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Abstract

The reconstruction of shapes in images is a demanding questimage anal-
ysis. We consider a variational formulation of this task bapge manifolds, in par-
ticular the Riemannian manifold of 3D-MReps. Moreover wiedduce statistical
shape knowledge into the formulation by incorporating aniRirnian metric as
regularization term. This leads to an optimization probfena functional defined
on the shape manifold. We generalize the concept of the Ci8AeERiemannian
manifolds and apply this technique to region-based and-bdged segmentation
of 3D voxel images. Moreover, we compare the CMA-ES to a stehdradient
descent method for the region-based segmentation.

Keywords: CMA-ES, medial axis representation, image segmentatidngiple
geodesic analysis

1 Introduction

This paper was motivated by the problem of detecting gedesaitn 3D voxel images
under the assumption that a-priori knowledge about theesbffhe solution is avail-
able. We consider a variational approach, i.e., we assuesollition to be a minimizer
of an accordingly chosen energy functional. There existrivain approaches to seg-
ment images via an energy formulation: tMemford-Shalunctional [21[4] and the
Snakeesnergy [15]. We also refer to the first one as a region-baspbaph because
it identifies regions of homogeneous contrast as parts ahagé. The second one is
an edge-based approach which leads to segmentations whicharacterized by the
properties of the edges between them.

These two energies have successfully been used for a wide @frapplications.
However, in case of noisy image data or the presence of pacidtusions, segmenta-
tion approaches which rely only on image features do not ggisfying results. This
has lead to the development of a large variety of shape récatisn techniques which
are based on shape and image statistics learned from gyalata.

Cootes et al.[16] introduced statistics of shapes repreddoy landmarks. More
recent approaches are Chen etlél. [5], Cremers €tlal. [7f &ad Chan[]8], Gastaud
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et al. [12], Leventon et all[19], Rousson and Paradios[[Z#tad Tsai et al[[27]. All
these works consider a combination of region- or edge-bsagiehentation and statis-
tical energies which penalize deviations form previousbrhed training statistics. In
this work we reconsider our approachl[11] and combine artrarisegmentation en-
ergy with ashape regularizatiomwhich is formulated for shape spaces parametrized by
a Riemannian manifold. The regularization is based on tieipal Geodesic Analysis
(PGA) and the Mahalanobis distance on Riemannian manifolds

As a shape model we use a parametric 3D medial axis représentdD-MRep),
c.f. Pizeret al.[[22] and Fletcher et dl.]10]. The paramdtanain of 3D-MReps con-
stitute a finite dimensional Riemannian manifold. Each eletof this shape space
defines a surfacg: & — RS,

Following [11] the above shape representation and the megiod edge-based re-
construction of objects in 3D voxel images leads to a compfaknization problem.
The approach we chose to solve this problem is based on theri@oge Matrix Adap-
tion Evolution Strategy (CMA-ES). The CMA-ES is a populatibased probabilis-
tic optimization method for non-linear and non-convex fiimeals, which are defined
on RV, It avoids local minima and is suitable to minimize non-sapée functionals
with rugged landscapes, like discontinuities or sharp berithere are a lot of ap-
plications in engineering and inverse problems, where tMAES turns out to be a
good choice, for instance Abudhahir and Baskar [1], BayerRinkel [2], Mera [20],
Kern et al. [1¥]. The behavior of CMA-ES is well studied andrgmared to other evo-
lution strategies by Kern et al. [118,]16].

Originally the CMA-ES is formulated for functionals on fieilimensional vec-
tor spaces. We generalize the CMA-ES to Riemannian masifatdl apply it to our
formulation of the shape reconstruction problem. The fahisi of this approach is
demonstrated by the reconstruction of geometries in aatifimage data and MRI
scans of the cerebrum. We compare the results to the minionizaf the reconstruc-
tion energy using a gradient based approach.

This leads to the following summary of the main contribusiarf this paper:

e The generalization of the CMA-ES to Riemannian manifolds.

e The application of statistical shape regularization onifieéds [[L1] to 3D voxel
data.

e The minimization of the shape reconstruction energy usiegdMA-ES.

The outline of this paper is as follows: In Sectidn 2 we repbatdefinition of
shape spaces and the approximated PGA on shape spacesvikp[Dl] we define
the Mahalanobis distance on shape spaces and the assoegittization functional.
This is followed by a description of the shape space of 3D-pRdn Sectioll 3 we
introduce the CMA-ES on Riemannian manifolds. The apghicabf the CMA-ES
to 3D-MReps is discussed in Sectidn 4. In particular we atersihe Mumford-Shah
and the Snake energies and define regularization functitmaaled on the Mahalanobis
distance in shape spaces. In Seclibn 5 we discuss the d#tails implementation of
the proposed algorithm and finally present the results ofdifferent experiments in
Sectior®.



2 Shape spaces

In this section we first define the notion of shape spaces atith@some of their
properties. This part introduces basic concepts from Rigrias@n geometry. For further
details we refer the reader o ]14]. The second part is devmiestatistics on shape
spaces.

2.1 Riemannian manifolds

In this paper we assunid to be a Riemanniai® manifold of dimensioN > 1. For
p € M we call T,M the tangent space ®fl at p andTM := Upcm TpM the tangent
bundle ofM. The Riemannian metric on a manifdld is a smoothly varying inner
product(-,-), on T,M. This inner product defines the norm

1
V| =(vv)p for veTyM.

The lengthl of a given smooth curve : [0,1] — M is computed by integrating the
norm of the tangent vectors alorgi.e.,
L. LN
| — /O i (t)|dt = /O (k(t). k()2 dt,

wherek (t) = dk(t)/dt. The distancely between two pointp,q € M is defined as
the minimum length over all piecewise differentiable curbetweerp andg. A curve
is said to begeodesidf it locally minimizes the length between points. A mandas
said to be complete if all geodesics extend indefinitelysTimplies that between any
two points a length-minimizing geodesic exists. In thedwafing sections we always
assumeM to be complete. We refer fd as ashape space

Let pe M andv € TpM, then there exists a unique geodesid0,1] — M such that
k(0) = p andk(0) = v. TheRiemannian exponential ma&xp, : ToM — M is defined
by

Expy(V) = K(1).

This implies that the exponential map locally preservetadises, i.e.

dm (P, Expp(V)) = M,

for v small enough. Moreover, there exists a non-empty neighimatk, C T,M of

the origin such that the exponential map is a diffeomorpliai, and any two points
9,9 € Exp,(Vp) =: Up can be connected by a uniquely determined geodesic which is
entirely contained itJ,. We callUp anormal neighborhoof p and the inverse of
Exp, onUp theRiemannian logarithmic map

Log, :Up —Vp, Log, :=Exp,*.
Thus forg € U the geodesic distance betwegandq is given by

dv(p,q) = |Logy(a)|. 1)

In the following we give the exponential and the logarithmmap for certain spe-
cific shape spacdd. Let p,q € M andv € T,M. First we consider the cadé = R3
with the Euclidean metric. Then we have

Logy(a)=gq—p and EXxp(v)=p-—V.
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Figure 1: lllustration of the parallel transport.

ForM = R™ with the metricdg+ (p,q) = |log(p) — log(q)| for p,q € R™, the Rieman-
nian maps are given by

Logp(q)zlog<%> and Exp(v) = pexp(v).

For the computation of the Riemannian logarithmic map onuthi¢ sphereM = S
with the induced metric we use tleimuthal equidistant projectioZg].

2.2 Parallel transport on normal neighborhoods

The definition of a normal neighborhotl), of a pointp € M implies that every other
point in the neighborhood can be connecteg toy a uniquely defined geodesic. This
allows us to transport tangent vectors and bilinear formsff,M to any other tangent
space at a point i, using the parallel transpoftli11].

Assume a basigy, ... ,ey of ToM which is orthonormal w.r.t(-,-)p andg € U, Let
Kk : [0,1] — U, be the unique geodesic connectimgndg. Then there exists a unique
field of frames(e )1<i<n : [0,1] — T M denoted by

(ed(t),...,en(t)),

which is parallel toey,...,ey and satisfieg (0) = g, 1 <i < N. We defineg(q) :=
& (1) for 1 <i <N and hence we have mags Uy, — TM, where(ei(q),...,en(q)) is
an orthonormal frame ifigM for everyq € Up,.

Now we consider a tangent vectgy € ToM, v, = SN ; vie. Thetransport \ of v,
to TyM is defined by

N
Vg = _;via (@) @)

Next we assume a bilinear forby on T,M. Thenby, defines a matriB € RN*N

w.rt.e,...,en by
Bij = bp(&,€j). ®3)

We define theransport ly of by to TyM by

N N N
bg(Vg, Wg) = viwjBjj for vg= Y via(q), wg= S wie(q). 4)
q\Vg, Wq mz:lllu q i;l qizll
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This transformation oy, to by is compatible to the transport of tangent vectors, i.e.,

As suggested by the notation the parallel transport is sitvley, i.e., transporting,
andbg back toT,M results inv, andby. It is important to keep in mind that in either
way the transport depends on its origin.

The parallel transport on th# is illustrated in Figur€ll. On the left hand side
the transport oy, e, and two vectors irT,[,S2 to the tangent space at a second point
q e S is shown. The right image illustrates that the parallel$pant depends on its
origin. The image shows the parallel transport of the frames, € TpSZ toqg. The
initial frame (black dotted lines) is transported‘li{,:is2 (dotted bright lines). Then we
transport the resulting frame fromto a third pointr € S (gray dash-dotted lines).
After that this frame is transported back TQSZ. The resulting frame (black solid
lines) is different from the initial one.

2.3 Approximated principal geodesic analysis

In this subsection we study a generalization of the lirarcipal Component Analysis
(PCA) to shape spaces, callagproximated Principal Geodesic Analy$sdPGA) [11,
10].

First we repeat the concept of the PCA. Ipgt. .., ps € RN be a set of data points.
The mearu € RN of this set is computed as

S

: 13
p=argminy (p—p)>=23 pi.
peRN izi | Sizi |

The PCA is then used to find a sequence of linear subspacesytiaally represent
the variability of the data, i.e., we search for an orthorarbasisvy,...,vy of RN
which satisfies

S
vi = argmaxy (v, pi— )%,
[v=1 izi I
S k-1 ) )
Ve = argmax 212(<vj,pi—u> + (VP — p)?) -
V=1 i=1j=1
VL(V1,. V1)

Then the vectow; determines the direction of the largest variance of the setiathe
vectorv, the direction of the second largest variance and so on. Tttengy,, ...,y
are the ordered eigenvectors of the covariance matrix

s = 1 = ! ) T
—éi;(p'_“)(p'_“) )

which is symmetric and positive semidefinite. The corresimgneigenvaluedy of =
describe the variability of the poinfs, ..., psin the directionsy.

This concept can be generalized to shape spaces as follstp; ..., ps € M.
The straightforward definition of the mean e M is

S
y' == argmin deﬂ(p, pi)- (5)
peM =
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Note that in general, without imposing additional constisithe existence and unique-
ness of such minimizers are not guaranteed.

Next we search foprincipal geodesic®n M as an analogy to the principal com-
ponents in the linear setting. A submaniféldof M is said to be geodesic M if all
geodesics iH are also geodesics M. We want to compute geodesic submanifolds
Hi,...,Hn which are normal to each other and reflect the directions efpttinci-
pal variances of the data. In the following we give a formdirdgon of the princi-
pal geodesic submanifolds. First we define the projecti@ratpr on a closed subset
H Cc M by

my:M—H, p— argmindZ(h,p).

heH
Let further be s
Vv, :=arg maxzidfﬂ (1, Ty (P1)) ©6)
VETH/M i=
[v|=1

whereH; (v) = Exp,/((V)) is the exponential of the linear hull of We set

S
Vi = argmax zidﬁﬂ(ucmkw)(pnx 2<k<N, (7)
veTp,M i=
[v|=1
VLV, q)

whereH(v) = Exp, ((vy, ...,V _1,V)) is the exponential of the linear hull of the vec-
torsvj,...,Vi_;,v. The tangent vectong, ..., v define theprincipal geodesicsWe
call /,v},..., vy thePrincipal Geodesic Analysi®GA) of the datepy, ..., ps.
In the following we assume that the data poipts.. ., ps lie in a sufficiently small
neighborhoodl. Then we can approximate
dw (9, 9') = [Logy(d)| ~ |Logy, (a) — Log,, ()]

for g, € U. Inserting this approximation in the formal definition pfin @) yields
theapproximated mean

S
M = Expp, <é_Z\Lng1(pi)> : (8)

Next, we replacgs’ by u in @) and [¥) and apply the approximation

dv(a,q) = [Logy(d)| ~ [Log, (q) — Log, (q)]

for g, € U. This leads to the following expressions for the tangentomscdefining
theapproximated principal geodesics

S

vi = argmaxy (v,Log,(pi))?,
1 vegTuM i;< 9.(P))y
[v|=1
S k-1 ) )
k= avrngrlnMaf; J; (<vj ,Log,, (pi))y + (v.Log,(pi)) u)
[v|=1

for 2 < k< N. Thus, thev,...,v are the principal components of the logarithms
of the data in the tangent spaceiat This motivates the following definition of the
Approximated PGA:



Definition 1
Assume dat@g, ..., ps €U as above.

1. Define the approximated mearas in [3).

2. Choose an orthonormal basis. . . ,en of T,M and define the covariance matrix
¥ e RVN py

1 S N
S=-Sww where Log(p)=S wije,1<i<S.
Si; | 4 ,Zl '

Then(u,Z) is called the approximated PGA (aPGA) of the dgtal <i < S w.r.t. the
basisey, ..., en.

If (v, Ak), 1< k<N, are the eigenvectors and eigenvaluek,ahen
EXp, (—AkVk) s M, EXpy (Akvk)

correspond to the mean and to the elements dtteapproximated principal geodesic
whose distance tg is A w.r.t. the Riemannian metric dvi.

2.4 Mahalanobis distance on shape spaces

For a symmetric, positive definite matiixthe Mahalanobis distanak : RN x RN —
R is defined as

dZ(xy) = (x—y) = (x—y),

wherex,y € RN, In the Euclidean casEis the (possibly empirical) covariance matrix
of a normal distribution centered at the origin. This deiimitcan also be expressed
via the inner product, -)s given by

vyws =v'zlw, vweRN.

Then
dZ(x,Y) = (X— YV, X—Y)s.

Now we generalize this concept to shape spaces folloviiny [Abain assume
¥ e RN*N to be a symmetric, positive definite matrix apd= M. Letey,...,ey be a
fixed orthonormal basis ;M w.r.t. (-,-),, andU,, a normal neighborhood @f. Note
thatU, is not necessarily “small”. In case of the sphere e.g. nomeahborhoods
can always be chosen such that the cover the whole maniftidfe exception of one
point. The matrixz—* defines a (symmetric, positive definite) bilinear fobms , on
TuM by

N N
bs-1.,, (Vi Wyt ) =vzilw for v, = Zlvia, Wy = leia.
= =

We call the family of the transports @fz—l‘“ to Uy, as in [3) theMahalanobis metric
and denote them by '
by-1, for peU.



TheMahalanobis distancey, s from pto qin U, w.r.t. u andZ is then given by

A s = OTLU“/ /bs- 1 (k,k)d

K(l>:q

Note that unlike to the situation on vector spaces, the Matwlis distance on
shape spaces depends not only¥dsut also oru. In [I1] it is proven that this general-
ization corresponds to the classical Mahalanobis distanttee Euclidean setting and
that it equals the standard Riemannian metridvoifi = = Idy.

If Z andu are the covariance matrix and the mean of a given probaloiistyi-
bution, respectively, then the Mahalanobis distadgg, = reflects the shape of this
distribution, i.e., the distance between a pgird M andu is small, if p is located in

a "probable direction”. We use this property in our reguation functional because it
allows us to penalize deviations from a reference elemepeiniding on the distribution
of the training data.

2.5 A Mahalanobis regularization functional

In this section we introduce regularizations on shape spatetR; : M — [0,],
a > 0, be a family of continuous maps. Assume tiat= (,-odomRy) # 0. We
call (Ry)q>0 a regularization if it satisfies the following conditions:
1. Foreverype D
IlmoRa( p) =
a—

holds.

2. The regularization of every unbounded sequence tenddinity, i.e., there ex-
ists somepp € M such that for everyr >0

l!im dm (Po, px) = implies kIimRo,(pk):

3. Foreveryp € D, there existg > 0 such that for allj € M and alla > 0
Ra(0) <Rq(p) implies dw(po,q) <c.

Let dv s be the Mahalanobis distance defined oy M and a covarianc& <
RN*N as in SectiofiZl4. Then, the map

p— adi,s(H,p) )

qualifies as a regularization[11].

2.6 The shape space of 3D-MReps

The following definition of the 3D-MRep shape space is basethe definition of the
(continuous) medial axis transform that has been introdigeBlum [3]. The initial
idea of parametric MReps is due to Pizer et al.1 [22]. It usesseretization of the
continuous medial axis of an object instead of boundaryasgmtations.

In our implementation, every instance of an MRep in threeettisions is repre-
sented by



y,=xtrb,

Y, =X rb

n>1

y,=Xtrb,

Figure 2: lllustration of the atom parameters of a bound&ynawith n > 1.

1. aregulan; x n; quadrilaterameshand
2. then;n, atoms centered on the mesh vertices.

The following information is provided for every atom of a pleanstance:

1. Theposition xe R® of the atom.

2. Theradius re R* of the atom.

3. Twoboundary vectorsfb, € $, pointing to the two implied bound-
ary points of the surface. Fborder atomgi.e. atoms on the bound-

ary of the mesh), aadditional boundary vector b & is defined as
the bisector of the two given boundary vectors.

4. A parameter for border atoms, callgds R, specifying the elon-
gation factor along the additional boundary vector.

An illustration of a boundary atom and its parameters is shiowrigurd2. Theshape
space of 3D-MReps defined as follows:

Definition 2
Letng,np > 2. The product space
M o= R} xR" x Sx<& )(n1—2)(n2—2)
' —~ =~ ——
position radius  boundary vectors
inner atoms
% ( R} xR x Sx « RT )2((n1*1)+(n2*1))
~ =~ —— —~—~

position radius boundary vectors boundary elongation

boundary atoms
is called the shape space of 3D-MReps.

On the left hand side of Figufé 5 an example of an 3D-MRep iglajyed. Every
instance ofM defines a surface via its parameters. Thus we can introducgpaim
that represents the boundary of an instance of 3D-MReps. [&ads to the following
definition of theshape model



Definition 3
LetM be the shape space of 3D-MReps; M andQ c R a domain. Let furthermore
be

Y:M—C(SQ),

wherey is a closed surface that is homeomorphic to a sphere. Thermlvg\t ) a
3D-MRep shape model.

3 The CMA-ES on Riemannian manifolds

The CMA-ES [16[18, 13] is an evolutionary optimization madtfor non-linear, non-
convex functionals B — R based on iterative random sampling of arguments. In
each step random points are sampled from a multivariate alatistribution. The best
sample points are used to estimate a new mean and a new coearn@trix which
define the according normal distribution. We refer to theodetindom points which
are generated in one iteration ageneration

One important property of the CMA-ES is that the covarianta generation is
not completely determined by the results of the previousgaion. The amount of
the update relative to the old values is controlledidgrning rates Thus, the sam-
pling points of the next generation are created depending®tocal behavior of the
functionalandthe sampling characteristics of the previous generations.

The major advantage of this optimization method compargdadient based meth-
ods is that non-convex functionals or functionals with redgearch landscape can
be minimized efficiently[TI3]. In FigurEl3 a 2-dimensionatsen of the simplified
Mumford-Shah functional on 3D-MReps is shown. There we @mnsich a rugged
search landscape.

In the following we give a short review of the CMA-ES on vecspaces/[113]. As
stated above, the CMA-ES iteratively samples a populatfgmomts from a normal
distribution. This distribution is determined by its meantl@ covariance matrix multi-
plied by a step size. Each of these variables — the mean, tlagiance matrix and the
step size — are updated in each iteration. In addition, theAc®% on vector spaces
stores information about the “directions” of the previotgsations. These directions
are the accumulated and normalized differences of the nodaws subsequent gener-
ations. In[[1B] the author refers to the family of these dimts as theevolution paths
The evolution path directions “remember” information of fhrevious generations and
are one component of the updates of the covariance and theistein each iteration.
This leads to two different evolution paths, one for the updd the covariance and
one for the update of the step size.

The goal of this section is to generalize the CMA-ES to Rienieam manifolds.
We sample tangent vectors in the tangent spaces at the meg@naect them onto the
manifoldM by means of the Riemannian exponential map. Moreover, tharizmnce
matrix is replaced by a positive definite bilinear form on thagent bundle oM.
The challenge is to determine the mean value Kbnfor the next iteration and to
transport the covariance and the current evolution patictions to the new location
on the manifold. Under the assumption that each generaigampled within a normal
neighborhood of the mean, this is done by utilizing the pelralansport introduced in
Sectior ZP.

Before proceeding with the CMA-ES on Riemannian manifoldsreview an al-
ternative approach to minimize functionals definedvdn The Riemannian logarith-
mic map Log, p € M, is a diffeomorphism of normal neighborhoods pfto the
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Figure 3: lllustration of a 2-dimensional section of the giified Mumford-Shah func-
tional which we use in Sectidn®.1. The plot includes localima and hence justifies
the use of the CMA-ES as a method for optimization.

their images in the tangent spa&gM. If Uy is such a normal neighborhood and
Vp i=Log,(Up) then
F':Vp— R, q— F(Exp,(q))

is a reformulation ofF on TyM, i.e., on a vector space. The obvious alternative to
minimizing F by using the CMA-ES oM is to perform the classical CMA-ES f&’
onTyM. However, the drawback of this approach is that the samplat generations
are required to be containedVfy whereas in our case it is sufficient that the samples
of onegeneration are contained in a common normal neighborhood.

In the following we introduce the notations and parametsesiiin the description
of the algorithm in the next section. First we assume a fonetil : M — R which we
want to minimize. We denote the current iterationkoy N. The mean value and the
step size at thieth iteration are accordingly given hy¢ € M, andaX > 0. The positive
definite bilinear formb,x on T, «M represents the covariance. Moreover we assume the
two evolution path directiong, ,«, v, ,« € T,kM. The proposed algorithm depends on
the same parameters as in the Euclidean setting. Theseénttia population sizey
and the number of selected sampies The recombination of the selected samples is
controlled byrecombination coefficientsjl <i < mp, where

my
Wi > - >Wm, >0 and Zwizl.
i=

Furthermore the update of the evolution path directionoigrolled by the learning
rates 0< c¢, ¢y < 1 and the number ddffective samplesdin The parameters € Licoy
and 0< cqov < 1 control the update of the covariance. Finally, the comriaof the
step size depends on the damping parantktes 1. With exception of the population
sizesm, andmp, we set all parameters to the values recommendedin [13].

11



3.1 One evolution step

In the following we give a detailed description of a singlepsbf the proposed algo-
rithm. Our goal is to minimize the energy of the objectivedtion|. l.e. we try to
move ik closer to a global minimum df. In addition, we updatbk, v, « andv, «

and propagate them to the tangent spage<at.

We assume that an orthonormal basis . ., ey of TxM is fixed. Then the bilinear
form b x can be expressed by a symmetric, positive definite matias in [3). Fur-
thermore, all vectors in the tangent spdceM can be assumed to be coordinates in

RN (w.r.t.ep,...,en). We start by samplingy tangent vectorsy i, ...,V 4k € TxM
from the multivariate normal distribution defined byC:

Vi~ N(0,(0%°C), 1<i<m. (10)

If the v; uk are not completely contained in a normal neighborhoogd‘ofve continue
to sample until this criterion is met. We assume that\m;a are ordered such that the
functional values of their exponentials increase, i.e.,

I(Exp“k(vwk)) < I(Expuk(vwk)) for 1<i<j<m.

Then we deﬁne\»/le as the recombination of they, 0 < N, < my, best samples:

mp
V,“k = _ZWiVL“k S TukM
i=

Next we compute the updated path directions according to

V;“k (1-co) Ve uk + v/ Ce Cc(2 — C¢)Mef k\/“kET

and
\/Guk_(l Co) Vg yk + 1/ Co(2— Cgrneff CE\/keTukM.

The current path d|rect|on$ K andv,_ K correspond to an exponentially smoothed
accumulation of the prewous d|rect|ons Both directioresrrormalized w.r.t. the cur-
rent step sizer®. The learning rates; andc, control the amount of the exponential
smoothing. In contrast tv! « the evolution path direction - for the estimation of
the step size is mdependent of the direction of the e|getnmaof the covariance. This
is achieved by multiplication with the root of the covarig 2.

Then we update the covariance matrix

/. 1 1 3 Ccov Cooviy o/ T
C = CCOV(:I- ucov O'k ZWI i “kvl “k+ (1 Ccov)c+ u Cle( C,yk)
old covariance
rankm-update rank-one-update

The update o€ is essentially the same as in the vector space selting [H3¢amsists
of three terms: the ranky-update, the scaled covariance matrix of the last generatio
and the rank-one-update.

The rankmp-update estimates the variances ofigebest sampling points to their
true mean, i.e., the mean of the original sampling distidout It is called ranka,-
update because the rank of the matrix is at mostminN). For the rankay-update
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to be a robust estimator of the covariance matrix, the pajulasizem, has to be
large enough. However, large populations increase thémenof a single step of
the algorithm. Therefore, the estimated covariance is é¢oetbwith the covariance
computed in the previous step using exponential smoothltgcovariance).

The rank-one-update estimates the covariance based onritemtcevolution path
direction. Consider a lot of good sample which are concésdralong a geodesic
through the mean but are equally distributecbath sides of the mean. This situation
does not necessarily indicate a direction towards a minirhenause in that case the
optimal samples would concentrate oneside of the mean. In contrast to the rank-
mp-update the rank-one-update does not increase the eigerved C into such a
directions. In other words, the rank-one-update incor@sraign information which
is not present in the ranky-update. Note that fot; = 1, meg = 1 andm, = 1 the
ranksm-update and the rank-one-update coincide.

In the definition ofC’ the parametetc,, controls the exponential smoothing of the
influence of the old covariance apgo, determines the relative weighting between the
rank-one-update and rami-update.

The step size

getl— akexp(c—"( Na,uk' _ 1))
' ds \E|N(O,Id)|
is again adapted as in the vector space setting. HeN(0Bd)| is the expectation of
the length of aN(0, Id)-distributed vector in R, i.e.,

_ 5 HIN+D)/2)
E|N(O,Id)| = fzw.

In [13] the author explains that the goal is to increase tbp size if the updates of
V, k OVer successive generations point into similar directam$to decrease the step
size if they cancel each other.

At this point we are ready to propagate the mean to the nert paiM. We define

H = Exp(Vi) € M.

Then we transport the information we have to provide for thet iteration toT k1 M.
The updated covariance matf@X defines a bilinear forrb’“k onT,«M. We define

b,k+1 1= the parallel transport dj’“k to pitt.
In the same spirit we update
Ve uk+1 := the parallel transport ot:wk to u*1, and
Vg ukr1 i= the parallel transport of . to Tns

This procedure is iterated until a stopping criterion idifield. Such a criterion is for
instance, that the functional vallgExp,«(v; ,«)) is similar for alli = 1,...,m.

3.2 Initialization

The algorithm has to be initialized by a first guess it Then we seb“o = ()

andv 0 = Vg 0 =

: . HO
0. In accordance with the recommendation for the vectorespac
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13.5

25

Figure 4: We illustrate the first iteration of the CMA-ES &h We start with any initial
guessu® € §. The orthonormal basie;, e of T 0S” is shown by the dashed black
lines. Additionally the initial bilinear fornb o is indicated by the dashed-dotted circle
in TuoSZ. Then 40 tangent vectoxs o are sampled. Here we displayed Exv; ,0)

by dots, where they, = 10 best are white colored while the others are black colored.
The updated bilinear forrty , in T,,0S and the transported bilinear form, in T,:S*

is shown by the dashed and the light ellipse, respectivédig.tfansported orthonormal
basis is displayed by the black lines.

setting in [18], a reasonable choiceaft is such that the minimum dfis contained in
the set

{peM|du(k®p) <30%.
Moreover, the step sizeX has to be sufficiently small, such that the generated tan-
gent vectorsy; «, 1 <i < my in () have a good enough chance to lie in a normal
neighborhood ofiX.

3.3 The CMA-ES on%?

We consider randomly generated functionalss” — R. The functionals have some
local minima with values greater than zero, while the glahadimum has value zero.
An example of such an functional is shown in Figlite 4. We warfirtd the global
minimum by using the CMA-ES. Therefore we start with squlec S and initialize
the ES witha® = 1.05. In Figure[# the first iteration step is displayed. Aftee th
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iteration procedure stops in a minimum, we restart the &lyorfor 20 times with
different u® € . In the example in FigurEl 4 the global minimum was found in all
test runs. We iterate this process with different functisha The global minimum
was detected in 63% of all cases, while a steepest descamithig found the global
minimum in less than 2% of all cases.

4  Application

We investigate two methods to detect objects in voxel imagssd on 3D-MRep shape
models. Letf : Q — R be a given image, whei@ c R? is a domain. Moreover let
y: S — Q be a differentiable Jordan submanifold, which is homeomiar the unit
spheres?.

4.1 A simplified Mumford-Shah functional

We consider a region-based segmentation method, i.e.,avelstor volumes in voxel
images, which are characterized by a significant differdretereen the mean image
intensity inside the volume and the mean intensity of th&kamund. An example of
this situation is the synthetic voxel data presented in flegB [T andl8 of Sectidn 6.1.
An object inside the synthetic voxel image is representedaiyes of 200 (the dark
area), while the background intensity is set to 50. Thisrobeatrast between inside
and outside values makes a region-based segmentationdnékieathe one described
below, applicable.

A Jordan submanifolgt separate® into a volume inside and outsige We denote
the inside volume a§(y) and the volume outside &¥(y). According to [4[11] the
simplified Mumford-Shah functional is defined as

I1SMYy) = /8 =P [ (ualy) = 1)

o(y)
where 1 1
u y:—/ fdx and u y:—/ fdx. (12)
‘W= G0 Jay *V)= Tow Jow
Formulating this functional for the 3D-MRep shape mo@dél ¢) yieldsF : M —

[0, ] defined by
F(p) =1""Sy(p)). (12)

Thus,F maps a shapp to the simplified Mumford-Shah energy of its boundarip).
The goal is to find a shapg which minimizes-.

Moreover we want to include statistical information abdug tappearance of a
shape model into the solution process. According to SeBlirthe Mahalanobis dis-
tance has appropriate properties. We define

la(p) = F(p)+adg , (1, p). (13)

The existence of a minimizgp, of 1, for finite dimensionaM is proven in [11].
Moreover,p, converges t@ for a — 0, if pis a minimizer off.

We use a CMA-ES and a gradient descent method to calculateieninér ofl,.
For the gradient based approach we have to evaluate the diisative of |4 w.r.t.
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p. TheorenR in AppendikdA states thitis differentiable if f is continuous and
Y : M — C(S,Q) is differentiable. The derivative into directignis then given by

DF (¢(p))(p) = DISMSy(p))Dy(p)(p). (14)

Because the Mahalanobis distance is differentigble [h# régularization functional
|4 is differentiable.

The differences between the evolution strategy and thegradased approach to
minimize [I3B) are:

e Forthe CMA-ES we do not need to evaluate the gradiety 0T he computation
of DY has to be done numerically and hence is computationallyresipe for
largeN.

e The gradient descent method is trapped in local minima, edsethe CMA-ES
is able to get around them (c.f. Sectlonl3.3).

4.2 Edge-Based segmentation

Region-based segmentation cannot be applied, if the abjedhe voxel data have
nearly the same intensity as the surrounding volume. Tocowee this problem, an
edge-based segmentation method is introduced below. Hnera lot of examples of
such problems, for instance the detection of yeast cellsionascope image$ [11] or
the segmentation of the cerebellum in 3D MRI voxel data intia@.2. We choose
an edge-based segmentation method based on the Snake amérgpduced by Kass
et al. [15]. We consider the functional

Ip(y) = —/V|Df(y(o, 1))ldodt + gSurfacéy)

for a Jordan submanifoldand the voxel daté. The first term of this functional forces
y to be at locations where the gradientfofs high and the second term penalizes the
surface area of.
Again we reformulate the functional for the 3D-MRep shapedei¢M, ¢) and
defineF : M — [0, ] by
Fe(p) =1p(y(p)). (15)

We minimize this functional with the CMA-ES to avoid the aalation of the deriva-
tive DF.

5 Implementation

We implemented a library which provides functions to viszemhnd modify 3D-MReps.
Furthermore it provides the integration routines necgssaimplement the energy
functionals for the automatic segmentation of voxel imaggse library is an object
oriented framework written in C++. For the visualizationédGL is utilized and the
GUI is based on Qt by Trolltech.
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5.1 Computation of ¢(p) for 3D-MReps

This section is concerned with the generation of the boynslafface that is implied by
an instance of 3D-MReps (see Secfibn 2). In the middle offe@ithe implied bound-
ary of the shape model on the left hand side is representectlased triangulation.
This polyhedral representation approximates a sm@atbontinuous surface that has
been created usinGregory patchesGregory patches [23] can be used to construct a
smooth closed surface in®RIn the following we summarize this interpolation process.
The idea of (bicubic) Gregory patches is based on the definif abicubic Bezier

surface
S(t1,t2) = Z} Z)S] P (t1)Bj(t2), t1,t2€[0,1],

whereB? andB? are the Bernstein polynomials of degree 3 apdire coordinates of
the control points. Aicubic Gregory patclis defined as follows [9]:

S(ty,t2) = Z}ZDSI t1,t2) B (t2) B} (t2) ,

where the control points are functionstpfaindt, defined by

153 + tosy}

sultnf) = 1+t

- S
S1o(ty,t2) = tlS(l%)tl +(1 : :2)512
Spo(ty,tz) = (- tll) izil - (1__;2)522

Sj(t1,t2) = s;j for all other pairg(i, j)

Here, thesﬁk) eR3,1<,j,k< 2, are the eight fixed inner control points that have to
be computed by the interpolation algorithm. Note, that ¢f@eeralization of a bicubic
Bézier surface achieves tangent plane continuity formgurlar quadrilateral interpo-
lation mesh([2B]. In our application the mesh is irregulecdaese vertices of valence 3
exist.

The Gregory patch interpolation algorithm uses adjaceadglateral patches, each
consisting of 4 boundary points and the corresponding nisrnaad joins them (i.e.
computes the eight inner control points as mentioned absueh that a close!
surface is generated. The following scheme is used to aansrquadrilateral inter-
polation mesh including surface normals from 3D-MRep pai@ns. Suppose that we
are given a shape instanpec M with a regularn; x n, mesh of atoms. Every in-
ner atom (see Sectign P.6) defines two boundary pojntandy,, and corresponding
normals,z; andz,, which are computed as follows:

Y1 =X+rb1, Yo =X+rby, z1 =rby, z =rb>.

Every boundary atom defines an extra boundary pgiind a normaks in the direc-
tion of b:
ys=X+nrb, zz=rb.
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Figure 5: An instance of the 3D-MRep shape spdeé#)(and its implied boundary
(middlg and the initial interpolation mesh that is used to constifue surfacerfght).
Note that the interpolation mesh is mregular quadrilateral mesh, since it has vertices
with valence 3 at each of the 4 corners of the figure.

From the equations above, we first obtain a mesh for the uppktoaver side of an
object using only the boundary vectdmsandby, respectively, for all atoms. After that,
a mesh for the border of the object is computed combining #ugovsh,, b, andb for
all boundary atoms. All three meshes are then interpolasathithe Gregory patch
interpolation algorithm[[23] to yield a set of Gregory patshinterpolating all given
boundary points and normals. Figlile 5 shows an illustratfdhe initial interpolation
mesh on the right hand side.

After the surface points and normals have been interpolatédthis algorithm, a
triangulation is constructed by evaluating the Gregorgipas equidistantly along each
parametric directioty andt,, respectively.

5.2 Computation of the average inner/outer gray values

In this section we briefly describe how the average inner androvaluesu; andu,
in @) w.r.t. an 3-dimensional input imade Q — R and a closed surfageare com-
puted. This step contributes most to the total complexithesegmentation algorithm.
In the following we assume th& = [0,a;] x [0,&] x [0,a;] fora >0, 1<i < 3.

To compute the sum of inner and outer gray values,ﬁg,%,), fdx andfo(y) fdx, we
take advantage of the divergence theorem

/D-de:/G-dv, (16)
ay) y

whereG : Q — R3 andv denotes the outer normal #fy). In our casey = (p) as
described in Sectidnd.1. We compute the divergence@dlor f as follows:

1 @1 f({,%2,%3)d{
G(X1,%2,X3) i= 3 .9(2 f(x1,{,x3)d{ | .
.03 f(Xj.aXZaZ)dZ

(17)

Finally, applying [Ib) to[(1I7), yields
/fdx:/de. (18)
aw) y

In the implementation we only compu as in [IF) once, and then evaluate the in-
tegral on the right hand side di{18) at each step to comf}}(l%afdx andfo(y) fdx,
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Figure 6: Three training shapes out of 30. The dark areardltes the training sets;.

respectively. For the average inner and outer gray valgemdu, in ) we have
to normalize the latter integrals, i.e., divide them|Bgy)| and|O(y)|. These volumes
can be calculated by applying the above method with the unittfoni.

6 Results

6.1 Segmentation of synthetic voxel images

In this subsection we apply the simplified Mumford-Shah fiowal as described in
SectioZ1L. We consider 30 synthetic voxel imafe? — R, 1< i < 30, which are
scaled and shifted indicator functions of training gefs. . ., wzo C Q:

f, =50+ 150, 1<i< 30.

A pointx € Q belongs to the training setas, if the distance fronx to a given curve in
R? is smaller than a specified number. In detail Het [0,1]° — Q, 1< i < 30 be the
family of surface parametrizations

it +ay;
(t1,t2) — (agjt1+ a%il%‘(as,itz-kae,i) +ay; ,
agj Sin(mm-agit; ) (a11it2 +a12i) + a13;

where the parametesg; are randomly distributed. Then the sejsare defined by
w={xeQ:|x—k| <c}.

In Figurel® three examples of the training shapes are shown.
As 3D-MRep shape space we choose

M:(R3><R+><82><82><R+)8,

where the atoms are on a® quadrilateral mesh. Then we minimized the simplified
Mumford-Shah functional, i.e[{12), for all training datslote that we do not use the
regularization term here.

In FigurelT the results for one of the training data exempyldltustrates the dif-
ferences between the CMA-ES and the gradient descent meiutld images are the
result of 1000 iterations of the respective minimizatiortmoels. In CMA-ES we set
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Figure 7: The results of the minimization of the simplified iiord-Shah functional
using the CMA-ES Ieft) and the gradient descent methoigjiit). The surface of the
results are displayed by the gray meshes, while the trugigaset is illustrated by the
dark area. The functional values for the CMA-ES and the gmtdiescent method are

F(p) =1.9-10*andF(p) = 7.0- 104, respectively.
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Figure 8: Minimization of the Mumford-Shah energy (left) and Mumford-Shah
regularization functional, (right). Again the surface of the results are displayed
by the gray meshes and the training set is shown by the dag drethe left im-
age the Mumford-Shah energyfs= 1.2-1073, on the rightF (p) = 1.5- 102 and

Ry =3.9-10°8.

my = 200. Because each iteration of the gradient descent metbqdses the numer-
ical evaluation of the gradient & w.r.t. the 9 8 = 72 independent shape parameters,
the computational complexities of both approaches are eoatye. As we can see in
Figurell, the CMA-ES yields a more balanced triangulati@mtthe gradient descent
method.
Applying the above method to the 30 synthetic voxel imafesve yield 30 dif-
ferent shape instances. These are used to calculate an aPGA, as outlined in Section
3. These statistics define the corresponding Mahalomedigarization as if{9) and
in consequence the regularized Mumford-Shah enky@s in [IB). We use this func-
tional to segment a voxel data set, where parts of the infoomé occluded as shown
in Figure[®. First, we apply the CMA-ES to minimize the sirfipli Mumford-Shah
functional (without regularization, i.eq = 0) of this data set. The result is shown in
the left image of FigurEl8. Driven by the image data, the astavden the two objects
is minimized such that the recovered surface looks like alshet. This effect does
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Figure 9: On the right hand side we see the surface of thetregith is displayed by
the gray mesh. The training set (without noise) is illugtddby the dark area. On the
left hand side we indicate the noisy voxel data by showingleislices of the data.

not appear, when we minimize the regularization functiopabith a =5-10*. The
result is shown in the right image of Figute 8 .

At last we consider the reconstruction of noisy data with@gularization. We
added normal distributed noise with standard deviationodéynthetic voxel data. In
the left image of FigurEl9 we can see the noisy data set ané inght image the result
of the minimization with the CMA-ES of is shown.

6.1.1 Complexity

In the following, we will briefly evaluate the complexity di¢ segmentation algorithm
used in the above examples. Considering time complexigyirtiplementation of the
above algorithm has two major obstacles:

1. Thecomputation of the average inner and outer valugsmdu,.

2. Thenumerical differentiatiorof @(p).

Referring to SectioiBl2, the implementation takes adegntd the divergence theo-
rem, to minimize the time complexity for the computatiorugfandu,. As we can see
from this Section, the size of the input imafjés only crucial in the initialization stage
of the algorithm, whereas in each step of the minimizationly the boundary of the
current model has to be parsed. This leads to the fact, thdirtte complexity of the
main segmentation algorithm (i.e. the iteration procesgscot depend on the size of
the input image. The computation of andu, thus is only influenced by the number
of faces of the boundary triangulation. However, it has tortemtioned, that we have
to store the divergence field for the input image in advandechvcan be of signifi-
cant size. For example for the synthetic images above, fhe size is 50 = 125000
voxels. The divergence field is a 3-dimensional vector fidlthe same size, i.e. the
total size of the resulting array is 12500= 375000. Assuming, that we are using
double precision floating point values with 8 bytes size e#teh divergence field has
a total size of about .86 MB in memory. Considering the relatively low resolution
of the input image, this value is large (e.g. for an input imaédimension 25§ the
resulting size in memory would be 384 MB!).

For the numerical differentiation af, we use a standard finite difference scheme.
This step can be very time consuming, as we have to computeutmerical deriva-
tive in each parameter direction to get the gradient. Thusainly depends on the
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dimensionality of the model. Looking at the examples abtive,input model has 72
shape parameters, implying 72 calculations of the finiteedihce for each step of the
minimization algorithm.

Finally, we will compare the time for one iteration of the CMZS and the gradient
descent method. All segmentations were carried out on @atdrdesktop PC using
an AMD processor with 2.4 GHz and 2 GB RAM. Using the same patars as in
the Section above, one step of the CMA-ES took abatisgéconds, while the steepest
descent algorithm lasted®Dseconds per iteration.

6.2 Segmentation of the cerebellum

In this example we are concerned with the segmentation aféhebellum in 3D MRI
voxel dataf, which is displayed in the pictures in the left column of Rigild. Here
we see that the intensities in the cerebellum, the cerebruhotier tissue are more or
less the same. Moreover, the intersection between theaersband the cerebrum is
not visible. To use the edge-based segmentation methodassdied in Sectidn 4.2,
we have to preproceds These preparatory steps include to threshaldider and over
certain values and implement appropriate erosion anchtiibex algorithms afterwards.
We denote the resulting image thyand in the right column of FigufelL0 we displayed
|Of|. The boundary of the cerebellum is clearly visible at thetdrot the front and
backside. The boundary between cerebellum and cerebrurailatzle fractional.
Here, the cerebellum is modeled by

M:(R3><R+><82><SZ)3><(R3><R+><82><82><R+)12

as a shape space of 3D-MReps, where the atoms are on&aduadrilateral mesh.
Then we minimize the functiond[{IL5) with the CMA-ES methdthe result is shown
in FigurelT1l. The segmentation is very good apart from thimreground the center of
the cerebellum. In this area the chosen shape model is texiini# to adapt itself to
the true geometry of the volume we want to detect. Consetyyarnodel with more

atoms in those regions would be needed to capture thosdsdetai
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A A simplified Mumford-Shah functional
In this section we investigate the differentiabilityldMSintroduced in[Z11). We denote

the set of all differentiable maf® — Q by €1(S?,Q), the vector product in Rby x
and the inner product in Roy (-, ).

22



original MRI voxel data gradient of the data after the preprocess
—1
3D
transversal
coronal
sagittal

Figure 10: In the left column slices of the MRI voxel imagare shown. The corre-
sponding slices ofJf| can be seen in the right column.
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Figure 11: The result of the segmentation with the CMA-ESimmn. In the first three
rows slices of the MRI data are displayed with the segmeined. In the bottom row
are a part of the MRep modééft) and the resulting surfacedght).
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Lemma 1
Letg: Q — R be a bounded function and Igtc C*(S?,Q) be a Jordan submanifold.
Then the functional

is well-defined and Gateaux differentiable yn For a directionp € C1(S,Q) the
derivative is given by

DI(y)(p) = /Olfolg(y(tl,tz)) <o7ygt11,t2) X aygtlz’tZ)ap(tl,tz)>dt1dt2

= /Ol/olgov<»f1 X Wy, p)dty Aty
PROOF. Leh >0 and
@01Px[01]-Q,  Yltyt,s) = y(t,t) +hsp(ty,ta).
Then the functional determinaAt:= detJ(y)(ts,t2,5)) of Y is

ay(ty,t ay(ty,t
A=h< M, to) X nt, 2)7P(t1,t2)>+

oty oty
::ny
dy(ti,t2) _ dp(ty,tz) dy(ti,tz) _ dp(ty,tz)
2 J—
h S<( oty % oty oty % oty plat) )+
=Nyp
0p(ty,t2)  dp(ty,t2)
3
hs2< (o) 2008 i), (19)
=np

Now leth > 0 be so small thag+ hp is a Jordan submanifold. Then we have
/Q (Xaty+hp) — Xa(y) 9dx=
1 1 ,1 .
L[ sion(tnyts.to),pts.t2)) IAIg(@ (et 9) dudteds. (20)
The differential quotient of w.r.t. y into directionp is now

DI)(p) = M= (1(y+hp)~1(1)

1
= ima (/Q (Xa(y-+he) = Xa() 9 dX) :
We apply now[(IB) and{20) to this formula and get

1
lim (/Q (Xaty+ho) = Xaw) 9 dx)

= lim /01 /01/015i9n(<ny(t1,t2),P(tl,t2)>) [(ny(t1,t2), p(t1,t2)) +

h—0
hs(nyp(t1,t2), P(tr, t2)) + WP (N (t,t2), O (ta,t2)) |
g(y(t1,t2) + hsp(ty,tp)) dizdtds

1,1
:/o /o (my(ta,t2), p(t1,t2) ) (¥t t2)) dtadlp.
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The result is linear and continuous w.pt.[]
We use this lemma to prove that the simplified Mumford-Shaicfional [41) is
Gateaux differentiable.

Theorem 2

Let f : Q — R be a bounded function ande C1(S?,Q) be a Jordan submanifold.
Then the functionalSMSis Gateaux differentiable ig. For a directiorp € CY(S, Q)
the derivative is given by

DISMy)(p)

/Ol/ol ((Ul(V) — f(y(t1,12)))? — (a(y) — f(y(tl,tz)))z)

dy(ty,t2) " dy(ta,t2)
oty oty

,P(t17t2)>dt1dt2

L (1000~ £oy? — @)~ fo9?) t = . platc.
PROOF. First we rewritéSMSas
I’(a,b,y):/ —fzdx+/ (b— )2dx

Iy

for a,b € R sinceu; (y) anduy(y) are constant values dependingjynObviously the
derivative ofl SMSexists, ifus, u, andl’ are differentiable. The derivatives Bfw.r.t. a
andb are

'(a,b,y)(c / a— f)cdx
(21)
Dpl’(a,b,y)(c) =2 (b— f)cdx.
o(y)

Note that for ang € R we obtain thaD,(ui(y), b, y)(c) = 0andDy(a, ux(y), y)(c) =0.
Thus we can omit the calculation of the derivatiieg (y) andDuy(y), since according
to the chain rule these derivatives appeabi?MYy) only in combination withDal’
andDyl’, respectively.

Next we examine the derivative tfw.r.t. y. Using Lemmdll we obtain

Dyl'(a,b,y)(p / / a— f(y(t1,12)))? (W, (tr, &) X W, (11, 2), p(ta, ) ) dtrdt
[ o 0t ) (0 (1) > ot ). Pt )
Now we apply the chain rule and get the derivativé®fSin directionp as

DISMy)(p) = Dyl (us(y), u2(y), v)(p) + Dal’ (us(y), uz(y), y)Dus(y)(p)+
Dol (uz(y), uz2(y), y)Duz(y)(p) .

According to the comment aftdr (1) the latter two terms shrind thus the theorem
is proven.[]
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