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Abstract

The reconstruction of shapes in images is a demanding question in image anal-
ysis. We consider a variational formulation of this task on shape manifolds, in par-
ticular the Riemannian manifold of 3D-MReps. Moreover we introduce statistical
shape knowledge into the formulation by incorporating a Riemannian metric as
regularization term. This leads to an optimization problemfor a functional defined
on the shape manifold. We generalize the concept of the CMA-ES to Riemannian
manifolds and apply this technique to region-based and edge-based segmentation
of 3D voxel images. Moreover, we compare the CMA-ES to a standard gradient
descent method for the region-based segmentation.

Keywords: CMA-ES, medial axis representation, image segmentation, principle
geodesic analysis

1 Introduction

This paper was motivated by the problem of detecting geometries in 3D voxel images
under the assumption that a-priori knowledge about the shape of the solution is avail-
able. We consider a variational approach, i.e., we assume the solution to be a minimizer
of an accordingly chosen energy functional. There exist twomain approaches to seg-
ment images via an energy formulation: theMumford-Shahfunctional [21, 4] and the
Snakeenergy [15]. We also refer to the first one as a region-based approach because
it identifies regions of homogeneous contrast as parts of an image. The second one is
an edge-based approach which leads to segmentations which are characterized by the
properties of the edges between them.

These two energies have successfully been used for a wide range of applications.
However, in case of noisy image data or the presence of partial occlusions, segmenta-
tion approaches which rely only on image features do not givesatisfying results. This
has lead to the development of a large variety of shape reconstruction techniques which
are based on shape and image statistics learned from training data.

Cootes et al. [6] introduced statistics of shapes represented by landmarks. More
recent approaches are Chen et al. [5], Cremers et al. [7], Fang and Chan [8], Gastaud
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et al. [12], Leventon et al. [19], Rousson and Paragios [24, 25] and Tsai et al. [27]. All
these works consider a combination of region- or edge-basedsegmentation and statis-
tical energies which penalize deviations form previously learned training statistics. In
this work we reconsider our approach [11] and combine an arbitrary segmentation en-
ergy with ashape regularizationwhich is formulated for shape spaces parametrized by
a Riemannian manifold. The regularization is based on the Principal Geodesic Analysis
(PGA) and the Mahalanobis distance on Riemannian manifolds.

As a shape model we use a parametric 3D medial axis representation (3D-MRep),
c.f. Pizeret al. [22] and Fletcher et al. [10]. The parameterdomain of 3D-MReps con-
stitute a finite dimensional Riemannian manifold. Each element of this shape space
defines a surfaceγ : S2 → IR3.

Following [11] the above shape representation and the region- and edge-based re-
construction of objects in 3D voxel images leads to a complexoptimization problem.
The approach we chose to solve this problem is based on the Covariance Matrix Adap-
tion Evolution Strategy (CMA-ES). The CMA-ES is a population-based probabilis-
tic optimization method for non-linear and non-convex functionals, which are defined
on IRN. It avoids local minima and is suitable to minimize non-separable functionals
with rugged landscapes, like discontinuities or sharp bends. There are a lot of ap-
plications in engineering and inverse problems, where the CMA-ES turns out to be a
good choice, for instance Abudhahir and Baskar [1], Bayer and Finkel [2], Mera [20],
Kern et al. [17]. The behavior of CMA-ES is well studied and compared to other evo-
lution strategies by Kern et al. [18, 16].

Originally the CMA-ES is formulated for functionals on finite dimensional vec-
tor spaces. We generalize the CMA-ES to Riemannian manifolds and apply it to our
formulation of the shape reconstruction problem. The feasibility of this approach is
demonstrated by the reconstruction of geometries in artificial image data and MRI
scans of the cerebrum. We compare the results to the minimization of the reconstruc-
tion energy using a gradient based approach.

This leads to the following summary of the main contributions of this paper:

• The generalization of the CMA-ES to Riemannian manifolds.

• The application of statistical shape regularization on manifolds [11] to 3D voxel
data.

• The minimization of the shape reconstruction energy using the CMA-ES.

The outline of this paper is as follows: In Section 2 we repeatthe definition of
shape spaces and the approximated PGA on shape spaces. Following [11] we define
the Mahalanobis distance on shape spaces and the associatedregularization functional.
This is followed by a description of the shape space of 3D-MReps. In Section 3 we
introduce the CMA-ES on Riemannian manifolds. The application of the CMA-ES
to 3D-MReps is discussed in Section 4. In particular we consider the Mumford-Shah
and the Snake energies and define regularization functionals based on the Mahalanobis
distance in shape spaces. In Section 5 we discuss the detailsof our implementation of
the proposed algorithm and finally present the results of twodifferent experiments in
Section 6.
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2 Shape spaces

In this section we first define the notion of shape spaces and outline some of their
properties. This part introduces basic concepts from Riemannian geometry. For further
details we refer the reader to [14]. The second part is devoted to statistics on shape
spaces.

2.1 Riemannian manifolds

In this paper we assumeM to be a RiemannianC∞ manifold of dimensionN ≥ 1. For
p ∈ M we call TpM the tangent space ofM at p andTM :=

⋃

p∈M TpM the tangent
bundle ofM. The Riemannian metric on a manifoldM is a smoothly varying inner
product〈·, ·〉p onTpM. This inner product defines the norm

|v| = 〈v,v〉
1
2
p for v∈ TpM .

The lengthl of a given smooth curveκ : [0,1] → M is computed by integrating the
norm of the tangent vectors alongκ , i.e.,

l =

∫ 1

0
|κ̇(t)|dt =

∫ 1

0

〈
κ̇(t), κ̇(t)

〉 1
2
κ(t)dt ,

whereκ̇(t) = ∂κ(t)/∂ t. The distancedM between two pointsp,q ∈ M is defined as
the minimum length over all piecewise differentiable curves betweenp andq. A curve
is said to begeodesicif it locally minimizes the length between points. A manifold is
said to be complete if all geodesics extend indefinitely. This implies that between any
two points a length-minimizing geodesic exists. In the following sections we always
assumeM to be complete. We refer toM as ashape space.

Let p∈ M andv∈ TpM, then there exists a unique geodesicκ : [0,1]→M such that
κ(0) = p andκ̇(0) = v. TheRiemannian exponential mapExpp : TpM → M is defined
by

Expp(v) = κ(1) .

This implies that the exponential map locally preserves distances, i.e.

dM(p,Expp(v)) = |v| ,

for v small enough. Moreover, there exists a non-empty neighborhoodVp ⊂ TpM of
the origin such that the exponential map is a diffeomorphismonVp and any two points
q,q′ ∈ Expp(Vp) =: Up can be connected by a uniquely determined geodesic which is
entirely contained inUp. We callUp a normal neighborhoodof p and the inverse of
Expp onUp theRiemannian logarithmic map:

Logp : Up →Vp , Logp := Exp−1
p .

Thus forq∈Up the geodesic distance betweenp andq is given by

dM(p,q) = |Logp(q)| . (1)

In the following we give the exponential and the logarithmicmap for certain spe-
cific shape spacesM. Let p,q∈ M andv∈ TpM. First we consider the caseM = IR3

with the Euclidean metric. Then we have

Logp(q) = q− p and Expp(v) = p−v.
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Figure 1: Illustration of the parallel transport.

ForM = IR+ with the metricdIR+(p,q) = | log(p)− log(q)| for p,q∈ IR+, the Rieman-
nian maps are given by

Logp(q) = log

(
q
p

)

and Expp(v) = pexp(v) .

For the computation of the Riemannian logarithmic map on theunit sphereM = S2

with the induced metric we use theazimuthal equidistant projection[26].

2.2 Parallel transport on normal neighborhoods

The definition of a normal neighborhoodUp of a pointp∈ M implies that every other
point in the neighborhood can be connected top by a uniquely defined geodesic. This
allows us to transport tangent vectors and bilinear forms fromTpM to any other tangent
space at a point inUp using the parallel transport [11].

Assume a basise1, . . . ,eN of TpM which is orthonormal w.r.t.〈·, ·〉p andq∈Up. Let
κ : [0,1] →Up be the unique geodesic connectingp andq. Then there exists a unique
field of frames(ei)1≤i≤N : [0,1]→ TM denoted by

(e1(t), . . . ,eN(t)) ,

which is parallel toe1, . . . ,eN and satisfiesei(0) = ei , 1≤ i ≤ N. We defineei(q) :=
ei(1) for 1≤ i ≤ N and hence we have mapsei : Up → TM, where(e1(q), . . . ,eN(q)) is
an orthonormal frame inTqM for everyq∈Up.

Now we consider a tangent vectorvp ∈ TpM, vp = ∑N
i=1viei . Thetransport vq of vp

to TqM is defined by

vq =
N

∑
i=1

viei(q) . (2)

Next we assume a bilinear formbp on TpM. Thenbp defines a matrixB∈ IRN×N

w.r.t. e1, . . . ,eN by
Bi j = bp(ei ,ej) . (3)

We define thetransport bq of bp to TqM by

bq(vq,wq) =
N

∑
i, j=1

viwj Bi j for vq =
N

∑
i=1

viei(q) , wq =
N

∑
i=1

wiei(q) . (4)
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This transformation ofbp to bq is compatible to the transport of tangent vectors, i.e.,

bp(vp,wp) = bq(vq,wq) for vp,wp ∈ TpM,q∈Up .

As suggested by the notation the parallel transport is reversible, i.e., transportingvq

andbq back toTpM results invp andbp. It is important to keep in mind that in either
way the transport depends on its origin.

The parallel transport on theS2 is illustrated in Figure 1. On the left hand side
the transport ofe1, e2 and two vectors inTpS2 to the tangent space at a second point
q∈ S2 is shown. The right image illustrates that the parallel transport depends on its
origin. The image shows the parallel transport of the framese1, e2 ∈ TpS2 to q. The
initial frame (black dotted lines) is transported toTqS2 (dotted bright lines). Then we
transport the resulting frame fromq to a third pointr ∈ S2 (gray dash-dotted lines).
After that this frame is transported back toTpS2. The resulting frame (black solid
lines) is different from the initial one.

2.3 Approximated principal geodesic analysis

In this subsection we study a generalization of the linearPrincipal Component Analysis
(PCA) to shape spaces, calledApproximated Principal Geodesic Analysis(aPGA) [11,
10].

First we repeat the concept of the PCA. Letp1, . . . , pS∈ IRN be a set of data points.
The meanµ ∈ IRN of this set is computed as

µ = argmin
p∈IRN

S

∑
i=1

(p− pi)
2 =

1
S

S

∑
i=1

pi .

The PCA is then used to find a sequence of linear subspaces thatoptimally represent
the variability of the data, i.e., we search for an orthonormal basisv1, . . . ,vN of IRN

which satisfies

v1 = argmax
|v|=1

S

∑
i=1

〈v, pi − µ〉2 ,

vk = argmax
|v|=1

v⊥〈v1,...,vk−1〉

S

∑
i=1

k−1

∑
j=1

(
〈v j , pi − µ〉2+ 〈v, pi − µ〉2) .

Then the vectorv1 determines the direction of the largest variance of the dataset, the
vectorv2 the direction of the second largest variance and so on. The vectorsv1, . . . ,vN

are the ordered eigenvectors of the covariance matrix

Σ =
1
S

S

∑
i=1

(pi − µ)(pi − µ)T ,

which is symmetric and positive semidefinite. The corresponding eigenvaluesλk of Σ
describe the variability of the pointsp1, . . . , pS in the directionsvk.

This concept can be generalized to shape spaces as follows. Let p1, . . . , pS ∈ M.
The straightforward definition of the meanµ ′ ∈ M is

µ ′ := argmin
p∈M

S

∑
i=1

d2
M(p, pi) . (5)
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Note that in general, without imposing additional constraints, the existence and unique-
ness of such minimizers are not guaranteed.

Next we search forprincipal geodesicson M as an analogy to the principal com-
ponents in the linear setting. A submanifoldH of M is said to be geodesic inM if all
geodesics inH are also geodesics inM. We want to compute geodesic submanifolds
H1, . . . ,HN which are normal to each other and reflect the directions of the princi-
pal variances of the data. In the following we give a formal definition of the princi-
pal geodesic submanifolds. First we define the projection operator on a closed subset
H ⊂ M by

πH : M → H , p 7→ argmin
h∈H

d2
M(h, p) .

Let further be

v′1 := argmax
v∈Tµ ′M
|v|=1

S

∑
i=1

d2
M(µ ′,πH1(v)(pi)) , (6)

whereH1(v) = Expµ ′(〈v〉) is the exponential of the linear hull ofv. We set

v′k := argmax
v∈Tµ ′M
|v|=1

v⊥〈v′1,...,v′k−1〉

S

∑
i=1

d2
M(µ ′,πHk(v)(pi)) , 2≤ k≤ N , (7)

whereHk(v) = Expµ ′(〈v′1, . . . ,v′k−1,v〉) is the exponential of the linear hull of the vec-
torsv′1, . . . ,v

′
k−1,v. The tangent vectorsv′1, . . . ,v

′
N define theprincipal geodesics. We

call µ ′,v′1, . . . ,v
′
N thePrincipal Geodesic Analysis(PGA) of the datap1, . . . , pS.

In the following we assume that the data pointsp1, . . . , pS lie in a sufficiently small
neighborhoodU . Then we can approximate

dM(q,q′) = |Logq(q
′)| ≈ |Logp1

(q)−Logp1
(q′)|

for q,q′ ∈ U . Inserting this approximation in the formal definition ofµ ′ in (5) yields
theapproximated mean

µ = Expp1

(

1
S

S

∑
i=1

Logp1
(pi)

)

. (8)

Next, we replaceµ ′ by µ in (6) and (7) and apply the approximation

dM(q,q′) = |Logq(q
′)| ≈ |Logµ(q)−Logµ(q′)|

for q,q′ ∈ U . This leads to the following expressions for the tangent vectors defining
theapproximated principal geodesics:

v1 = argmax
v∈Tµ M
|v|=1

S

∑
i=1

〈v,Logµ(pi)〉2
µ ,

vk = argmax
v∈Tµ M
|v|=1

S

∑
i=1

k−1

∑
j=1

(

〈v j ,Logµ(pi)〉2
µ + 〈v,Logµ(pi)〉2

µ

)

for 2 ≤ k ≤ N. Thus, thev1, . . . ,vk are the principal components of the logarithms
of the data in the tangent space atµ . This motivates the following definition of the
Approximated PGA:
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Definition 1
Assume datap1, . . . , pS∈U as above.

1. Define the approximated meanµ as in (8).

2. Choose an orthonormal basise1, . . . ,eN of TµM and define the covariance matrix
Σ ∈ IRN×N by

Σ =
1
S

S

∑
i=1

wiw
T
i where Logµ(pi) =

N

∑
j=1

wi, j ej , 1≤ i ≤ S.

Then(µ ,Σ) is called the approximated PGA (aPGA) of the datapi , 1≤ i ≤ S, w.r.t. the
basise1, . . . ,eN.

If (vk,λk), 1≤ k≤ N, are the eigenvectors and eigenvalues ofΣ, then

Expµ(−λkvk) , µ , Expµ(λkvk)

correspond to the mean and to the elements of thek-th approximated principal geodesic
whose distance toµ is λk w.r.t. the Riemannian metric onM.

2.4 Mahalanobis distance on shape spaces

For a symmetric, positive definite matrixΣ the Mahalanobis distancedΣ : IRN × IRN →
IR is defined as

d2
Σ(x,y) = (x−y)TΣ−1(x−y) ,

wherex,y∈ IRN. In the Euclidean caseΣ is the (possibly empirical) covariance matrix
of a normal distribution centered at the origin. This definition can also be expressed
via the inner product〈·, ·〉Σ given by

〈v,w〉Σ = vTΣ−1w, v,w∈ IRN .

Then
d2

Σ(x,y) = 〈x−y,x−y〉Σ .

Now we generalize this concept to shape spaces following [11]. Again assume
Σ ∈ IRN×N to be a symmetric, positive definite matrix andµ ∈ M. Let e1, . . . ,eN be a
fixed orthonormal basis ofTµM w.r.t. 〈·, ·〉µ andUµ a normal neighborhood ofµ . Note
thatUµ is not necessarily “small”. In case of the sphere e.g. normalneighborhoods
can always be chosen such that the cover the whole manifold with the exception of one
point. The matrixΣ−1 defines a (symmetric, positive definite) bilinear formbΣ−1,µ on
TµM by

bΣ−1,µ(vµ ,wµ) = vΣ−1w for vµ =
N

∑
i=1

viei , wµ =
N

∑
i=1

wiei .

We call the family of the transports ofbΣ−1,µ to Uµ as in (4) theMahalanobis metric
and denote them by

bΣ−1,p for p∈Uµ .
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TheMahalanobis distance dM,µ,Σ from p to q in Uµ w.r.t. µ andΣ is then given by

dM,µ,Σ = inf
κ :[0,1]→Uµ

κ(0)=p
κ(1)=q

∫ 1

0

√

bΣ−1,κ(κ̇, κ̇)dt .

Note that unlike to the situation on vector spaces, the Mahalanobis distance on
shape spaces depends not only onΣ but also onµ . In [11] it is proven that this general-
ization corresponds to the classical Mahalanobis distancein the Euclidean setting and
that it equals the standard Riemannian metric onM if Σ = IdN.

If Σ andµ are the covariance matrix and the mean of a given probabilitydistri-
bution, respectively, then the Mahalanobis distancedM,µ,Σ reflects the shape of this
distribution, i.e., the distance between a pointp∈ M andµ is small, if p is located in
a ”probable direction”. We use this property in our regularization functional because it
allows us to penalize deviations from a reference element depending on the distribution
of the training data.

2.5 A Mahalanobis regularization functional

In this section we introduce regularizations on shape spaces. Let Rα : M → [0,∞],
α > 0, be a family of continuous maps. Assume thatD :=

⋂

α>0dom(Rα) 6= /0. We
call (Rα)α>0 a regularization if it satisfies the following conditions:

1. For everyp∈ D

lim
α→0

Rα(p) = 0

holds.

2. The regularization of every unbounded sequence tends to infinity, i.e., there ex-
ists somep0 ∈ M such that for everyα > 0

lim
k→∞

dM(p0, pk) = ∞ implies lim
k→∞

Rα(pk) = ∞ .

3. For everyp∈ D, there existsc > 0 such that for allq∈ M and allα > 0

Rα(q) ≤ Rα(p) implies dM(p0,q) ≤ c.

Let dM,µ,Σ be the Mahalanobis distance defined byµ ∈ M and a covarianceΣ ∈
IRN×N as in Section 2.4. Then, the map

p 7→ α d2
M,µ,Σ(µ , p) (9)

qualifies as a regularization [11].

2.6 The shape space of 3D-MReps

The following definition of the 3D-MRep shape space is based on the definition of the
(continuous) medial axis transform that has been introduced by Blum [3]. The initial
idea of parametric MReps is due to Pizer et al. [22]. It uses a discretization of the
continuous medial axis of an object instead of boundary representations.

In our implementation, every instance of an MRep in three dimensions is repre-
sented by
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Figure 2: Illustration of the atom parameters of a boundary atom with η > 1.

1. a regularn1×n2 quadrilateralmeshand

2. then1n2 atoms, centered on the mesh vertices.

The following information is provided for every atom of a shape instance:

1. Theposition x∈ IR3 of the atom.

2. Theradius r∈ IR+ of the atom.

3. Twoboundary vectors b1,b2∈S2, pointing to the two implied bound-
ary points of the surface. Forborder atoms(i.e. atoms on the bound-
ary of the mesh), anadditional boundary vector b∈ S2 is defined as
the bisector of the two given boundary vectors.

4. A parameter for border atoms, calledη ∈ IR+, specifying the elon-
gation factor along the additional boundary vector.

An illustration of a boundary atom and its parameters is shown in Figure 2. Theshape
space of 3D-MRepsis defined as follows:

Definition 2
Let n1,n2 ≥ 2. The product space

M :=
(

IR3
︸︷︷︸

position

× IR+
︸︷︷︸

radius

× S2×S2
︸ ︷︷ ︸

boundary vectors

)(n1−2)(n2−2)

︸ ︷︷ ︸

inner atoms

×
(

IR3
︸︷︷︸

position

× IR+
︸︷︷︸

radius

× S2×S2
︸ ︷︷ ︸

boundary vectors

× IR+
︸︷︷︸

boundary elongation

)2((n1−1)+(n2−1))

︸ ︷︷ ︸

boundary atoms

is called the shape space of 3D-MReps.

On the left hand side of Figure 5 an example of an 3D-MRep is displayed. Every
instance ofM defines a surface via its parameters. Thus we can introduce a map ψ
that represents the boundary of an instance of 3D-MReps. This leads to the following
definition of theshape model:
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Definition 3
Let M be the shape space of 3D-MReps,p∈ M andΩ ⊂ IR3 a domain. Let furthermore
be

ψ : M → C(S2,Ω) ,

whereψ is a closed surface that is homeomorphic to a sphere. Then we call (M,ψ) a
3D-MRep shape model.

3 The CMA-ES on Riemannian manifolds

The CMA-ES [16, 18, 13] is an evolutionary optimization method for non-linear, non-
convex functionals IRN → IR based on iterative random sampling of arguments. In
each step random points are sampled from a multivariate normal distribution. The best
sample points are used to estimate a new mean and a new covariance matrix which
define the according normal distribution. We refer to the setof random points which
are generated in one iteration as ageneration.

One important property of the CMA-ES is that the covariance of a generation is
not completely determined by the results of the previous generation. The amount of
the update relative to the old values is controlled bylearning rates. Thus, the sam-
pling points of the next generation are created depending onthe local behavior of the
functionaland the sampling characteristics of the previous generations.

The major advantage of this optimization method compared togradient based meth-
ods is that non-convex functionals or functionals with rugged search landscape can
be minimized efficiently [13]. In Figure 3 a 2-dimensional section of the simplified
Mumford-Shah functional on 3D-MReps is shown. There we can see such a rugged
search landscape.

In the following we give a short review of the CMA-ES on vectorspaces [13]. As
stated above, the CMA-ES iteratively samples a population of points from a normal
distribution. This distribution is determined by its mean and a covariance matrix multi-
plied by a step size. Each of these variables — the mean, the covariance matrix and the
step size — are updated in each iteration. In addition, the CMA-ES on vector spaces
stores information about the “directions” of the previous iterations. These directions
are the accumulated and normalized differences of the meansof two subsequent gener-
ations. In [13] the author refers to the family of these directions as theevolution paths.
The evolution path directions “remember” information of the previous generations and
are one component of the updates of the covariance and the step size in each iteration.
This leads to two different evolution paths, one for the update of the covariance and
one for the update of the step size.

The goal of this section is to generalize the CMA-ES to Riemannian manifolds.
We sample tangent vectors in the tangent spaces at the mean and project them onto the
manifoldM by means of the Riemannian exponential map. Moreover, the covariance
matrix is replaced by a positive definite bilinear form on thetangent bundle ofM.
The challenge is to determine the mean value (onM) for the next iteration and to
transport the covariance and the current evolution path directions to the new location
on the manifold. Under the assumption that each generation is sampled within a normal
neighborhood of the mean, this is done by utilizing the parallel transport introduced in
Section 2.2.

Before proceeding with the CMA-ES on Riemannian manifolds we review an al-
ternative approach to minimize functionals defined onM. The Riemannian logarith-
mic map Logp, p ∈ M, is a diffeomorphism of normal neighborhoods ofp to the
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Figure 3: Illustration of a 2-dimensional section of the simplified Mumford-Shah func-
tional which we use in Section 6.1. The plot includes local minima and hence justifies
the use of the CMA-ES as a method for optimization.

their images in the tangent spaceTpM. If Up is such a normal neighborhood and
Vp := Logp(Up) then

F ′ : Vp → IR , q 7→ F(Expp(q))

is a reformulation ofF on TpM, i.e., on a vector space. The obvious alternative to
minimizingF by using the CMA-ES onM is to perform the classical CMA-ES forF ′

onTpM. However, the drawback of this approach is that the samples of all generations
are required to be contained inVp whereas in our case it is sufficient that the samples
of onegeneration are contained in a common normal neighborhood.

In the following we introduce the notations and parameters used in the description
of the algorithm in the next section. First we assume a functionalI : M → IR which we
want to minimize. We denote the current iteration byk ∈ IN. The mean value and the
step size at thek-th iteration are accordingly given byµk ∈M, andσk > 0. The positive
definite bilinear formbµk onTµkM represents the covariance. Moreover we assume the
two evolution path directionsvc,µk ,vσ ,µk ∈ TµkM. The proposed algorithm depends on
the same parameters as in the Euclidean setting. These include the population sizem1

and the number of selected samplesm2. The recombination of the selected samples is
controlled byrecombination coefficients wi , 1≤ i ≤ m2, where

w1 ≥ ·· · ≥ wm2 > 0 and
m2

∑
i=1

wi = 1.

Furthermore the update of the evolution path directions is controlled by the learning
rates 0< cc,cσ ≤ 1 and the number ofeffective samples meff. The parameters 1≤ µcov

and 0< ccov ≤ 1 control the update of the covariance. Finally, the computation of the
step size depends on the damping parameterdσ ≈ 1. With exception of the population
sizesm1 andm2 we set all parameters to the values recommended in [13].
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3.1 One evolution step

In the following we give a detailed description of a single step of the proposed algo-
rithm. Our goal is to minimize the energy of the objective function I . I.e. we try to
moveµk closer to a global minimum ofI . In addition, we updatebµk, vc,µk andvσ ,µk

and propagate them to the tangent space atµk+1.
We assume that an orthonormal basise1, . . . ,eN of TµkM is fixed. Then the bilinear

form bµk can be expressed by a symmetric, positive definite matrixC as in (3). Fur-
thermore, all vectors in the tangent spaceTµkM can be assumed to be coordinates in

IRN (w.r.t.e1, . . . ,eN). We start by samplingm1 tangent vectorsv1,µk, . . . ,vm1,µk ∈ TµkM

from the multivariate normal distribution defined byσkC:

vi,µk ∼ N(0,(σk)2C), 1≤ i ≤ m1 . (10)

If the vi,µk are not completely contained in a normal neighborhood ofµk we continue
to sample until this criterion is met. We assume that thevi,µk are ordered such that the
functional values of their exponentials increase, i.e.,

I(Expµk(vi,µk)) ≤ I(Expµk(v j ,µk)) for 1≤ i ≤ j ≤ m1 .

Then we definev′µk as the recombination of them2, 0< m2 ≤ m1, best samples:

v′µk :=
m2

∑
i=1

wivi,µk ∈ TµkM .

Next we compute the updated path directions according to

v′c,µk := (1−cc)vc,µk +
√

cc(2−cc)meff
1

σk
v′µk ∈ TµkM

and

v′σ ,µk := (1−cσ)vσ ,µk +
√

cσ (2−cσ)meff
1

σk C− 1
2 v′µk ∈ TµkM .

The current path directionsv′
c,µk andv′σ ,µk correspond to an exponentially smoothed

accumulation of the previous directions. Both directions are normalized w.r.t. the cur-
rent step sizeσk. The learning ratescc andcσ control the amount of the exponential
smoothing. In contrast tov′

c,µk the evolution path directionv′σ ,µk for the estimation of
the step size is independent of the direction of the eigenvectors of the covariance. This
is achieved by multiplication with the root of the covarianceC− 1

2 .
Then we update the covariance matrix

C′ := ccov
(
1− 1

µcov

) 1
(σk)2

m2

∑
i=1

wi vi,µkvT
i,µk

︸ ︷︷ ︸

rank-m2-update

+(1−ccov)C
︸ ︷︷ ︸

old covariance

+
ccov

µcov
v′c,µk(v

′
c,µk)

T

︸ ︷︷ ︸

rank-one-update

.

The update ofC is essentially the same as in the vector space setting [13] and consists
of three terms: the rank-m2-update, the scaled covariance matrix of the last generation
and the rank-one-update.

The rank-m2-update estimates the variances of them2 best sampling points to their
true mean, i.e., the mean of the original sampling distribution. It is called rank-m2-
update because the rank of the matrix is at most min(m2,N). For the rank-m2-update
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to be a robust estimator of the covariance matrix, the population sizem2 has to be
large enough. However, large populations increase the runtime of a single step of
the algorithm. Therefore, the estimated covariance is combined with the covariance
computed in the previous step using exponential smoothing (old covariance).

The rank-one-update estimates the covariance based on the current evolution path
direction. Consider a lot of good sample which are concentrated along a geodesic
through the mean but are equally distributed onbothsides of the mean. This situation
does not necessarily indicate a direction towards a minimum, because in that case the
optimal samples would concentrate ononeside of the mean. In contrast to the rank-
m2-update the rank-one-update does not increase the eigenvectors of C into such a
directions. In other words, the rank-one-update incorporates sign information which
is not present in the rank-m2-update. Note that forcc = 1, meff = 1 andm2 = 1 the
rank-m2-update and the rank-one-update coincide.

In the definition ofC′ the parameterccov controls the exponential smoothing of the
influence of the old covariance andµcov determines the relative weighting between the
rank-one-update and rank-m2-update.

The step size

σk+1 := σkexp
(cσ

dσ

( |v′σ ,µk|
E|N(0, Id)| −1

))

is again adapted as in the vector space setting. Here, E|N(0, Id)| is the expectation of
the length of aN(0, Id)-distributed vector in IRN, i.e.,

E|N(0, Id)| =
√

2
Γ((N +1)/2)

Γ(N/2)
.

In [13] the author explains that the goal is to increase the step size if the updates of
vσ ,µk over successive generations point into similar directionsand to decrease the step
size if they cancel each other.

At this point we are ready to propagate the mean to the next point onM. We define

µk+1 := Expµk(v′µk) ∈ M .

Then we transport the information we have to provide for the next iteration toTµk+1M.
The updated covariance matrixC′ defines a bilinear formb′µk onTµkM. We define

bµk+1 := the parallel transport ofb′µk to µk+1 .

In the same spirit we update

vc,µk+1 := the parallel transport ofv′c,µk to µk+1 , and

vσ ,µk+1 := the parallel transport ofv′σ ,µk to µk+1 .

This procedure is iterated until a stopping criterion is fulfilled. Such a criterion is for
instance, that the functional valueI(Expµk(vi,µk)) is similar for all i = 1, . . . ,m1.

3.2 Initialization

The algorithm has to be initialized by a first guess forµ0. Then we setbµ0 = 〈·, ·〉µ0

andvc,µ0 = vσ ,µ0 = 0. In accordance with the recommendation for the vector space
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Figure 4: We illustrate the first iteration of the CMA-ES onS2. We start with any initial
guessµ0 ∈ S2. The orthonormal basise1,e2 of Tµ0S2 is shown by the dashed black
lines. Additionally the initial bilinear formbµ0 is indicated by the dashed-dotted circle

in Tµ0S2. Then 40 tangent vectorsvi,µ0 are sampled. Here we displayed Expµ0(vi,µ0)
by dots, where them2 = 10 best are white colored while the others are black colored.
The updated bilinear formb′µ0 in Tµ0S2 and the transported bilinear formbµ1 in Tµ1S2

is shown by the dashed and the light ellipse, respectively. The transported orthonormal
basis is displayed by the black lines.

setting in [13], a reasonable choice ofσ0 is such that the minimum ofI is contained in
the set

{
p∈ M | dM(µ0, p) < 3σ0} .

Moreover, the step sizeσk has to be sufficiently small, such that the generated tan-
gent vectorsvi,µk , 1≤ i ≤ m1 in (10) have a good enough chance to lie in a normal

neighborhood ofµk.

3.3 The CMA–ES onS2

We consider randomly generated functionalsI : S2 → IR. The functionals have some
local minima with values greater than zero, while the globalminimum has value zero.
An example of such an functional is shown in Figure 4. We want to find the global
minimum by using the CMA–ES. Therefore we start with someµ0 ∈ S2 and initialize
the ES withσ0 = 1.05. In Figure 4 the first iteration step is displayed. After the
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iteration procedure stops in a minimum, we restart the algorithm for 20 times with
different µ0 ∈ S2. In the example in Figure 4 the global minimum was found in all
test runs. We iterate this process with different functionals I . The global minimum
was detected in 63% of all cases, while a steepest descent algorithm found the global
minimum in less than 2% of all cases.

4 Application

We investigate two methods to detect objects in voxel imagesbased on 3D-MRep shape
models. Letf : Ω → IR be a given image, whereΩ ⊂ IR3 is a domain. Moreover let
γ : S2 → Ω be a differentiable Jordan submanifold, which is homeomorphic to the unit
sphereS2.

4.1 A simplified Mumford-Shah functional

We consider a region-based segmentation method, i.e., we search for volumes in voxel
images, which are characterized by a significant differencebetween the mean image
intensity inside the volume and the mean intensity of the background. An example of
this situation is the synthetic voxel data presented in Figures 6, 7 and 8 of Section 6.1.
An object inside the synthetic voxel image is represented byvalues of 200 (the dark
area), while the background intensity is set to 50. This clear contrast between inside
and outside values makes a region-based segmentation method, like the one described
below, applicable.

A Jordan submanifoldγ separatesΩ into a volume inside and outsideγ. We denote
the inside volume asJ(γ) and the volume outside asO(γ). According to [4, 11] the
simplified Mumford-Shah functional is defined as

ISMS(γ) =

∫

J(γ)
(u1(γ)− f )2dx+

∫

O(γ)
(u2(γ)− f )2dx,

where

u1(γ) =
1

|J(γ)|

∫

J(γ)
f dx and u2(γ) =

1
|O(γ)|

∫

O(γ)
f dx. (11)

Formulating this functional for the 3D-MRep shape model(M,ψ) yieldsF : M →
[0,∞] defined by

F(p) = ISMS(ψ(p)) . (12)

Thus,F maps a shapep to the simplified Mumford-Shah energy of its boundaryψ(p).
The goal is to find a shapep, which minimizesF .

Moreover we want to include statistical information about the appearance of a
shape model into the solution process. According to Section2.5 the Mahalanobis dis-
tance has appropriate properties. We define

Iα(p) = F(p)+ αd2
M,µ,Σ(µ , p) . (13)

The existence of a minimizerpα of Iα for finite dimensionalM is proven in [11].
Moreover,pα converges top for α → 0, if p is a minimizer ofF .

We use a CMA-ES and a gradient descent method to calculate a minimizer of Iα .
For the gradient based approach we have to evaluate the first derivative of Iα w.r.t.
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p. Theorem 2 in Appendix A states thatF is differentiable if f is continuous and
ψ : M → C(S2,Ω) is differentiable. The derivative into directionρ is then given by

DF(ψ(p))(ρ) = DISMS(ψ(p))Dψ(p)(ρ) . (14)

Because the Mahalanobis distance is differentiable [11], the regularization functional
Iα is differentiable.

The differences between the evolution strategy and the gradient based approach to
minimize (13) are:

• For the CMA-ES we do not need to evaluate the gradient ofIα . The computation
of Dψ has to be done numerically and hence is computationally expensive for
largeN.

• The gradient descent method is trapped in local minima, whereas the CMA-ES
is able to get around them (c.f. Section 3.3).

4.2 Edge-Based segmentation

Region-based segmentation cannot be applied, if the objects in the voxel data have
nearly the same intensity as the surrounding volume. To overcome this problem, an
edge-based segmentation method is introduced below. Thereare a lot of examples of
such problems, for instance the detection of yeast cells in microscope images [11] or
the segmentation of the cerebellum in 3D MRI voxel data in Section 6.2. We choose
an edge-based segmentation method based on the Snake energyas introduced by Kass
et al. [15]. We consider the functional

Iβ (γ) = −
∫

γ
|∇ f (γ(σ ,τ))|dσdτ +

β
2

Surface(γ)

for a Jordan submanifoldγ and the voxel dataf . The first term of this functional forces
γ to be at locations where the gradient off is high and the second term penalizes the
surface area ofγ.

Again we reformulate the functional for the 3D-MRep shape model (M,ψ) and
defineF : M → [0,∞] by

Fβ (p) = Iβ (ψ(p)) . (15)

We minimize this functional with the CMA-ES to avoid the calculation of the deriva-
tive DF .

5 Implementation

We implemented a library which provides functions to visualize and modify 3D-MReps.
Furthermore it provides the integration routines necessary to implement the energy
functionals for the automatic segmentation of voxel images. The library is an object
oriented framework written in C++. For the visualization OpenGL is utilized and the
GUI is based on Qt by Trolltech.
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5.1 Computation ofψ(p) for 3D-MReps

This section is concerned with the generation of the boundary surface that is implied by
an instance of 3D-MReps (see Section 2). In the middle of Figure 5 the implied bound-
ary of the shape model on the left hand side is represented as aclosed triangulation.
This polyhedral representation approximates a smoothG1 continuous surface that has
been created usingGregory patches. Gregory patches [23] can be used to construct a
smooth closed surface in IR3. In the following we summarize this interpolation process.

The idea of (bicubic) Gregory patches is based on the definition of abicubic B́ezier
surface

s(t1, t2) =
3

∑
i=0

3

∑
j=0

si j B
3
i (t1)B

3
j (t2) , t1,t2 ∈ [0,1] ,

whereB3
i andB3

j are the Bernstein polynomials of degree 3 andsi j are coordinates of
the control points. Abicubic Gregory patchis defined as follows [9]:

s(t1, t2) =
3

∑
i=0

3

∑
j=0

si j (t1,t2)B
3
i (t1)B

3
j (t2) ,

where the control points are functions oft1 andt2 defined by

s11(t1, t2) =
t1s(t2)

11 + t2s(t1)
11

t1 + t2

s21(t1, t2) =
(1− t1)s

(t2)
21 + t2s(t1)

21

1− t1+ t2

s12(t1, t2) =
t1s(t2)

12 +(1− t2)s
(t1)
12

t1 +1− t2

s22(t1, t2) =
(1− t1)s

(t2)
22 +(1− t2)s

(t1)
22

1− t1+1− t2
si j (t1, t2) = si j for all other pairs(i, j)

Here, thes(tk)
i j ∈ IR3, 1≤ i, j,k ≤ 2, are the eight fixed inner control points that have to

be computed by the interpolation algorithm. Note, that thisgeneralization of a bicubic
Bézier surface achieves tangent plane continuity for an irregular quadrilateral interpo-
lation mesh [23]. In our application the mesh is irregular because vertices of valence 3
exist.

The Gregory patch interpolation algorithm uses adjacent quadrilateral patches, each
consisting of 4 boundary points and the corresponding normals, and joins them (i.e.
computes the eight inner control points as mentioned above), such that a closedG1

surface is generated. The following scheme is used to construct a quadrilateral inter-
polation mesh including surface normals from 3D-MRep parameters. Suppose that we
are given a shape instancep ∈ M with a regularn1 × n2 mesh of atoms. Every in-
ner atom (see Section 2.6) defines two boundary points,y1 andy2, and corresponding
normals,z1 andz2, which are computed as follows:

y1 = x+ rb1 , y2 = x+ rb2 , z1 = rb1 , z2 = rb2 .

Every boundary atom defines an extra boundary pointy3 and a normalz3 in the direc-
tion of b:

y3 = x+ ηrb , z3 = rb .

17



Figure 5: An instance of the 3D-MRep shape space (left) and its implied boundary
(middle) and the initial interpolation mesh that is used to construct the surface (right).
Note that the interpolation mesh is anirregular quadrilateral mesh, since it has vertices
with valence 3 at each of the 4 corners of the figure.

From the equations above, we first obtain a mesh for the upper and lower side of an
object using only the boundary vectorsb1 andb2, respectively, for all atoms. After that,
a mesh for the border of the object is computed combining the vectorsb1, b2 andb for
all boundary atoms. All three meshes are then interpolated using the Gregory patch
interpolation algorithm [23] to yield a set of Gregory patches interpolating all given
boundary points and normals. Figure 5 shows an illustrationof the initial interpolation
mesh on the right hand side.

After the surface points and normals have been interpolatedwith this algorithm, a
triangulation is constructed by evaluating the Gregory patches equidistantly along each
parametric directiont1 andt2, respectively.

5.2 Computation of the average inner/outer gray values

In this section we briefly describe how the average inner and outer valuesu1 andu2

in (11) w.r.t. an 3-dimensional input imagef : Ω → IR and a closed surfaceγ are com-
puted. This step contributes most to the total complexity ofthe segmentation algorithm.
In the following we assume thatΩ = [0,a1]× [0,a1]× [0,a1] for ai > 0, 1≤ i ≤ 3.

To compute the sum of inner and outer gray values, i.e.,
∫

J(γ) f dxand
∫

O(γ) f dx, we
take advantage of the divergence theorem

∫

J(γ)

∇ ·Gdx=

∫

γ

G ·dν , (16)

whereG : Ω → IR3 andν denotes the outer normal ofJ(γ). In our caseγ = ψ(p) as
described in Section 5.1. We compute the divergence fieldG for f as follows:

G(x1,x2,x3) :=
1
3





∫ x1
0 f (ζ ,x2,x3)dζ
∫ x2

0 f (x1,ζ ,x3)dζ
∫ x3

0 f (x1,x2,ζ )dζ



 . (17)

Finally, applying (16) to (17), yields
∫

J(γ)

f dx=
∫

γ

Gdν. (18)

In the implementation we only computeG as in (17) once, and then evaluate the in-
tegral on the right hand side of (18) at each step to compute

∫

J(γ) f dx and
∫

O(γ) f dx,
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Figure 6: Three training shapes out of 30. The dark area illustrates the training setswi .

respectively. For the average inner and outer gray valuesu1 andu2 in (11) we have
to normalize the latter integrals, i.e., divide them by|J(γ)| and|O(γ)|. These volumes
can be calculated by applying the above method with the unit function1.

6 Results

6.1 Segmentation of synthetic voxel images

In this subsection we apply the simplified Mumford-Shah functional as described in
Section 4.1. We consider 30 synthetic voxel imagesfi : Ω → IR, 1≤ i ≤ 30, which are
scaled and shifted indicator functions of training setsω1, . . . ,ω30 ⊂ Ω:

fi = 50+150χωi , 1≤ i ≤ 30.

A point x∈ Ω belongs to the training setsωi , if the distance fromx to a given curve in
IR3 is smaller than a specified number. In detail, letκi : [0,1]2 → Ω, 1≤ i ≤ 30 be the
family of surface parametrizations

(t1, t2) 7→





a1,i t1 +a2,i

(a3,i t1 +a4,i)(a5,i t2 +a6,i)+a7,i

a8,i sin(π ·a9,i t
a10,i
1 )(a11,i t2 +a12,i)+a13,i



 ,

where the parametersai, j are randomly distributed. Then the setsωi are defined by

ωi = {x∈ Ω : |x−κi| ≤ c} .

In Figure 6 three examples of the training shapes are shown.
As 3D-MRep shape space we choose

M =
(
IR3× IR+×S2×S2× IR+

)8
,

where the atoms are on a 4×2 quadrilateral mesh. Then we minimized the simplified
Mumford-Shah functional, i.e. (12), for all training data.Note that we do not use the
regularization term here.

In Figure 7 the results for one of the training data exemplarily illustrates the dif-
ferences between the CMA-ES and the gradient descent method. Both images are the
result of 1000 iterations of the respective minimization methods. In CMA-ES we set
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Figure 7: The results of the minimization of the simplified Mumford-Shah functional
using the CMA-ES (left) and the gradient descent method (right). The surface of the
results are displayed by the gray meshes, while the true training set is illustrated by the
dark area. The functional values for the CMA-ES and the gradient descent method are
F(p) = 1.9 ·10−4 andF(p) = 7.0 ·10−4, respectively.

Figure 8: Minimization of the Mumford-Shah energyF (left) and Mumford-Shah
regularization functionalIα (right). Again the surface of the results are displayed
by the gray meshes and the training set is shown by the dark area. In the left im-
age the Mumford-Shah energy isF = 1.2 · 10−3, on the rightF(p) = 1.5 · 10−3 and
Rα = 3.9 ·10−8.

m1 = 200. Because each iteration of the gradient descent methodsrequires the numer-
ical evaluation of the gradient ofF w.r.t. the 9·8 = 72 independent shape parameters,
the computational complexities of both approaches are comparable. As we can see in
Figure 7, the CMA-ES yields a more balanced triangulation than the gradient descent
method.

Applying the above method to the 30 synthetic voxel imagesfi , we yield 30 dif-
ferent shape instancespi . These are used to calculate an aPGA, as outlined in Section
2.3. These statistics define the corresponding Mahalonobisregularization as in (9) and
in consequence the regularized Mumford-Shah energyIα as in (13). We use this func-
tional to segment a voxel data set, where parts of the information is occluded as shown
in Figure 8. First, we apply the CMA-ES to minimize the simplified Mumford-Shah
functional (without regularization, i.e.,α = 0) of this data set. The result is shown in
the left image of Figure 8. Driven by the image data, the area between the two objects
is minimized such that the recovered surface looks like a dumbbell. This effect does
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Figure 9: On the right hand side we see the surface of the result, which is displayed by
the gray mesh. The training set (without noise) is illustrated by the dark area. On the
left hand side we indicate the noisy voxel data by showing single slices of the data.

not appear, when we minimize the regularization functionalIα with α = 5 ·10−4. The
result is shown in the right image of Figure 8 .

At last we consider the reconstruction of noisy data withoutregularization. We
added normal distributed noise with standard deviation 40 to synthetic voxel data. In
the left image of Figure 9 we can see the noisy data set and in the right image the result
of the minimization with the CMA-ES ofF is shown.

6.1.1 Complexity

In the following, we will briefly evaluate the complexity of the segmentation algorithm
used in the above examples. Considering time complexity, the implementation of the
above algorithm has two major obstacles:

1. Thecomputation of the average inner and outer values u1 andu2.

2. Thenumerical differentiationof ψ(p).

Referring to Section 5.2, the implementation takes advantage of the divergence theo-
rem, to minimize the time complexity for the computation ofu1 andu2. As we can see
from this Section, the size of the input imagef is only crucial in the initialization stage
of the algorithm, whereas in each step of the minimization, only the boundary of the
current model has to be parsed. This leads to the fact, that the time complexity of the
main segmentation algorithm (i.e. the iteration process) does not depend on the size of
the input image. The computation ofu1 andu2 thus is only influenced by the number
of faces of the boundary triangulation. However, it has to bementioned, that we have
to store the divergence field for the input image in advance, which can be of signifi-
cant size. For example for the synthetic images above, the input size is 503 = 125000
voxels. The divergence field is a 3-dimensional vector field of the same size, i.e. the
total size of the resulting array is 125000·3 = 375000. Assuming, that we are using
double precision floating point values with 8 bytes size each, the divergence field has
a total size of about 2.86 MB in memory. Considering the relatively low resolution
of the input image, this value is large (e.g. for an input image of dimension 2563, the
resulting size in memory would be 384 MB!).

For the numerical differentiation ofψ , we use a standard finite difference scheme.
This step can be very time consuming, as we have to compute thenumerical deriva-
tive in each parameter direction to get the gradient. Thus, it mainly depends on the
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dimensionality of the model. Looking at the examples above,the input model has 72
shape parameters, implying 72 calculations of the finite difference for each step of the
minimization algorithm.

Finally, we will compare the time for one iteration of the CMA-ES and the gradient
descent method. All segmentations were carried out on a standard desktop PC using
an AMD processor with 2.4 GHz and 2 GB RAM. Using the same parameters as in
the Section above, one step of the CMA-ES took about 1.2 seconds, while the steepest
descent algorithm lasted 0.4 seconds per iteration.

6.2 Segmentation of the cerebellum

In this example we are concerned with the segmentation of thecerebellum in 3D MRI
voxel dataf , which is displayed in the pictures in the left column of Figure 10. Here
we see that the intensities in the cerebellum, the cerebrum and other tissue are more or
less the same. Moreover, the intersection between the cerebellum and the cerebrum is
not visible. To use the edge-based segmentation method as discussed in Section 4.2,
we have to preprocessf . These preparatory steps include to thresholdf under and over
certain values and implement appropriate erosion and dilatation algorithms afterwards.
We denote the resulting image byf̃ and in the right column of Figure 10 we displayed
|∇ f̃ |. The boundary of the cerebellum is clearly visible at the bottom, the front and
backside. The boundary between cerebellum and cerebrum is available fractional.

Here, the cerebellum is modeled by

M =
(
IR3× IR+×S2×S2)3×

(
IR3× IR+×S2×S2× IR+

)12

as a shape space of 3D-MReps, where the atoms are on a 5× 3 quadrilateral mesh.
Then we minimize the functional (15) with the CMA-ES method.The result is shown
in Figure 11. The segmentation is very good apart from the region around the center of
the cerebellum. In this area the chosen shape model is too inflexible to adapt itself to
the true geometry of the volume we want to detect. Consequently, a model with more
atoms in those regions would be needed to capture those details.
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A A simplified Mumford-Shah functional

In this section we investigate the differentiability ofISMSintroduced in (4.1). We denote
the set of all differentiable mapsS2 → Ω by C1(S2,Ω), the vector product in IR3 by ×
and the inner product in IR3 by 〈·, ·〉.
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original MRI voxel data gradient of the data after the preprocessing

3D

transversal

coronal

sagittal

Figure 10: In the left column slices of the MRI voxel imagef are shown. The corre-
sponding slices of|∇ f̃ | can be seen in the right column.
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Figure 11: The result of the segmentation with the CMA-ES is shown. In the first three
rows slices of the MRI data are displayed with the segmented lines. In the bottom row
are a part of the MRep model (left) and the resulting surface (right).
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Lemma 1
Let g : Ω → IR be a bounded function and letγ ∈ C1(S2,Ω) be a Jordan submanifold.
Then the functional

I(γ) :=
∫

J(γ)
gdx

is well-defined and Gateaux differentiable inγ. For a directionρ ∈ C1(S2,Ω) the
derivative is given by

DI(γ)(ρ) =

∫ 1

0

∫ 1

0
g(γ(t1,t2))

〈
∂γ(t1,t2)

∂ t1
× ∂γ(t1,t2)

∂ t2
,ρ(t1,t2)

〉

dt1dt2

=

∫ 1

0

∫ 1

0
g◦ γ 〈γt1 × γt2,ρ〉dt1dt2 .

PROOF. Leth > 0 and

ψ : [0,1]2× [0,1]→ Ω , ψ(t1,t2,s) = γ(t1,t2)+hsρ(t1,t2) .

Then the functional determinantA := det(J(ψ)(t1,t2,s)) of ψ is

A = h

〈
∂γ(t1, t2)

∂ t1
× ∂γ(t1, t2)

∂ t2
︸ ︷︷ ︸

=:nγ

,ρ(t1,t2)

〉

+

h2s

〈(
∂γ(t1, t2)

∂ t1
× ∂ρ(t1,t2)

∂ t2

)

−
(

∂γ(t1,t2)
∂ t2

× ∂ρ(t1,t2)
∂ t2

)

︸ ︷︷ ︸

=:nγ,ρ

,ρ(t1,t2)

〉

+

h3s2
〈

∂ρ(t1, t2)
∂ t1

× ∂ρ(t1,t2)
∂ t2

︸ ︷︷ ︸

=:nρ

,ρ(t1,t2)

〉

. (19)

Now let h > 0 be so small thatγ +hρ is a Jordan submanifold. Then we have
∫

Ω

(
χJ(γ+hρ)− χJ(γ)

)
g dx=

∫ 1

0

∫ 1

0

∫ 1

0
sign

(
〈nγ(t1,t2),ρ(t1,t2)〉

)
|A|g(ψ(t1,t2,s))dt1dt2ds. (20)

The differential quotient ofI w.r.t. γ into directionρ is now

DI(γ)(ρ) = lim
h→0

1
h

(I(γ +hρ)− I(γ))

= lim
h→0

1
h

(∫

Ω

(
χJ(γ+hρ)− χJ(γ)

)
g dx

)

.

We apply now (19) and (20) to this formula and get

lim
h→0

1
h

(∫

Ω

(
χJ(γ+hρ)− χJ(γ)

)
g dx

)

= lim
h→0

∫ 1

0

∫ 1

0

∫ 1

0
sign

(
〈nγ (t1,t2),ρ(t1,t2)〉

) ∣
∣〈nγ(t1,t2),ρ(t1,t2)〉+

hs〈nγ,ρ(t1,t2),ρ(t1,t2)〉+h2s2〈nρ(t1,t2),ρ(t1,t2)〉
∣
∣

g(γ(t1,t2)+hsρ(t1,t2)) dt1dt2ds

=
∫ 1

0

∫ 1

0

〈

nγ(t1, t2),ρ(t1,t2)
〉

g(γ(t1,t2))dt1dt2 .
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The result is linear and continuous w.r.t.ρ . �

We use this lemma to prove that the simplified Mumford-Shah functional (4.1) is
Gateaux differentiable.

Theorem 2
Let f : Ω → IR be a bounded function andγ ∈ C1(S2,Ω) be a Jordan submanifold.
Then the functionalISMS is Gateaux differentiable inγ. For a directionρ ∈ C1(S2,Ω)
the derivative is given by

DISMS(γ)(ρ) =

∫ 1

0

∫ 1

0

(

(u1(γ)− f (γ(t1,t2)))
2− (u2(γ)− f (γ(t1,t2)))

2
)

〈
∂γ(t1,t2)

∂ t1
× ∂γ(t1,t2)

∂ t2
,ρ(t1,t2)

〉

dt1dt2

=

∫ 1

0

∫ 1

0

(

(u1(γ)− f ◦ γ)2− (u2(γ)− f ◦ γ)2
)

〈γt1 × γt2,ρ〉dt1dt2 .

PROOF. First we rewriteISMSas

I ′(a,b,γ) =
∫

J(γ)
(a− f )2dx+

∫

O(γ)
(b− f )2dx

for a,b∈ IR sinceu1(γ) andu2(γ) are constant values depending onγ. Obviously the
derivative ofISMSexists, ifu1, u2 andI ′ are differentiable. The derivatives ofI ′ w.r.t. a
andb are

DaI ′(a,b,γ)(c) = 2
∫

J(γ)
(a− f )c dx,

DbI ′(a,b,γ)(c) = 2
∫

O(γ)
(b− f )c dx.

(21)

Note that for anyc∈ IR we obtain thatDa(u1(γ),b,γ)(c) = 0 andDb(a,u2(γ),γ)(c) = 0.
Thus we can omit the calculation of the derivativesDu1(γ) andDu2(γ), since according
to the chain rule these derivatives appear inDISMS(γ) only in combination withDaI ′

andDbI ′, respectively.
Next we examine the derivative ofI ′ w.r.t. γ. Using Lemma 1 we obtain

Dγ I ′(a,b,γ)(ρ) =
∫ 1

0

∫ 1

0
(a− f (γ(t1,t2)))

2〈γt1(t1,t2)× γt2(t1,t2),ρ(t1,t2)
〉

dt1dt2

−
∫ 1

0

∫ 1

0
(b− f (γ(t1,t2)))

2〈γt1(t1,t2)× γt2(t1,t2),ρ(t1,t2)
〉

dt1dt2

Now we apply the chain rule and get the derivative ofISMS in directionρ as

DISMS(γ)(ρ) = Dγ I ′(u1(γ),u2(γ),γ)(ρ)+DaI ′(u1(γ),u2(γ),γ)Du1(γ)(ρ)+

DbI ′(u1(γ),u2(γ),γ)Du2(γ)(ρ) .

According to the comment after (21) the latter two terms vanish and thus the theorem
is proven.�
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[7] Daniel Cremers, Florian Tischhäuser, Joachim Weickert, and Christoph Schnörr.
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