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Abstract. In this paper we analyze iterative regularization with the Breg-
man distance of the total variation semi norm. Moreover, we prove existence
of a solution of the corresponding flow equation as introduced in [8] in a func-
tional analytical setting using methods from convex analysis. The results are

generalized to variational denoising methods with Lp-norm fit-to-data terms
and Bregman distance regularization term. For the associated flow equations
well–posedness is derived using recent results on metric gradient flows from [2].
In contrast to previous work the results of this paper apply for the analysis
of variational denoising methods with the Bregman distance under adequate
noise assumptions. Besides from the theoretical results we introduce a level set
technique based on Bregman distance regularization for denoising of surfaces
and demonstrate the efficiency of this method.

1. Introduction

There are at least two evolutionary concepts based on partial differential equa-
tions for data filtering: Scale space methods with parabolic partial differential equa-
tions approximate data uδ (for instance images), defined on a domain Ω, by the
solution of

∂u

∂t
= −A(u) in Ω(1a)

u(0) = uδ(1b)

∂u

∂ν
= 0 on ∂Ω(1c)

with A(u) := −div
(

g(|∇u|) ∇u
|∇u|

)

and ν the normal vector to the boundary of ∂Ω.

For given t0 > 0, u(t0) is considered an approximation and filtered version of uδ.
The value of t0 controls the amount of filtering.

In semi group theory the solution of (1) is defined iteratively. The initialization
consists in setting u0 = uδ. Then, with ĝ satisfying g(x) = ĝ′(x) the functionals

(2) Fk(u) =
1

2
‖u− uk‖

2
L2 + α

∫

Ω

ĝ(|∇u|) dx, k = 0, 1, . . . ,
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are minimized iteratively and the minimizer is denoted by uk+1. Classical semi
group theory assumes that ĝ : [0,∞) → [0,∞) is convex, satisfies a growth and a
coercivity condition, in which case the minimizer of the functional Fk is unique,
belongs to a Sobolev space and satisfies uk+1 = (Id + αA)−1(uk). From the semi
group generation theorem (cf. [12]) it follows that the limit

(3) u(t) = lim
N→∞

(

Id +
t

N
A

)−N

(uδ)

exists for all t ∈ [0,∞) and that it solves (1). The operator
(

Id + t
N
A
)−N

corre-
sponds to making N iterative regularization steps with a regularization parameter

α = t/N , that is, uN =
(

Id + t
N
A
)−N

(uδ). In other words iterative regularization
and the implicit Euler method correspond if the regularization parameter α and
the time discretization ∆t are identified. The correspondence between diffusion
filtering and iterated regularization has been analyzed numerically and analytically
in [25].

Inverse scale space methods as introduced in [18] are defined as the semigroups
corresponding to iterative regularization

(4) uk+1 = argmin

{

1

2

∥

∥u− uδ
∥

∥

2

L2 + α

∫

Ω

ĝ(|∇u−∇uk|) dx

}

.

Here one typically initializes u0 = 0 or u0 =
∫

Ω u
δ dx and uk+1 satisfies the Euler-

Lagrange equation

(5) uk+1 − u
δ = αdiv

(

g(|∇u−∇uk|)
∇u −∇uk

|∇u −∇uk|

)

.

In particular for ĝ(x) = 1
p
|x|p it follows that

uk+1 − u
δ = αdiv

(

|∇(uk+1 − uk)|p−2∇(uk+1 − uk)
)

,(6a)

u(0) = u0 .(6b)

Identifying the regularization parameter α and a time discretization ∆t via

(7) α =
1

(∆t)p−1

equation (6) can be considered as an implicit time step of the following flow equation

(8)
u− uδ = ∆p

(

∂u

∂t

)

,

u(0) = uδ .

Here ∆p(u) = div
(

|∇u|
p−2
∇u
)

is the p-Laplacian. It is obvious that (7) degener-

ates for p = 1 and thus for α→∞ it cannot be claimed that ∆t→ 0. Consequently
(8) is not properly defined for p = 1.

For ĝ(x) = x, and û = u − uδ, (6) the inverse scale space method becomes
Showalter’s method (see e.g. [16]) which for denoising and gradient evaluation
applications reads as follows

△−1û =
∂û

∂t
(9a)

û(0) = −uδ (+u0)(9b)

where ∆−1 is the solution operator corresponding to Laplace’s equation with ho-
mogeneous Neumann boundary data.
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The name inverse scale space is motivated from the fact that

(10) lim
t→∞

u(t) = uδ, lim
t→0+

u(t) = u0 .

That is the method ”inverts” the axiom of fidelity in scale space theory, which
asserts that u(t)→ uδ for t→ 0.

Scale space methods are very well investigated and analyzed. In particular for
image processing total variation regularization (cf. [23]), which consists in mini-
mization of the functional

(11) F (u) =
1

2

∥

∥u− uδ
∥

∥

2

L2 + α|Du|(Ω) ,

and the associated total variation flow equation

∂u(t)

∂t
= div

(

∇u

|∇u|

)

in Ω(12a)

u(0) = uδ(12b)

∂u

∂ν
= 0 on ∂Ω(12c)

have attracted much attention, since they allow for discontinuous solutions, which
is considered an inherent property of image intensities (due to the appearance of
edges). For some analytical work related to total variation regularization we refer
for instance to [1] and [10]). Existence and uniqueness of a weak solution of (12) is
shown in [3].

Inverse scale space methods have not attracted as much attention. The reason,
as can be seen from (7), is that the original concept does not apply for p = 1 and
hence, in particular, does not allow for discontinuous minimizers. On the other
hand, they are attractive alternatives due to the possible derivation of stopping
criteria dependent on the noise and possible generalizations for rather general tasks
in imaging and inverse problems. Total variation inverse scale space methods have
been derived in [22] employing the concept of Bregman distance regularization.
This method consists in computing first a minimizer u1 of (11). The updates are
determined successively by calculating

(13) uk+1 = argmin
u∈L2

{

1

2

∥

∥u− uδ
∥

∥

2

L2 + α (|Du|(Ω)− 〈s, u〉)

}

,

where s is an element of the subgradient of the total variation semi norm in u1.
Introducing the Bregman distance with respect to |Du|(Ω) defined by

D(u, ũ) := |Du|(Ω)− |Dũ|(Ω)−

∫

Ω

s(u− ũ)

(cf Definition 1) allows to characterize uk+1 in (13) as

(14) uk+1 = argmin
u∈L2(Ω)

{

1

2

∥

∥u− uδ
∥

∥

2

L2 + αD(u, uk)

}

.

As we show in this paper, this iterative process satisfies a discrete inverse scale
space property, that is uk → uδ for k→∞. Moreover, we derive an according flow
equation, which satisfies the inverse scale space property.

This paper is organized as follows. In Section 2 we analyze (13), showing well-
posedness (that is existence of minimizers) and study the asymptotic behavior of
the sequence of minimizers {uk}k∈N. The analysis allows to generalize results from
[22] to be applicable for data perturbed by (for instance white) noise. In Section 3
we analyze the flow equation corresponding to (14) (that is when α → ∞) which
has first been introduced in [8]. We show existence of a solution in a functional
analytical setting using methods from convex analysis and results from [2]. The
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flow equation turns out to satisfy (10). In Section 5 we motivate iterative total
variation Bregman distance regularization as a variational method for penalizing a
distance between level sets of uk+1 and uk, motivating the use of this method for
image and surface denoising.

Notation. In this paper we use the following notation and make the assumptions,
which are not stated explicitly any further afterwards:

(1) Ω ⊆ R
n is open, bounded with Lipschitz boundary ∂Ω.

(2) We denote by D(Ω) = C∞c (Ω) the space of continuously differentiable func-
tions with compact support in Ω.

(3) For p ∈ (1,∞) p∗ denotes its conjugate, which satisfies 1
p

+ 1
p∗

= 1. Let µ

be a positive measure on Ω and m ∈ N. Lp(Ω,Rm;µ) denotes the space of
p times µ-integrable functions f : Ω→ R

m with the norm

‖f‖Lp(Ω,Rm;µ) =

(
∫

Ω

|f |p dµ

)
1
p

.

If µ is the n dimensional Lebesgue measure we simply write Lp(Ω)m and
if m = 1 we write Lp(Ω). In this case we abbreviate ‖f‖Lp(Ω) = ‖f‖Lp .

The dual of Lp(Ω,Rm;µ) is Lp∗(Ω,Rm;µ). The dual pairing with respect
to Lp∗(Ω) and Lp(Ω) is denoted by 〈·, ·〉.

(4) L∞(Ω,Rn;µ) denotes the space of essentially bounded functions.
(5) For p ∈ (1,∞) we define

(15) Kp(Ω) =
{

div (z) : z ∈ D(Ω)n, ‖z‖L∞(Ω)n ≤ 1
}

,

where the closure is taken with respect to the strong topology on Lp(Ω).
Note that Kp(Ω) is convex and therefore also closed w.r.t. the weak topol-
ogy in Lp(Ω).

2. Iterative regularization with Bregman Distances

For the analysis of iterative Bregman distance regularization, motivated in (13),
we require several results from convex analysis and functional analysis, which are
reviewed in the beginning of this section.

2.1. Review on Results from Convex Analysis.

Definition 1. Let J : Lp(Ω)→ R ∪ {+∞} be a convex and proper functional.

(1) An element s ∈ Lp∗(Ω) lies in the subgradient ∂J (u0) of J at u0 ∈ Lp(Ω)
if

J (u)− J (u0)− 〈s, u− u0〉 ≥ 0 for all u ∈ Lp(Ω) .

(2) The Bregman distance of J at u, ũ ∈ Lp(Ω) with respect to s ∈ ∂J (ũ) ⊆
Lp∗(Ω) is defined by

(16) Ds
J (u, ũ) := J (u)− J (ũ)− 〈s, u− ũ〉 .

(3) The Legendre-Fenchel conjugate of a convex functional J : Lp(Ω) → R ∪
{+∞} is the functional J ∗ : Lp∗(Ω)→ R ∪ {+∞}

u∗ 7→ J ∗(u∗) := sup
u∈Lp(Ω)

{〈u∗, u〉 − J (u)} .

From the definition of the subdifferential it follows that u 7→ Ds
J(u, ũ) is non

negative.

Example 1. The duality mapping defined by

Jp : Lp(Ω)→ Lp∗(Ω) , u→ |u|p−2u

satisfies:
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(1)
∫

Ω

Jp(u)u dx = ‖u‖
p
Lp = ‖Jp(u)‖

p∗

Lp∗
.

(2) J−1
p = Jp∗

. In particular J2 ≡ Id.

(3) Jp(u) is the subdifferential of ‖·‖pLp at u ∈ Lp(Ω), that is

(17) Jp(u) = ∂ ‖·‖
p
Lp (u) .

Lemma 1. Assume that p > 1. For u ∈ Lp(Ω) let

J(u) := sup
z∈D(Ω)n

‖z‖
L∞(Ω)n≤1

∫

Ω

u div (z) dx =

{

|Du|(Ω) if u ∈ BV(Ω)

+∞ else

the total variation semi norm of u. Then

(18) J∗(v) = χKp∗(Ω)(v) =

{

0 if v ∈ Kp∗(Ω)

+∞ else .

Proof. Let u ∈ Lp(Ω), then

(

χKp∗(Ω)

)∗
(u) = sup

v∈Kp∗(Ω)

∫

Ω

uv dx

= sup
z∈D(Ω)n

‖z‖L∞(Ω)n≤1

∫

Ω

u div (z) dx = J(u).

Since the set Kp∗(Ω) is convex, the function χKp∗ (Ω) is convex. Moreover, since
χKp∗(Ω) is lower semicontinuous ([7, Ex. 2.8.2]) it follows that χKp∗(Ω)(v) =
(

χKp∗(Ω)

)∗∗
(v) = J∗(v) (see e.g. [14, Chap. 1, Prop. 4.1]). �

2.2. Properties of Kp(Ω). As it turned out in the previous section, the Legendre
Fenchel conjugate J∗ of the total variation seminorm defined on Lp(Ω) is the char-
acteristic function of the set Kp∗(Ω). Y. Meyer [21] introduced the G-norm which
has proven to be a feasable instrument to discribe this duality. We summarize the
basic facts of this theory and provide some generalizations (see also [4]).

For 1 < p <∞ we introduce the subspaces

(19) Xp(Ω) = {z ∈ L∞(Ω)n : div (z) ∈ Lp(Ω)} .

From [3, Thm. C.3.] we know that there exists a linear trace operator Tp : Xp(Ω)→
L∞(∂Ω)n such that

‖Tp(z)‖L∞(∂Ω)n ≤ ‖z‖L∞(Ω)n

and

(20)

∫

Ω

u div (z) dx+

∫

Ω

∇uz dx =

∫

∂Ω

Tp(z)u dHn−1

for all z ∈ Xp(Ω) and u ∈W1,1(Ω) ∩ Lp∗(Ω). Moreover we define the space

(21) Lp
♦
(Ω) =

{

v ∈ Lp(Ω) :

∫

Ω

v dx = 0

}

.

Proposition 1. Let 1 < p <∞, then

(22) Lp
♦
(Ω) = div (D(Ω)n)

where the closure is taken w.r.t. the strong topology on Lp(Ω).
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Proof. Let {zk} ⊆ D(Ω)n such that div (zk) → v w.r.t. the Lp(Ω)-norm. Then
∫

Ω
div (zk) dx = 0 for all k and thus

∫

Ω

v dx =

∫

Ω

lim
k→∞

div (zk) dx = lim
k→∞

∫

Ω

div (zk) dx = 0.

If conversely v ∈ Lp
♦(Ω) there exist a sequence vk ∈ C

∞(Ω)∩Lp
♦(Ω) such that vk → v

in Lp(Ω) (From the density of D(Ω) in Lp(Ω) the existence of an approximating
sequence {vk} ⊆ D(Ω) follows; Then vk −

1
|Ω|

∫

Ω vk dx → v). We abbreviate p̄ =

max(p, n) and observe that vk ∈ Lp̄
♦
(Ω) for all k ∈ N. From [6, Thm.3] it follows

that there exists zk ∈ C(Ω)n ∩W1,p̄
0 (Ω)n such that

div (zk) = vk.

Therefore we can approximate each zk by an element z̃k ∈ D(Ω)n such that

‖div (z̃k − zk)‖Lp ≤ C ‖div (z̃k − zk)‖Lp̄ ≤
1

k

for a constant C > 0. This implies that div (z̃k)→ v. �

The G-norm of an element v as introduced by Meyer [21] and Aubert and Au-
jol [4] is defined as the infimum of ‖z‖L∞(Ω)n taken over all z such that div (z) = v.

In order to provied a generalization to our case it is important to note that the above
proof does not imply existence of an element z ∈ L∞(Ω)n such that div (z) = v.
However from (20) it follows that at least

ker (Tp) ⊆ Lp
♦
(Ω).

and [6, Thm. 3] proves

Lemma 2. If p ≥ n we have that

ker (Tp) = Lp
♦
(Ω).

Definition 2. Let 1 < p <∞ and v ∈ Lp
♦(Ω). The G-norm of v is defined as

(23)

‖v‖∗ = inf

{

lim inf
k→∞

‖zk‖L∞(Ω)n : {zk} ⊆ D(Ω)n, lim
k→∞

‖div (zk)− v‖Lp = 0

}

Moreover we introduce the space

(24) Lp
♦
(Ω) =

{

v ∈ Lp
♦
(Ω) : ‖v‖∗ <∞

}

.

The linearity of div (·) and the norm properties of ‖·‖L∞(Ω)n impliy that
(

Lp
♦
(Ω), ‖·‖∗

)

is a normed space. As we will show in Proposition 2 below Lp
♦
(Ω) contains those

elements of Lp
♦
(Ω) which can be represented as div (z) with z ∈ L∞(Ω)n.

Proposition 2. For every v ∈ Lp
♦(Ω) there exists z ∈ ker (Tp) such that

div (z) = v, ‖z‖
L∞(Ω)n ≤ ‖v‖∗ .

Proof. We follow the proof of [4, Lemma 2.3]. Let v ∈ Lp
♦
(Ω), i.e. ‖v‖∗ < ∞.

From the definition of the G-norm (23) it follows that there exists a sequence
{zk} ⊆ D(Ω)n such that

lim
k→∞

‖div (zk)− v‖Lp = 0, lim
k→∞

‖zk‖L∞(Ω)n = ‖v‖∗ .

Then the boundedness of {zk} implies the existence of an element z ∈ L∞(Ω)n such
that – up to an extraction of a subsequence – zk converges weakly* to z in L∞(Ω)n.
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From (20) it follows that for every φ ∈ C∞(Ω)
∫

Ω

φv dx = lim
k→∞

∫

Ω

φ div (zk) dx = lim
k→∞

−

∫

Ω

∇φ zk dx

= −

∫

Ω

∇φ z dx =

∫

Ω

φ div (z) dx−

∫

∂Ω

φTp(z) dHn−1.

Choosing φ ∈ D(Ω) yields div (z) = v in the sense of distributions and since v ∈
Lp(Ω) it follows that div (z) ∈ Lp(Ω). For an arbitrary φ ∈ C∞(Ω) it then follows
that

∫

∂Ω

φ Tp(z) dHn−1 = 0

which shows that Tp(z) = 0 Hn−1- a.e. on ∂Ω (application of Whitney’s Extension
Theorem [17, Chap. 6.5 Thm. 1]). Finally, weak* lower semicontinuity of ‖·‖L∞(Ω)n

implies
‖z‖L∞(Ω)n ≤ lim

k→∞
‖zk‖L∞(Ω)n = ‖v‖∗ .

�

A straightforward consequence of (23) is that

Kp(Ω) ⊆
{

v ∈ Lp
♦
(Ω) : ‖v‖∗ ≤ 1

}

.

Indeed, if {zk} ⊆ D(Ω)n such that ‖zk‖L∞(Ω)n ≤ 1 and div (zk)→ v ∈ Lp
♦(Ω) then

‖v‖∗ ≤ lim inf
k→∞

‖zk‖L∞(Ω)n ≤ 1.

We further investigate the relation between the topology induced by ‖·‖∗ and the
weak topology on Lp

♦
(Ω).

Example 2. Let Ω = [0, π] and p = p∗ = 2. We define

zk(x) =
1

2k
sin
[

(2k)2x
]

.

Since zk(0) = zk(π) = 0, vk = z′k ∈ L
2
♦(Ω) and we have that

‖vk‖∗ = ‖zk‖L∞ ≤
1

k

i.e. vk → 0 w.r.t. ‖·‖∗. However vk = 2k cos
[

(2k)2x
]

is unbounded in L2(Ω).

This example shows that convergence w.r.t. ‖·‖∗ does not imply weak conver-
gence w.r.t. Lp(Ω). However under additional assumtions the result is true:

Proposition 3. Let {vk}k∈N be a sequence in Lp
♦
(Ω) and v ∈ Lp

♦
(Ω) such that

sup
k∈N

‖vk‖Lp <∞, lim
k→∞

‖vk − v‖∗ = 0

Then vk ⇀ v in Lp(Ω).

Proof. Since {vk} is bounded in Lp(Ω) we can extract a subequence {vk(l)} such
that

(25) vk(l) ⇀ v̂, in Lp(Ω)

for some v̂ ∈ Lp
♦
(Ω). Moreover let v ∈ Lp

♦
(Ω) such that vk → v w.r.t. ‖·‖∗. Then

– using Proposition 2 – we can choose {zk(l)} ⊆ L∞(Ω)n such that Tp(zk(l)) = 0,

div
(

zk(l)

)

= vk(l) − v and
∥

∥zk(l)

∥

∥

L∞(Ω)n ≤
∥

∥vk(l) − v
∥

∥

∗
for all l ∈ N. This together

with (20) shows that
∫

Ω
u(vk(l)) − v) dx = −

∫

Ω
∇uzk(l) dx for all u ∈ W1,1(Ω) ∩

Lp∗(Ω) and therefore

lim
k→∞

∫

Ω

uvk(l) dx =

∫

Ω

uv dx.
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This together with (25) shows v̂ = v. Consequentely every subsequence of {vk} has
in turn a weakly convergent subsequence with limit v. This implies that vk ⇀ v. �

We conclude this section with two results that are based on the analysis in [3,
Appendix C].

Lemma 3. For all u ∈ BV(Ω) ∩ Lp∗(Ω) and v ∈ Lp
♦(Ω) there exists a |Du| -

measurable function θ(v,Du, ·) : Ω→ R that satisfies
∫

Ω

uv dx =

∫

Ω

θ(v,Du, x) d|Du|

and

‖θ(v,Du, ·)‖
L∞(Ω,R,|Du|) ≤ ‖v‖∗ .

Moreover let f : R→ R be Lipschitz continuous and strictly increasing, then

θ(v,D(f ◦ u), x) = θ(v,Du, x),

for almost every x ∈ Ω w.r.t. to both the measure |Du| and the measure |D(f ◦ u)|.

Proof. According to Proposition 2 there exists a z ∈ ker (Tp) such that div (z) = v
and ‖z‖L∞(Ω)n ≤ ‖v‖∗. From Theorems C.7 and C.9 in [3] it follows that there

exists a function θ(v,Du, ·) ∈ L∞(Ω,R, |Du|) such that
∫

Ω

uv dx =

∫

Ω

udiv (z) dx =

∫

Ω

θ(v,Du, x) d|Du|

and

‖θ(v,Du, ·)‖L∞(Ω,R,|Du|) ≤ ‖z‖L∞(Ω)n ≤ ‖v‖∗

The last assertion follows directly from [3, Cor. 16]. �

Corollary 1. For all u ∈ BV(Ω) ∩ Lp∗(Ω) and v ∈ Lp
♦
(Ω) we have that

∣

∣

∣

∣

∫

Ω

uv dx

∣

∣

∣

∣

≤ |Du|(Ω) ‖v‖∗ .

Note that for those u ∈ BV(Ω) ∩ Lp∗(Ω) satisfying Jp∗
(u) ∈ Lp

♦
(Ω) Corollary 1

implies that

(26) ‖u‖
p∗

Lp∗
=

∫

Ω

uJp∗
(u) dx ≤ |Du|(Ω) ‖Jp∗

(u)‖∗ .

According to [21], simple functions are defined as those satisfying (26) with equality.

2.3. Analysis of Iterative Bregman Distance Regularization. Iterative Breg-
man distance regularization, as motivated in (13), is defined as follows

uk+1 := argmin
u∈Lp(Ω)

I(α;u, uk) , where I(α;u, ũ) :=

{

1

p

∥

∥u− uδ
∥

∥

p

Lp + αDṽ
J(u, ũ)

}

,

where ṽ is an element of the subgradient of J at ũ. The algorithm is uniquely
defined up to the choice of the element ṽ in the subgradient of J at ũ. Following
and extending the work in [22], which considered p = 2, we make the effective
choice of the subgradient element as follows:

Algorithm 1. • Let u0 ∈ BV(Ω) and v0 ∈ ∂J(u0).
• For k = 0, 1, . . .

uk+1 := argmin
u∈Lp(Ω)

I(α;u, uk).

vk+1 := vk +
1

α
Jp(u

δ − uk+1) .
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The goals of this subsection are to prove well–posedness of Algorithm 1 and to
investigate the asymptotic behavior of the iterated minimizers uk. By showing that
uk → uδ we justify the terminology inverse scale space method.

Theorem 1. Assume that uδ ∈ Lp(Ω). Then for each k ∈ N there exists a unique
minimizer uk ∈ Lp(Ω) ∩ BV(Ω) of Ik and a subgradient vk ∈ J(uk) ⊆ Lp∗(Ω) such
that

(27) αvk + Jp(uk − u
δ) = αvk−1.

Proof. Let ũ ∈ Lp(Ω) and s ∈ ∂J(ũ). We show weak lower semicontinuity and
coercivity of Ik. Then, existence of a minimizer follows from [13, Chap. 3, Thm.
1.1].

Since both u→ J(u) (see for instance [1, Thm. 2.3]) and u→ 〈s, u〉 are weakly
lower semicontinuous on Lp(Ω), the Bregman distance

u 7→ Ds
J(u, ũ)

is weakly lower semicontinuous. Therefore I(α; ·, uk) is weakly lower semicontinuous
on Lp(Ω). It remains to show that I(α; ·, uk) is coercive on Lp(Ω), that is

I(α;u, uk) ≥ β ‖u‖
p
Lp + γ

for some β > 0 and γ ∈ R. We verify the assertion for the functional I(α; ·, u0).
For k ≥ 1 the assertion can be proven analogously taking into account that uk ∈
Lp(Ω) ∩ BV(Ω) and vk ∈ ∂J(uk). Since J is convex, v0 ∈ ∂J(u0) is equivalent to

J(u) ≥ J(u0) + 〈v0, u− u0〉 for all u ∈ Lp(Ω).

Therefore,

1

p

∥

∥u− uδ
∥

∥

p

Lp + α(J(u)− 〈v0, u〉) ≥
1

p

∥

∥u− uδ
∥

∥

p

Lp + α(J(u0)− 〈v0, u0〉)

≥
1

p

∣

∣‖u‖Lp −
∥

∥uδ
∥

∥

Lp

∣

∣

p
+ α(J(u0)− 〈v0, u0〉).

Thus I(α; ·, u0) is Lp-coercive and we can apply [13, Chap. 3, Thm. 1.1] and
conclude that there exists a minimizer u1 ∈ BV(Ω) ∩ Lp(Ω) which satisfies the
Euler-Lagrange equation

v1 :=
Jp(u

δ − u1)

α
∈ ∂J(u1).

�

Lemma 4. For every k ∈ N we have

(28)
∥

∥uk+1 − u
δ
∥

∥

Lp ≤
∥

∥uk − u
δ
∥

∥

Lp .

Proof. (See [22, Prop. 3.2]). Since the Bregman distance is nonnegative we have

1

p

∥

∥uk+1 − u
δ
∥

∥

p

Lp ≤
1

p

∥

∥uk+1 − u
δ
∥

∥

p

Lp + αD
vk+1

J (uk+1, uk)

= I(α;uk+1, uk) ≤ I(α;uk, uk) =
1

p

∥

∥uk − u
δ
∥

∥

p

Lp .

�

Using Lemma 1 the dual formulation of Algorithm 1 can be derived. We consider
the dual functional of I with respect to v ∈ Lp∗(Ω), defined as follows:

(29) I∗(α; v, ṽ) :=
1

p∗
‖v − ṽ‖

p∗

Lp∗
+

1

αp∗−1

(

J∗(v) −
〈

uδ, v
〉)

, ṽ ∈ Lp∗(Ω).
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Theorem 2. Assume that p > 1 and uδ ∈ Lp(Ω). Then uk, vk as defined in
Algorithm 1 satisfy

(30) vk = argmin
v∈Kp∗(Ω)

I∗(α; v, vk−1) ∈ K
p∗(Ω) .

Moreover, in particular, for p = 2

(31) uk = (uδ + αvk−1)− απK2(Ω)

(

uδ

α
+ vk−1

)

,

where πK2(Ω)(u) denotes the orthogonal projection of u ∈ L2(Ω) onto K2(Ω).

Proof. The proof is along the lines of [9] where the dual formulation of total varia-
tion regularization has been derived.

From Lemma 1 it follows that

(32) I∗(α; v, ṽ) =

{

1
p∗

‖v − ṽ‖
p∗

Lp∗
− 1

αp∗−1

〈

uδ, v
〉

if v ∈ Kp∗(Ω)

+∞ else

The functional I∗ is strictly convex and weakly lower semicontinuous with respect
to v and thus I∗(α; ·, vk−1) attains a unique minimizer ṽk. From Lemma 1 it follows
that ṽk ∈ K

p∗(Ω). It remains to show that vk = ṽk. From the definition of vk in
Algorithm 1 and Theorem 1 it follows that

(33) vk = vk−1 −
1

α
Jp(uk − u

δ) ∈ ∂J(uk) .

Then, from the duality relation (see for instance [14]) it follows that

(34) uk ∈ ∂J
∗

(

vk−1 −
1

α
Jp(uk − u

δ)

)

.

Moreover, since (33) is equivalent to

−α(vk − vk−1) = Jp(uk − u
δ)

it follows by applying Example 1 (3) that

(35) Jp∗
(vk − vk−1)α

p∗−1 − uδ = −uk.

Combination of (33), (34) and (35) shows that

(36) 0 ∈ Jp∗
(vk − vk−1)α

p∗−1 − uδ + ∂J∗(vk) .

Therefore, vk minimizes the functional I∗(α; ·, vk−1), which together with the fact
that the minimizer is unique implies that vk = ṽk.

For p = 2 minimization of I∗(α; ·, vk−1) is equivalent to minimizing the functional

v →
1

2

∥

∥

∥

∥

v −

(

vk−1 +
uδ

α

)
∥

∥

∥

∥

2

L2

+
1

α
J∗(v) .

Therefore, from Lemma 1 it follows that vk = πK2(Ω)(
uδ

α
+ vk−1) and together with

(33) we see that

uk = (uδ + αvk−1)− απK2(Ω)

(

uδ

α
+ vk−1

)

.

�

In the dual formulation (30) there exists an equation for vk which is independent
of uk. In contrast to Algorithm (1), where the variables uk and vk are coupled.

We now show the discrete inverse fidelity property of Algorithm 1 which means
that the sequence uk approach the original (noisy) data as k →∞.
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Theorem 3. Let uδ ∈ Lp(Ω) and {uk} as defined in Algorithm 1. Then we have
that

lim
k→∞

∥

∥uk − u
δ
∥

∥

Lp = 0.

Proof. Let k > 1. Since uk ∈ ∂J∗(vk) we have that 〈vk−1 − vk, uk〉 ≤ 0 and
consequentely that

〈

vk−1 − vk, u
δ
〉

≤
〈

vk−1 − vk, u
δ − uk

〉

= −
〈

vk − vk−1, u
δ − uk

〉

= −
1

α

∥

∥uk − u
δ
∥

∥

p

Lp

where the last equality follows from (33). This estimate combined with Lemma 4
gives

∥

∥uk − u
δ
∥

∥

p

Lp ≤
1

k

k
∑

j=1

∥

∥uj − u
δ
∥

∥

p

Lp

≤
α

k

k
∑

j=1

〈

vj − vj−1, u
δ
〉

= α
(〈vk

k
, uδ
〉

−
〈v0
k
, uδ
〉)

.

Hence it suffices to show that vk

k
converges weakly to 0 as k → ∞. Since vk ∈

Kp∗(Ω) (that is ‖vk‖∗ ≤ 1) for all k > 0 we immediately see that

lim
k→∞

∥

∥

∥

vk

k

∥

∥

∥

∗
= 0.

Moreover, Lemma 4 and (33) applied iteratively imply that

∥

∥

∥

vk

k

∥

∥

∥

p∗

Lp∗

=
1

k

∥

∥

∥

∥

vk−1 −
1

α
Jp(uk − u

δ)

∥

∥

∥

∥

p∗

Lp∗

=
1

k

∥

∥

∥

∥

∥

∥

v0 −
1

α

k
∑

j=1

Jp(uj − u
δ)

∥

∥

∥

∥

∥

∥

p∗

Lp∗

≤
‖v0‖

p∗

Lp∗

k
+

1

αk

k
∑

j=1

∥

∥uj − u
δ
∥

∥

p

Lp

≤
‖v0‖

p∗

Lp∗

k
+

1

α

∥

∥u0 − u
δ
∥

∥

p

Lp .

(37)

We finally apply Proposition 3 and get

vk

k
⇀ 0, in Lp∗(Ω).

�

3. Continuous Inverse Scale Space Flow

In this section we derive the gradient flow equation associated with (30) which is
the dual formulation of the iterative regularization method introduced in Algorithm
1. The analysis is based on results from [2]. There the authors describe the explicit
construction of solutions of gradient flow equations in metric spaces (S, d) w.r.t.
functionals φ : S → R. The analysis is very general and allows for weaker topologies
than the metric d in order to show convergence of discrete solutions.
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A partition of the interval [0,∞) is a sequence of positive numbers ~τ = {τk}k∈N

such that

|~τ | = sup
k∈N

τk <∞

and the associated sequence
{

tk~τ
}

k∈N0
defined by τk = tk~τ − t

k−1
~τ satisfies

0 = t0~τ < t1~τ < · · · < tk~τ < . . . ,
∞
∑

j=1

τ j = +∞.

For a given partition ~τ and u0 ∈ BV(Ω) ∩ Lp(Ω) resp. v0 ∈ ∂J(u0) we set for
k = 1, 2, . . .

(38)

U0
~τ = u0, V 0

~τ = v0

Uk
~τ = argmin

u∈Lp(Ω)

I

(

1

τk
;u, Uk−1

~τ

)

, V k
~τ = argmin

v∈Lp∗ (Ω)

I∗
(

1

τk
; v, V k−1

~τ

)

The discrete values of Uk
~τ resp. V k

~τ are extended to a piecewise constant function

U~τ (t) resp. V ~τ (t) for t ∈ [0,∞) defined by

(39) U~τ (t) = Uk
~τ , V ~τ (t) = V k

~τ ,

whenever t ∈
(

tk−1
~τ , tk~τ

]

. In order to show existence of a limiting function we apply
recent results in [2]. We adopt the notation therein and rewrite the dual functional

I∗(α; v, ṽ) =
1

p∗
d(v, ṽ)p∗ +

1

αp∗−1
φ(v)

where d(v, ṽ) = ‖v − ṽ‖Lp∗
and φ(v) = χKp∗(Ω)(v) −

〈

uδ, v
〉

.

Theorem 4. Assume that {~τl}l∈N is a sequence of partitions of [0,∞) such that
liml→∞ |~τl| = 0. Then there exists a function v ∈ C (0,∞;Kp∗(Ω)), which is uni-
formly continuous, differentiable almost everywhere in [0,∞) and satisfies

(40) ‖v′‖
Lp∗
∈ Lp∗

loc
(0,∞)

such that

(41) v(t) = lim
l→∞

V ~τl
(t) for all t ∈ [0,∞)

in the weak topology of Lp∗(Ω).

Proof. The weak Lp∗(Ω) topology satisfies the topological assumptions in Section
2.1 in [2]. That is φ is weakly lower semicontinuous on Lp∗(Ω) (condition 2.1a) and
from [14, Chap. 3 Prop. 1.1] we see that

inf
v∈Lp∗ (Ω)

I∗(α; v, 0) ≥ − inf
u∈Lp(Ω)

I(α;u, 0) > −∞, ∀α > 0.

which shows the coercivity assumption 2.1b. Weak compactness of Lp∗(Ω) bounded
subsets of sublevels of φ (assumption 2.1c) follows by the Banach - Alaoglu Theorem
[20, Thm. 2.6.18]. Hence we can apply [2, Prop. 2.2.3] which directly proves the
assertion. The fact that v(t) ∈ Kp∗(Ω) then follows from weak closedness of Kp∗(Ω)
and (41). �

Proposition 4 (Growth property). Let v be as in Theorem 4. Then v satisfies

‖v(t)‖p∗

Lp∗
≤ ‖v0‖

p∗

Lp∗
+
∥

∥u0 − u
δ
∥

∥

p

Lp t, for all t ≥ 0.
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Proof. Let k, l ∈ N and t ∈
(

tk−1
~τl

, tk~τl

]

. From (38) and (33) we conclude that

V ~τl
(t) = V k

~τl

= V k−1
~τl
− τk

l Jp

(

Uk
~τl
− uδ

)

= v0 −

k
∑

j=1

τ j
l Jp

(

U j
~τl
− uδ

)

.

From Lemma 4 it then follows that

∥

∥V ~τl
(t)
∥

∥

p∗

Lp∗
≤ ‖v0‖

p∗

Lp∗
+

k
∑

j=1

τk
l

∥

∥

∥
U j

~τl
− uδ

∥

∥

∥

p

Lp

≤ ‖v0‖
p∗

Lp∗
+
∥

∥u0 − u
δ
∥

∥

p

Lp t
k−1
~τl

+
∥

∥u0 − u
δ
∥

∥

p

Lp τ
k
l

≤ ‖v0‖
p∗

Lp∗
+
∥

∥u0 − u
δ
∥

∥

p

Lp t+O(|~τl|).

If ~τl is a sequence such that V ~τl
(t) ⇀ v(t) as in Theorem 4, weak lower semiconti-

nuity of ‖·‖Lp∗
finally shows that

‖v(t)‖
p∗

Lp∗
≤ lim inf

t→∞

∥

∥V ~τl
(t)
∥

∥

p∗

Lp∗
≤ ‖v0‖

p∗

Lp∗
+
∥

∥u0 − u
δ
∥

∥

p

Lp t.

�

Remark 1 (The case p = 2). In the Hilbert space setting we obtain an even
sharper result as in Theorem 4. Note that the (unique) minimizer ṽ of I∗(α; v, w)
also minimizes

Ī∗(α; v, w) =
α

2
‖v − w‖

2
L2 + J∗(v)−

〈

v, uδ
〉

.

Since for v0, v1, w ∈ L2(Ω) and t ∈ [0, 1] we have that

‖(1− t)v0 + tv1 − w‖
2
L2 = (1− t) ‖v0 − w‖

2
L2 + t ‖v1 − w‖

2
L2 − t(1− t) ‖v0 − v1‖

2
L2

we obtain for v0, v1, w ∈ K
2(Ω) that

Ī∗(α; (1 − t)v0 + tv1, w) =
α

2
‖(1− t)v0 + tv1 − w‖

2
L2 − 〈(1− t)v0 + tv1, w〉

=
α

2

(

(1− t) ‖v0 − w‖
2
L2 + t ‖v1 − w‖

2
L2

)

−
α

2
t(1− t) ‖v0 − v1‖

2
L2 − (1− t)

〈

v0, u
δ
〉

− t
〈

v1, u
δ
〉

= (1− t)Ī∗(α; v0, w) + tĪ∗(α; v1, w) −
α

2
t(1 − t) ‖v0 − v1‖

2
L2 .

Hence Ī∗ satisfies the convexity assumption [2, 4.0.1] and we can apply [2, Thm.
4.2.2.] to obtain that V ~τ(l) → v uniformly on each bounded interval [0, T ] as l →∞.
Particularly it follows that

lim
l→∞

V ~τ(l) = v(t), for all t ∈ [0,∞)

in the strong topology on L2(Ω).

So far we proved that the iterated minimizers of the dual problem of Algorithm
1 converge to a continuous function of time as the time discretization goes to zero
(that is the regularization parameter α converges to +∞). It remains to investigate
under which conditions these functions satisfy gradient flow equations w.r.t. to φ.
To this end we introduce the operator A : Kp∗(Ω)→ Lp(Ω) which is defined by

(42) A(v) = argmin
u∈∂φ(v)

‖u‖Lp .
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and the slope

|A|(v) :=

{

‖A(v)‖Lp if v ∈ Kp∗(Ω)

+∞ else
.

In order to show existence of a gradient flow for the dual problem (38), |A| needs
to satisfy a lower semicontinuity condition.

Proposition 5. Let v ∈ Lp∗(Ω). Then

|A|(v) = inf

{

lim inf
k→∞

|A|(vk) : vk ⇀ v, {vk} ⊆ K
p∗(Ω)

}

.

The right hand side of the above equation is referred to as the relaxed slope and
generally does not coincide with the slope |A|. Proposition 5 follows directly from
the closedness of the subgradient ∂φ (or equivalently of ∂J∗) according to [2, Lmm.
2.3.6.].

Lemma 5. The subgradient ∂J∗ ⊆ Lp∗

♦
(Ω)×Lp(Ω) is weakly - weakly closed, that is

for all sequences {vk} ⊆ Lp∗

♦ (Ω) and {uk} ⊆ Lp(Ω) the following implication holds

sup
k∈N

J∗(vk) <∞, vk ⇀ v in Lp∗(Ω)

uk ∈ ∂J
∗(vk), uk ⇀ u in Lp(Ω)

}

⇒ u ∈ ∂J∗(v).

Proof. Since J∗(vk) < ∞ it follows that vk ∈ Kp∗(Ω). Therefore, since uk ∈
∂J∗(vk) we have that 〈uk, w − vk〉 ≤ 0 for all w ∈ Kp∗(Ω) that is

J(uk) = 〈uk, vk〉 <∞.

From weak convergence of {vk} and {uk} it follows that there exists a constant
C > 0 such that ‖uk‖Lp ‖vk‖Lp∗

≤ C for all k > 0 and consequently

(43) sup
k∈N

J(uk) = sup
k∈N

∫

Ω

ukvk dx ≤ C.

In other words the sequence {uk} is bounded in BV(Ω). From compact imbedding
BV(Ω) →֒ L1(Ω) we conclude that every subsequence of {uk} has a strongly L1

convergent subsequence with limit u. Thus uk → u strongly in L1(Ω) and u ∈
BV(Ω).

Let λ ≥ 0. We introduce the truncation operator Sλ(r) := (λ− (λ − |r|)+) sign(r)
and set Sε

λ = (Sλ ∗Gε) where Gε denotes the Gaussian kernel with standard devi-
ation ε > 0. Note that Sε

λ : R→ R is Lipschitz continuous (with Lipschitz constant
≤ 1) and strictly increasing. Lemma 3 implies that for every k > 0 there exists
a |Duk| - measurable function θk(vk,Duk, ·) : Ω → R such that θk(vk,Duk, ·) ≤ 1
|Duk| - a.e. x ∈ Ω,

(44)

∫

Ω

vkuk dx =

∫

Ω

θk(vk,Duk, x) d|Duk|

and

(45) θk(vk,D(Sε
λ(uk)), x) = θk(vk,Duk, x), |Duk| − a.e.

Note that (45) also holds for |DSε
λ(uk)| - almost every x ∈ Ω. Since θk(vk,Duk, ·) ≤

1 |Duk| - a.e. and 〈vk, uk〉 = J(uk) we conclude from (44) that θk(vk,Duk, x) = 1
for |Duk| - almost every x ∈ Ω and consequently from (45)

∫

Ω

vkS
ε
λ(uk) dx =

∫

Ω

θk(vk,D(Sε
λ(uk)), x) d|DSε

λ(uk)| = J (Sε
λ(uk)) .

Since ‖uk − u‖L1 → 0 it follows that ‖Sε
λ(uk)− Sε

λ(u)‖L1 → 0 as k → ∞ from the
Lipschitz continuity of Sε

λ and Sε
λ(uk) is uniformly bounded in L∞(Ω) (by λ).
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The Vitali Convergence Theorem (see e.g. [15, Thm. VI.5.6]) hence yields
limk→∞ ‖S

ε
λ(uk)− Sε

λ(u)‖Lp′ = 0 for all p′ <∞ and since 〈·, ·〉 is strongly - weakly
continuous on Lp(Ω)× Lp∗(Ω) we get that

lim
k→∞

J (Sε
λ(uk)) = lim

k→∞

∫

Ω

Sε
λ(uk)vk dx =

∫

Ω

Sε
λ(u)v dx ≤ J (Sε

λ(u)) .

Together with the weak lower semicontinuity of J this implies that J (Sε
λ(u)) =

〈Sε
λ(u), v〉 and thus Sε

λ(u) ∈ ∂J∗(v). Since Sε
λ → Sλ uniformly on R as ε → 0 we

can choose ε(λ) > 0 such that

sup
x∈R

∣

∣

∣
S

ε(λ)
λ − Sλ(x)

∣

∣

∣
< λ−1.

and therefore

2−p
∥

∥

∥
S

ε(λ)
λ (u)− u

∥

∥

∥

p

Lp
≤
∥

∥

∥
S

ε(λ)
λ (u)− Sλ(u)

∥

∥

∥

p

Lp
+ ‖Sλ(u)− u‖pLp

≤ |Ω|λ−p +

∫

{|u|≥λ}

|u|
p

dx.

Therefore S
ε(λ)
λ (u)→ u in Lp(Ω). Then, from strong closedness of ∂J∗(v) (see e.g.

[14, Thm. I.5.1]) it follows that u ∈ ∂J∗(v). �

Theorem 5. Let v be as in Theorem 4. Then

Jp∗
(v′) = −A(v(t)) .(46a)

v(0) = v0.(46b)

for a.e. t ∈ [0,∞).

Proof. From Proposition 5 we know, that the slope |A| coincides with its relaxed
slope, that is the weakly-lower semicontinuous envelope of |A| (adopting the ter-
minology of [2] this means that the relaxed slope is a strong upper gradient for φ).
Moreover u0 ∈ BV(Ω) ∩ Lp(Ω) and v0 ∈ ∂J(u0) implies v0 ∈ D(φ). Hence we can
directly apply [2, Thm 2.3.3.] which proves the assertion.

�

It is rather straight-forward to see that A(v) provides a subgradient of the func-
tional F : Lp∗(Ω)→ R,

(47) F (v) := −

∫

Ω

uδv dx+ J∗(v),

and hence, (46) can be interpreted as a gradient flow for F in Lp∗(Ω). We shall
return to the use of F as a Lyapunov functional for the flow in the discussion of its
multiscale properties.

From the definition of the operator A it follows that for a solution v of (46) there
exists a unique function u satisfying

(48) A(v(t)) = u(t)− uδ and u(t) ∈ ∂J∗(v(t))

for all t ∈ [0,∞) and from duality we conclude that v(t) ∈ ∂J(u(t)). From these
results it is evident that (46) is equivalent to

Jp∗
(v′) (t) = uδ − u(t), v(t) ∈ ∂J(u(t)),(49a)

v(0) = v0 u(0) = u0.(49b)

We now focus on basic properties of the solutions of (49).
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Proposition 6 (Regularity). Assume that uδ ∈ Lp(Ω). Then, the solutions (u, v)
of (49) satisfy

v ∈ C([0,∞), Lp∗(Ω)) , u ∈ L∞([0,∞),Lp(Ω)) .

Moreover, u(t) ∈ BV(Ω) for all t ∈ [0,∞).

Proof. The property of v follows from Theorem 4. Moreover, from the definition
of Kp∗(Ω) and the fact that v(t) ∈ Kp∗(Ω) it follows that χKp∗ (Ω)(v(t)) = 0 for all
t ∈ [0,∞). Application of [2, Rem. 1.3.3.] shows that

(50) ‖v′(t)‖
p∗

Lp∗
= 〈uδ, v′(t)〉 ≤

∥

∥uδ
∥

∥

Lp · ‖v
′(t)‖Lp∗

, a.e. in [0,∞)

and consequently

(51) ‖v′(t)‖Lp∗
≤
∥

∥uδ
∥

∥

1
p∗−1

Lp .

Thus the boundedness of u(t) follows from (49). It remains to show that u(t) has
finite total variation. To this end we choose 0 ≤ t <∞ and note that

∂J∗(v(t)) = {u ∈ Lp(Ω) : 〈u,w〉 ≤ 〈u, v(t)〉 for all w ∈ Kp∗(Ω)}

= {u ∈ Lp(Ω) : sup
w∈Kp∗(Ω)

〈u,w〉 ≤ 〈u, v(t)〉}

= {u ∈ Lp(Ω) : J(u) = 〈u, v(t)〉}.

This shows that

J(u(t)) ≤ ‖u(t)‖Lp · ‖v(t)‖Lp∗
<∞.

�

Theorem 6 (Uniqueness). If p = 2, then (49) has a unique solution (v, u).

Proof. The mapping v → χK2(Ω)(v)− 〈u
δ, v〉 is convex and therefore

∂
(

χK2(Ω)(v) − 〈u
δ, v〉

)

= ∂χK2(Ω)(v) − u
δ

is monotone (see e.g. [7]). That is

〈u1 − u2, v1 − v2〉 ≥ 0 for all vi ∈ K
2(Ω) , ui ∈ ∂χK2(Ω)(vi)− u

δ, i = 1, 2.

Assume that there exist two solutions v, v̂ of (46), that is,

−v′(t) ∈ ∂χK2(Ω)(v(t)) − u
δ ,

−v̂′(t) ∈ ∂χK2(Ω)(v̂(t)) − u
δ .

From the monotonicity of the right hand sides it follows that

〈−v′(t) + v̂′(t), v(t)− v̂(t)〉 ≥ 0

and therefore

d

dt
‖v(t)− v̂(t)‖

2
L2 = 〈v′(t)− v̂′(t), v(t) − v̂(t)〉 ≤ 0.

This shows that v = v̂. �

So far the results have shown that iterating the dual of iterative Bregman dis-
tance regularization (30) gives a implicit Euler scheme for the flow equation (46).
It remains to investigate the relation between the piecewise constant functions U~τl

and the function u introduced in (48).

Theorem 7. Let {~τl}l∈N be a sequence of partitions of [0,∞) such that liml→∞ |~τl| =
0. Then

(52) lim
l→∞

∥

∥U~τl
(t)− u(t)

∥

∥

Lp = 0, a.e. in [0,∞) .
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Proof. For a given partition ~τ of [0,∞) let V k
~τ be as in (38), the iterative minimizers

of the dual problem. We define a piecewise linear function Ṽ~τ : [0,∞) → Lp∗(Ω)
that linearly interpolates the discrete values V k

~τ . That is

Ṽ~τ (t) =
1

τk

((

tk~τ − t
)

V k−1
~τ +

(

t− tk−1
~τ

)

V k
~τ

)

for t ∈
(

tk−1
~τ , tk~τ

]

.

We proceed by estimating the difference between the linearly interpolated function
Ṽ~τ and the piecewise constant function V ~τ . For each t ∈

(

tk−1
~τ , tk~τ

]

we have

∥

∥

∥
Ṽ~τ (t)− V ~τ (t)

∥

∥

∥

Lp∗

=

∥

∥

∥

∥

1

τk

((

tk~τ − t
)

V k−1
~τ +

(

t− tk−1
~τ

)

V k
~τ

)

− V k
~τ

∥

∥

∥

∥

Lp∗

=
tk~τ − t

τk

∥

∥V k−1
~τ − V k

~τ

∥

∥

Lp∗
≤
∥

∥V k−1
~τ − V k

~τ

∥

∥

Lp∗
.

(53)

From the dual formulation (29) of the Bregman distance regularization it follows
that for all v ∈ Kp∗(Ω)

1

p∗
∥

∥V k−1
~τ − V k

~τ

∥

∥

p∗

Lp∗
− τp∗−1

k

〈

uδ, V k
~τ

〉

≤
1

p∗
∥

∥V k−1
~τ − v

∥

∥

p∗

Lp∗
− τp∗−1

k

〈

uδ, v
〉

.

With the choice v = V k−1
~τ it follows that

1

p∗
∥

∥V k
~τ − V

k−1
~τ

∥

∥

p∗

Lp∗
≤ τp∗−1

k

〈

uδ, V k−1
~τ − V k

~τ

〉

≤ τp∗−1
k

∥

∥uδ
∥

∥

Lp ·
∥

∥V k−1
~τ − V k

~τ

∥

∥

Lp∗

which implies that
∥

∥V k−1
~τ − V k

~τ

∥

∥

Lp∗
= O(|~τ |).

Let {~τl}l∈N be a sequence of partitions of [0,∞) such that liml→∞ |~τl| = 0 and
V ~τl

(t) ⇀ v(t) for all t ∈ [0,∞). Together with (53) it follows that for all t ∈ [0,∞)
and all u ∈ Lp(Ω)

lim
l→∞

∫

Ω

Ṽ~τl
(t)u dx = lim

l→∞

∫

Ω

(

Ṽ~τl
(t)− V ~τl

(t)
)

u dx

+ lim
l→∞

∫

Ω

V ~τl
(t)u dx =

∫

Ω

v(t)u dx.

Let I ⊆ [0,∞) be a compact intervall and set ΩI = I×Ω. This shows that for every

t ∈ [0,∞) there exists a positive number Mt > 0 such that
∥

∥

∥
Ṽ~τl

(t)
∥

∥

∥

Lp∗

≤ Mt for

all l ∈ N. Since t 7→
∥

∥

∥
Ṽ~τl

(t)
∥

∥

∥

Lp∗

is continuous we have that M = supt∈I Mt < ∞

and it follows that
∥

∥

∥
Ṽ~τl

(t)
∥

∥

∥

Lp∗

≤M for all t ∈ I and l ∈ N .

Then, by using the Lebesgue Dominated Convergence Theorem (see for instance
[24, Thm. 1.34]) it follows that for all u ∈ Lp(ΩI)

lim
l→∞

∫

ΩT

Ṽ~τl
u dt⊗ dx =

∫ T

0

lim
l→∞

∫

Ω

Ṽ~τl
(x, t)u(x, t) dx dt

=

∫ T

0

∫

Ω

v(x, t)u(x, t) dx dt

(54)

or in other words that Ṽ~τl
⇀ v in Lp∗(ΩI). Moreover, since

(55)
∂Ṽ~τl

(t)

∂t
=
V k

~τl
− V k−1

~τl

tk~τl
− tk−1

~τl

, t ∈
(

tk−1
~τl

, tk~τl

)
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we can apply [2, Thm. 2.3.3.], from which it follows that

(56) lim
l→∞

∥

∥

∥

∥

∥

∂Ṽ~τl

∂t

∥

∥

∥

∥

∥

Lp∗ (ΩI )

= ‖v′‖Lp∗(ΩI ) .

Therefore the sequence

{

∂Ṽ~τl

∂t

}

l∈N

is bounded in Lp∗(ΩI) and consequently {Ṽ~τl
}l∈N

is bounded in the space

Y :=

{

y ∈ Lp∗(ΩI) : y′ =
∂y

∂t
∈ Lp∗(ΩI)

}

.

Since the space Y with norm

‖y‖Y = ‖y‖Lp∗ (ΩI) + ‖y′‖Lp∗(ΩI )

is a reflexive Banach space (see for instance [26, Chap. III]), there exists a weakly

convergent subsequence {Ṽ~τk(l)
}l∈N and a limit v̂ ∈ Y satisfying

(57)

Ṽ~τk(l)
⇀ v̂,

∂Ṽ~τk(l)

∂t
⇀ v̂′











as l→∞ in Lp∗(ΩI).

Together with (54) this shows v̂ = v. From (56) and (57) and the Radon-Riesz

property of Lp∗(ΩI) (see [20, Chap. 2.5]) strong convergence of

{

∂Ṽ~τk(l)

∂t

}

l∈N

fol-

lows. We further conclude (see for instance [17, Chap. 1.3 Thm. 5]) that there
exists another subsequence, which for the simplicity of notation we again denote
by k(l), such that

(58)

∥

∥

∥

∥

∥

∂Ṽ~τk(l)

∂t
(t)− v′(t)

∥

∥

∥

∥

∥

Lp∗

→ 0 for almost all t ∈ I .

Moreover, from (35) and (55) we obtain for t ∈
(

tk−1
~τk(l)

, tk~τk(l)

]

U~τk(l)
(t) = Uk

~τk(l)
= uδ −

[

1

τk
k(l)

]p∗−1

Jp∗

(

V k
~τk(l)
− V k−1

~τk(l)

)

= uδ − Jp∗

(

V k
~τk(l)
− V k−1

~τk(l)

τk
~τk(l)

)

= uδ − Jp∗

(

∂Ṽ~τk(l)
(t)

∂t

)

(59)

and from (33) that

(60) V ~τk(l)
(t) ∈ ∂J(U~τk(l)

(t)).

From (58) and the norm-norm continuity of Jp∗
([11, Thm 2.16]) it follows that the

right hand side of (59) converges to a function ũ(t) ∈ Lp(Ω) for almost all t ∈ I
that satisfies

Jp∗
(v′) = uδ − ũ(t), almost everywhere in I.

The graph of ∂J is closed in Lp(Ω)×Lp∗(Ω) with respect to the strong topology on
Lp(Ω) and weak topology on Lp∗(Ω) (cf. [14, Chap. I Cor. 5.1]). That is, the set
{(u, v) : v ∈ ∂J(u), u ∈ Lp(Ω)} satisfies: Let uk ∈ Lp(Ω) and vk ∈ ∂J(uk) ⊆ Lp∗(Ω)
satisfying vk ⇀ v in Lp∗(Ω) and uk → u in Lp(Ω), then v ∈ ∂J(u). Therefore (v, ũ)
is a solution of (49) and since for every solution v of (46) the function u as in (48)
is unique it follows that ũ = u on I.
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In other words this shows that every subsequence of U~τl
has an almost every-

where convergent subsequence with limit u (restricted to I) which means that

lim
l→∞

∥

∥U~τl
(t)− u(t)

∥

∥

Lp = 0, a.e. in I.

Choosing I = [k, k + 1] for k ∈ Z finally shows (52). �

Corollary 2 (Monotonicity). Let uδ ∈ Lp(Ω). If u is a solution of (49) we have

(61)
∥

∥u(s)− uδ
∥

∥

Lp ≤
∥

∥u(t)− uδ
∥

∥

Lp

for almost all s, t in [0,∞) satisfying s > t.

Proof. Let T > t and {~τl}l∈N be a partition of [0,∞) such that liml→∞ |~τl| = 0 and
that (52) holds a.e. in [0, T ] (particularly for s and t). Then there exists an index

l0 such that for all l > l0 there exist k(l), k̃(l) ∈ N satisfying t ∈ (t
k(l)−1
~τl

, t
k(l)
~τl

],

s ∈ (t
k̃(l)−1
~τl

, t
k̃(l)
~τl

] and

t
k(l)
~τl

< t
k̃(l)−1
~τl

.

Then it follows from Lemma 4 that
∥

∥U~τl
(s)− uδ

∥

∥

Lp ≤
∥

∥U~τl
(t)− uδ

∥

∥

Lp , for all l > l0.

With this we obtain the estimate
∥

∥u(s)− uδ
∥

∥

Lp ≤
∥

∥U~τl
(s)− uδ

∥

∥

Lp +
∥

∥U~τl
(s)− u(s)

∥

∥

Lp

≤
∥

∥U~τl
(t)− uδ

∥

∥

Lp +
∥

∥U~τl
(s)− u(s)

∥

∥

Lp

≤
∥

∥U~τl
(t)− u(t)

∥

∥

Lp +
∥

∥U~τl
(s)− u(s)

∥

∥

Lp +
∥

∥u(t)− uδ
∥

∥

Lp .

Taking the limit l→∞ shows (61). �

In this section we showed that there exists a solution (v, u) of the inverse total
variation flow equation (49). The sequences {uk} and {vk} in Algorithm 1 can be
considered as numerical approximations of u and v respectively, corresponding to
the time step size

∆t =
1

αp∗−1
.

It is important to note that the generation of the (dual) flow equation (46) is
independent of the minimizers of the primal variational problem in Algorithm 1.
In other words, the function u in (48) is established artificially and a connection
to Algorithm 1 is a priori not obvious. Theorem 7 finally provides this relation.

4. Multiscale Properties

In the following we discuss the multiscale properties of the inverse total variation
flow. From the interpretation of (49) as an inverse scale space method, we expect
that large scales are reconstructed for small times, while finer scales take a longer
time to be included in the reconstruction. Our numerical results below will confirm
this behavior. Moreover we provide some examples giving a theoretical justification.
Throughout the whole section we make the natural assumption that u(0) = 0 and
v(0) = 0.

In a linear inverse scale space method we would expect that the reconstruction
approaches the image continuously in time. This is not true for the inverse total
variation flow as the next result shows, the continuous evolution rather appears for
the dual variable v:

Theorem 8. Let uδ be normalized such that Jp(u
δ) ∈ Lp∗

♦ (Ω). For t
∥

∥Jp(u
δ)
∥

∥

∗
≤ 1,

a solution of (49) is given by

(62) u(t) = 0, v(t) = t Jp(u
δ).
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Proof. In the following let t ≤ 1
‖Jp(uδ)‖

∗

. We verify that (v, u) defined by (62) is

indeed a solution of (49). Since v′ = Jp(u
δ) = Jp(u

δ − u) it follows that

Jp∗
(v′) = uδ − u.

After Proposition 2 there exists z ∈ ker (Tp∗
) such that div (z) = Jp(u

δ) and
‖z‖L∞(Ω)n ≤

∥

∥Jp(u
δ)
∥

∥

∗
. Then, for all ϕ ∈ C1

c (Ω) and all t ∈ (0, T ) we have

J(ϕ)− J(u(t))−

∫

Ω

v(t) (ϕ− u(t)) dx = J(ϕ) −

∫

Ω

t Jp(u
δ) ϕ dx

=

∫

Ω

(|∇ϕ|+ t z ∇ϕ) dx

≥ (1 − t
∥

∥Jp(u
δ)
∥

∥

∗
)

∫

Ω

|∇ϕ| dx ≥ 0.

By standard continuity and density arguments we can now extend the inequality

J(ϕ)− J(u(t))−

∫

Ω

v(t) (ϕ− u(t)) dx ≥ 0

to all ϕ ∈ Lp(Ω) and hence, v(t) ∈ ∂J(0) = ∂J(u(t)). Thus, (v, u) is a solution of
(49). �

Theorem 8 shows that the reconstruction does not change in an initial stage of
the evolution up to time t∗ = 1

‖Jp(uδ)‖
∗

, while the dual variable changes at linear

rate in time.
In order to illustrate the behavior for t > t∗, we consider simple functions. We

start with an auxiliary result (see also [5],[3]).

Lemma 6. Let u ∈ Lp(Ω) be a simple function. Then

Jp(u)

‖Jp(u)‖∗
∈ ∂J(u).

Proof. For an arbitrary w ∈ Lp(Ω) we have

J(u) +

〈

Jp(u)

‖Jp(u)‖∗
, w − u

〉

= J(u) +
1

‖Jp(u)‖∗
(〈Jp(u), w〉 − 〈Jp(u), u〉)

= J(u) +
1

‖Jp(u)‖∗
(〈Jp(u), w〉 − ‖u‖

p
Lp)

= J(u) +
1

‖Jp(u)‖∗
〈Jp(u), w〉 − J(u)

≤
1

‖Jp(u)‖∗
‖Jp(u)‖∗ J(w) = J(w).

�

According to [19], such simple functions are the building blocks of cartoon im-
ages. For the inverse total variation flow they are also fundamental, since they can
be recovered in finite time:

Theorem 9. Let uδ be a simple function. Then, for t
∥

∥Jp(u
δ)
∥

∥

∗
≥ 1, a solution of

(49) is given by

(63) u(t) = uδ, v(t) = t∗ Jp(u
δ).

Proof. We have noticed in Lemma 6 that for simple functions the inclusion

v(t) = t∗ Jp(u
δ) =

Jp(u
δ)

‖Jp(uδ)‖∗
∈ ∂J(uδ) = ∂J(u(t))
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holds. Moreover, Jp∗
(v′)(t) = 0 = uδ − u(t) is obviously satisfied. Hence (v, u) is a

solution of (49). �

It is also easy to see that the converse of Theorem 9 is true, i.e., if Jp(u
δ) ∈ Lp∗

♦
(Ω)

and (63) holds for t > t∗, then uδ is simple. Hence, the simple images are the ones
that can be reconstructed at time t∗.

Remark 2. Combining Theorems 8 and 9 shows that for simple initial data uδ a
solution (v, u) of (49) is given by

v : t→

{

t Jp(u
δ) if 0 ≤ t ≤ t∗,

t∗ Jp(u
δ) else.

u : t→

{

0 if 0 ≤ t ≤ t∗,

uδ else.

This shows that the regularity result in Proposition 6 and the growth property in
Proposition 4 are sharp.

Typical simple images in spatial dimension one are piecewise constant functions,
that is, for Ω = (−1, 1) the function

f(x) =

{

−1 if x < 0,
+1 if x > 0.

is simple (for any p ∈ (1,∞)), and satisfies ‖Jp(f)‖∗ = 1. Hence, this simple step
function will be reconstructed by the inverse total variation flow at time t∗ = 1.

A bit more instructive is the analysis for piecewise constant signal with a positive
part in the middle, which has two scale parameters, namely its height and width:

Example 3. Let Ω = (−1, 1) and let, for H > 0, R ∈ (0, 2),

f(x) =
H

C

{

−1 if |x| ≥ R
2 ,

(

2
R
− 1
)p∗−1

if |x| < R
2

with C = 1 +
(

2
R
− 1
)p∗−1

. In this case we have
∫ 1

−1
Jp(f) dx = 0 and Jp(f) = dz

dx

for

z(x) =

(

H

C

)p−1











−(x+ 1) if x ≤ −R
2 ,

(

2
R
− 1
)

x if |x| < R
2

(1− x) if x ≥ R
2 .

The function z satisfies z(−1) = z(1) = 0 and ‖Jp(f)‖∗ = ‖z‖∞ =
(

H
C

)p−1 (
1− R

2

)

and consequently the reconstruction time is given by t∗ =
(

C
H

)p−1
(

2
2−R

)

. In

Figure 1 the G-norm of Jp(f) and the reconstruction time for f are plotted against
the variable R for fixed H = 1 and p = 2.

We note that the smaller the spatial features are (that is the smaller ‖Jp(f)‖∗
is) the longer it takes to recover the signal. By increasing the width of the peak
the reconstruction time decreases until the positive part of the signal (|x| < R/2)
equals half the interval length. Beyond this point the negative parts of the signal
(|x| ≥ R/2) behave like peaks and therefore require a larger reconstruction time.

We finally turn to the large-time properties of the flow (46) in the case of arbi-
trary images. In the previous section, we have interpreted the inverse total variation
flow as a gradient flow according to F : Lp∗(Ω)→ R (cf. (47))

F (v) := −

∫

Ω

uδv dx+ J∗(v).

Below we prove monotone decrease of the dual functional F , which also yields a
convergence of solutions u of (49) to uδ. Theorem 10 can be considered as the
continuous version of Theorem 3.
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Figure 1. Left: the star norm of Jp(f) represents the size of
spatial features. Right: reconstruction time t∗ for f .

Theorem 10 (Inverse Fidelity). Let uδ ∈ Lp(Ω), let (v, u) be a solution of (49)
and let F be defined by (47). Then t 7→ F (v(t)) is non-increasing (decreasing if
u(t) 6= uδ) and we have

(64) lim
t→∞

∥

∥u(t)− uδ
∥

∥

Lp = 0.

If, in addition uδ ∈ BV (Ω), then we get the convergence rate

∥

∥u(t)− uδ
∥

∥

Lp ≤

(

J(uδ)

t

)

1
p

, for a.e. t ∈ [0,∞).

Proof. Let s, t > 0 and u(t) ∈ ∂J∗(v(t)). Then it follows that 〈v(s)− v(t), u(t)〉 ≤ 0
and together with the definition of F and the fact that J∗(v(t)) = J∗(v(s)) = 0 we
have that

F (v(t)) − F (v(s)) = 〈v(s)− v(t), uδ〉

≤ 〈v(s)− v(t), uδ〉 − 〈v(s)− v(t), u(t)〉

= −〈v(t)− v(s), uδ − u(t)〉,

(65)

for almost every s, t. From Theorem 4 it follows that v is differentiable at almost
all t ∈ [0,∞) and therefore t → F (v(t)) is differentiable a.e. in [0,∞). Together
with (65) it becomes clear that

lim
s↑t

F (v(t)) − F (v(s))

t− s
=

∂

∂t
F (v(t)) ≤ −

〈

∂v

∂t
(t), u(t)− uδ

〉

= −
∥

∥u(t)− uδ
∥

∥

p

Lp ,

for a.e. t ∈ [0,∞). Hence, we may conclude that

F (v(t))− F (v(τ)) ≤ −

∫ t

τ

‖u(s)− uδ‖pLp ds ≤ 0.

With τ = 0 and v(0) = 0 this gives

∫ t

0

‖u(s)− uδ‖pLp ds ≤ −F (v(t)).

Combining this inequality with Corollary 2 yields

∥

∥u(t)− uδ
∥

∥

p

Lp ≤
1

t

∫ t

0

∥

∥u(s)− uδ
∥

∥

p

Lp ds ≤

∫

Ω

v(t)

t
uδ dx.
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In order to show (64) we prove that v(t)
t

weakly converges to 0 as t → ∞. Since
v(t) ∈ Kp∗(Ω) we have that

lim
t→∞

∥

∥

∥

∥

v(t)

t

∥

∥

∥

∥

∗

= lim
t→∞

‖v(t)‖∗
t

≤ lim
t→∞

1

t
= 0.

Therefore it suffices to show that
{

v(t)
t

}

t≥0
is bounded in Lp∗(Ω) after Lemma 3

which directly follows from Proposition 4. Finally, since v(t) ∈ Kp∗(Ω) it follows
for uδ ∈ BV(Ω) that (cf. Lemma 1)

−F (v(t)) = 〈v(t), uδ〉 ≤ sup
v∈Kp∗(Ω)

〈v, uδ〉 = J(uδ).

�

Theorem 10 provides some global information about the speed of reconstruction
in relation to the smoothness of the image. The difference between the reconstruc-
tion and the image decays like p

√

J(uδ)/t, and which is decreasing with the total
variation of uδ. Thus, also in this global sense smooth images are reconstructed
faster than nonsmooth ones.

5. Numerical Simulations

In this section we give some argumentation for applying Algorithm 1 for image
and surface denoising. The efficiency of this method for image restoration has
already been investigated in [22] and [8].

In the upcoming section we show that iterative Bregman regularization is a
feasible technique for denoising of surfaces that are represented as level sets of
suitable level set functions. Since an image can be considered as the union of its
level lines the following argumentation is also applicable on image restoration.

5.1. Surface Denoising. Let u ∈ BV(Ω) and the zero super level set

C = {x ∈ Ω : u(x) > 0}.

Assume that

|∂C|(Ω) := |DχC |(Ω) <∞ .

For x ∈ Ω, we consider δ(x) a realization of a random variable ∆(x). With the
function

(66) uδ(x) = u(x) + δ(x) for all x ∈ Ω .

we associate a noisy surface as the boundary of the super level set of uδ

(67) ∂Cδ with Cδ = {x ∈ Ω : uδ(x) > 0}.

Let {uk}k∈N be defined by Algorithm 1. We see from the co-area formula in BV(Ω)
(see e.g. [17, Chap. 5.5 Thm. 1]) that for all u ∈ BV(Ω) ∩ Lp(Ω)

(68)

I(α;u1, 0) =
1

p

∫

Ω

∣

∣u1 − u
δ
∣

∣

p
+ α|Du1|(Ω)

=
1

p

∥

∥u1 − u
δ
∥

∥

p

Lp + α

∫ ∞

−∞

|∂{x ∈ Ω : u1(x) > c}|(Ω) dc

≤
1

p

∥

∥u− uδ
∥

∥

p

Lp + α

∫ ∞

−∞

|∂{x ∈ Ω : u(x) > c}|(Ω) dc .
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Equation (68) shows that α enforces a trade off between the amount of displace-
ments of uδ and u1 and smoothness of the level sets of u1 in average. We explain
the second Bregman iteration step:

u2 = argmin
u∈Lp(Ω)

I(α;u, u1)

= argmin
u∈Lp(Ω)

{

1

p

∥

∥u− uδ
∥

∥

p

Lp + α(J(u)− 〈v1, u〉)

}

.
(69)

Let u ∈ Lp(Ω) ∩ BV(Ω) and v ∈ Kp∗(Ω). Then there exists z ∈ ker (Tp∗
) such

that div (z) = v and ‖z‖L∞(Ω)n ≤ 1. After Lemma 3 we can find a function

θ(v, u, ·) ∈ L∞(Ω,R, |Du|) such that
∫

Ω

udiv (z) dx =

∫

Ω

uv dx =

∫

Ω

θ(v, u, x)d|Du|

and ‖θ(v, u, ·)‖L∞(Ω,R,|Du|) ≤ ‖v‖∗ ≤ 1. Thus there exists an angle γ(v, u, x) ∈ [0, π)

for all x ∈ Ω such that cos(γ(v, u, x)(x)) = θ(v, u, x) |Du| – a.e. in Ω and that

J(u)− 〈v, u〉 =

∫

Ω

(1− cos(γ(v, u, x)))d|Du|.

It remains to investigate the geometrical meaning of γ(v, u, ·). To this end we apply
[3, Thm c.14] and obtain that

θ(v, u, ·) = z ·
Du

|Du|
, |Dau| − a.e. in Ω

where Du
|Du| denotes the density of Du w.r.t. |Du| and |Dau| the absolut continu-

ous part of the measure |Du|. In other words γ(v, u, x) can be considered as the
(generalized) angle between z(x) and the normalized gradient of u at x ∈ Ω.

With this we rewrite (69) and obtain

u2 = argmin
u∈Lp(Ω)

{

1

p

∥

∥u− uδ
∥

∥

p

Lp + α(J(u) − 〈v1, u〉)

}

= argmin
u∈Lp(Ω)

{

∥

∥u− uδ
∥

∥

p

Lp + α

∫

Ω

(1− cos γ(z1, u, x)) d|Du|

}

.

where div (z1) = v1. It is important to note that 〈v1, u1〉 = |Du1|(Ω) and therefore
γ(v1, u1, ·) = 0 |Dau1| a.e. in Ω, i.e. z1 is parallel to the normalized gradient
of u1. Therefore, the second step of iterative Bregman regularization consists in
simultaneously minimizing the distance between u2 of uδ and the angle between
unit normal vectors of the level sets of u1 and u2.

5.2. Computational Realization. We describe the computational realization used
for iterative total variation flow regularization (with p = 2).

We assume that

(70) ‖δ‖L2 ≤ δ′.

The pseudo code for iterative Bregman distance regularization, Algorithm 1, in the
case p = 2 reads as follows (see for instance [8]):

Algorithm 2. (1) w0 = 0, u0 = 0, k = 0
(2) while

∥

∥uk+1 − u
δ
∥

∥

L2 ≥ δ
′

uk+1 = argmin
u∈L2(Ω)

{

1

2

∥

∥u− (uδ + wk)
∥

∥

2

L2 + α|Du|(Ω)

}

,

wk+1 = wk + (uδ − uk+1),

k ← k + 1.
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In the case p = 2 iterative Bregman distance regularization simplifies to subse-
quent minimization of the ROF functional with data uδ + wk.

Let

Ω =
∏

1≤i≤n

[ai, bi], ai < bi ∈ R

be an n–dimensional cuboid on which we consider a regular grid {xi}1≤i≤N and
n-linear ansatzfunctions {ψi}1≤i≤N .

For a function u ∈ L2(Ω) we denote by

û =

N
∑

i=1

uiψi

the best approximation on L = span{ψi : i = 1, . . . , N} of u in in the L2 sense.
For minimization of the ROF-functional with data uδ + wk (that is the k-th

iteration step of Bregman distance regularization) we solve the weak form of the
Euler-Lagrange equation for ui using a linear finite element method:

(71)

N
∑

i=1

∫

Ω

uiψiψj + α
ui

√

|∇û|2 + ε2
∇ψi∇ψj dx =

N
∑

i=1

∫

Ω

(uδ
i + (wk)i)ψiψj dx, 1 ≤ j ≤ N.

Here ε > 0 is a small positive parameter adapted to the grid size. The nonlinear
equation (71) is solved by the following fixed point procedure

(1) Set û0 = ûδ.
(2) for k = 1, 2, . . . solve

Aku
k+1 = bk,

where

(Ak)ij =

∫

Ω

ψiψj +
α

√

|∇uk|2 + ε2
∇ψi∇ψj dx

(bk)j =
N
∑

i=1

∫

Ω

(uδ
i + (wk)i)ψiψj dx.

Figure 2. Volumetic view and level set of original data.

The following example shows 3D ultrasound data of a fetus with a resolution of
93 × 186 × 158. A volumetric view as well as one of the (noisy) level set of the
fetus data are displayed in Figure 2. The data is scaled between 0 and 1 and
we performed Algorithm 2 with α = 0.5 and ε = 10−4. That is the minimizers
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uk correspond to solutions of (49) at times t = 2k. Figure 3 shows the denoised
isosurfaces at steps 1, . . . , 6.

Figure 3. Denoised surfaces: Steps 1, . . . , 6 with α = 0.5.
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