it follows that
√
t ≥ ‖Rσi,ε[γ]− fi‖L2(R) ≥ ‖Rσi,ε[γ]− fi‖L2(A) ≥ ‖Rσi,ε[γ]‖L2(A) − ‖fi‖L2(A)

=

(∫
A

|Rσi,ε[γ](α)|2 dL1(α)

)1/2

− ‖fi‖L2(A) > 2r − (
√

2− 1)

> 2
√
t− (
√

2− 1)
√
t >
√
t,

which yields a contradiction to (14). Thus the first inequality in (13) holds.
The second inequality is now a consequence of (11). Therefore, we can bound
the L2 norm of γ by

‖γ‖2L2(S1,R) ≤ 2π
(

max
τ∈S1

γ(τ)
)2 ≤ 2π

((
2 max

{
r̃,
√
t
}

+1
)
(1+ε)+2

√
πt

βµ

)2

. (16)

Together with (11), this shows that the level set of Fε to the level t is bounded
in H1(S1,R). Application of the Rellich–Kondrašov Theorem concludes the
proof. �
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σi

σ⊥i

Ωγ

γ

(2r + 1)S1
σi,α

2r + 1

Rσi

r + 1r

Figure 3: Sketch of estimation of Rσi
[
γ

1+ε

]
in (15).

3.2 Γ-Convergence

In this section we show that the functional Fε is indeed an approximation of
the original functional F .

Lemma 12. Let (εk) → 0 and denote by (γεk) a minimising sequence of the
functionals Fεk . Then (γεk) has a convergent subsequence in L2(S1,R) and the
limit of every convergent subsequence is a minimiser of F .

Proof. The basic idea is to prove Γ-convergence and equi-coercivity of the
approximating functionals Fεk . First notice that equi-coercivity is a direct con-
sequence of (11) and (16) in the proof of Theorem 11.

In order to show Γ-convergence we have to verify the following two conditions
(see [2, Chpt. 8]):

1. For every η ∈ H1(S1,R) and every sequence (ηk) in H1(S1,R) converging
to η with respect to the L2-norm we have

F [η] ≤ lim inf
k→∞

Fεk [ηk]. (17)

2. For every η ∈ H1(S1,R) there exists a sequence (ηk) in H1(S1,R) con-
verging to η with respect to the L2-norm such that

F [η] = lim
k→∞

Fεk [ηk].

The latter condition follows immediately from the fact that Fεk [η] converges to
F [η] as k →∞ for every η ∈ L2(S1,R).

Let η ∈ H1(S1,R) and let (ηk) be any sequence in H1(S1,R) converging
to η with respect to the L2-norm. We have to verify (17). Since the reg-
ularisation term does not depend on εk, this is equivalent to showing that

10



Dσi [η] ≤ lim infk→∞Dσi,εk [ηk] for each direction σi ∈ S1. The continuity of Rσi
implies that, after possible passing to an appropriate subsequence, R±k (α) :=
Rσi [ηk/(1 ± εk)](α) → Rσi [η](α) pointwise almost everywhere. As a conse-
quence, applying Fatou’s Lemma we obtain

lim inf
k→∞

Dσi,εk [ηk] = lim inf
k→∞

∫
R
|Rσi,εk [ηk](α)− f(α)|2 dL1(α)

≥
∫
R

lim inf
k→∞

|Rσi,εk [ηk](α)− f(α)|2 dL1(α)

≥
∫
R

lim inf
k→∞

(
min

{
|(R+

k − f)(α)|, |(R−k − f)(α)|
}2
)
dL1(α)

−
∫
R

lim sup
k→∞

(
|(R+

k −R
−
k )(α)|2

)
dL1(α)

=

∫
R
|Rσi [η](α)− f(α)|2 dL1(α)

= Dσi [η],

which proves the assertion. �

4 Numerical Results

The actual optimisation was performed with a gradient descent approach, which
involves the derivative of the functional to minimise. Therefore we have based
the numerical implementation on the smooth approximation functional Fε. The
Γ-convergence of this functional to the original functional F , shown in the previ-
ous section, implies that for a sufficiently small value of the smoothing parameter
ε we obtain a solution that is close to an actual minimiser of F . We have used
a finite element approach with piecewise linear basis functions for the discreti-
sation of the regularisation functional. All the integrations were realised by the
trapezoidal rule. The iteration was stopped as soon as the maximal absolute
value of the gradient of Fε was below some reasonable threshold.

For comparison, we have also implemented a Kaczmarz method for the so-
lution of (5), using the prior as the starting value, i.e.,

γ0 = γref,

γk+1 = γk + λ(DRσkmodn,ε)
?(Rσkmodn,ε[γk]− fkmodn),

where n denotes the number of directions in which the Radon transform is
given. In addition, we have added a smoothing term in each iteration step to
avoid spurious oscillations in the result. Also, with this regularisation the two
methods are better comparable. The regularised iteration then reads as

γk+1 = γk + λ
[
(DRσkmodn,ε)

?(Rσkmodn,ε[γk]− fkmodn)− µγ′′k
]
. (18)

Notice that for the following numerical examples the constant µ was chosen
much smaller than 1. Moreover, we have used the same constant µ for the
regularisation method given in Definition 10.

In all the numerical examples we have tried to reconstruct an object from its
Radon transform given only in four directions. This data would allow a unique
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Directions of the Prior Parameter settings

Radon transform

β = 0.05
µ = 0.02
R = 1.0
ε = 0.2

maxτ γ(τ) ≈ 7

Object to reconstruct Regularisation with Kaczmarz scheme

integral invariant

Figure 4: Reconstruction with fixed reference object (prior) shown in the first
row. First column: object to reconstruct. Second column: reconstruction based
on regularisation with the circular integral invariant. Third column: reconstruc-
tion based on the Kaczmarz scheme.

reconstruction if we restricted the search for solutions to the set of convex objects
[8, Corollary 1.2.12]. In case of a star-shaped body, however, the same data is
insufficient for a successful reconstruction [8, Theorem 2.3.4] and, consequently,
the problem is ill-posed. To amplify the effect of ill-posedness we have chosen the
four directions in such a way that significant parts of the object are only badly
resolved (cf. Figures 4 and 5, upper left, where σi ∈ {21.6◦, 36◦, 72◦, 108◦}). For
the numerical experiments we fixed the reference object (see Figures 4 and 5, first
row) and used visually similar objects to compute artificial data sets for Rσi,ε
for i = 1, . . . , 4 and ε < 1. The results of the reconstruction with Tikhonov
regularisation using the integral invariant in the prior term are depicted in
Figures 4 and 5, middle column; the results of the reconstruction with the
Kaczmarz scheme (18) in Figures 4 and 5, right column. In both figures the left
column shows the object the data is computed from, which at the same time is
the object to be reconstructed.

As can be seen from the figures, the Kaczmarz scheme produces artefacts
in regions where the features of the object are badly resolved by the Radon
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Directions of the Prior Parameter settings

Radon transform

β = 0.05
µ = 0.02
R = 1.0
ε = 0.2

maxτ γ(τ) ≈ 7

Object to reconstruct Regularisation with Kaczmarz scheme

integral invariant

Figure 5: Reconstruction with fixed reference object (prior) shown in the first
row. First column: object to reconstruct. Second column: reconstruction based
on regularisation with the circular integral invariant. Third column: reconstruc-
tion based on the Kaczmarz scheme.
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transform. This is quite natural, as in (18) only the data is used and the prior
knowledge on the geometry of the object is solely incorporated as initial value
of the iteration. In contrast, because in the badly resolved regions of the object
the integral invariant of the prior covers the geometry, our method is capable to
handle this lack of information and produces reconstructions that are visually
more appealing. These differences can be seen best in Figure 4, last two rows:
Compare in particular the shape of the fish head. Admittedly, artefacts are also
present in our results, but they are limited to parts of the object where the prior
information contradicts the object we want to reconstruct. Thus, the artefacts
are rather due to wrong a priori knowledge than to a failure of the method. This
effect occurs for instance in the first two reconstructions in Figure 5, especially
at the second lower fin, which is present in the prior, but missing in the objects
of interest. Thus, both, the regularisation method and the Kaczmarz scheme,
try to reconstruct a feature that does not exist. Again, we want to emphasize
that our method does not introduce additional artefacts in parts where the prior
information is consistent with the true solution, whereas the Kaczmarz scheme
does. In addition, the numerical results indicate that our method is well capable
of handling scaled objects (see Figure 4, middle row), which is a consequence of
the fact that the integral invariant mainly reflects curvature information of the
prior [19].

5 Conclusion

In this article we have introduced a Tikhonov like regularisation functional for
the reconstruction of star-shaped objects, which is based on the difference of
integral invariants. As a case example, we have considered the problem of re-
constructing an object from its Radon transform given only for a finite number
of directions. We have derived the necessary theoretical background to show
existence of minimisers of the Tikhonov functional and introduced a smooth
approximation used for numerical computations. The presented numerical re-
sults indicate that the approach based on integral invariants is suitable for the
reconstruction of objects in case of insufficient data. In particular, the compar-
ison with a standard approach has shown that our method creates significantly
less artefacts.
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